An efficient and eco-friendly preparation of N-substituted acridine-1,8-dione derivatives using triethylamine as catalyst in ethanol medium

Authors

  • Abdelkader Brahimi
  • Boumadiene Benlahreche
  • Abdelghani Elmahdaoui Rebhi
  • Mokhtar Boualem Lahrech

DOI:

https://doi.org/10.22399/ijcesen.4300

Keywords:

1,8-dioxo-decahydroacridines Aniline, Aromatic aldehyde, One-pot multicomponent reactions, Triethylamine

Abstract

This work presents a straightforward, efficient, and environmentally benign method for synthesizing N-substituted acridine-1,8-dione derivatives (4a-h). The synthesis is achieved via a one-pot, three-component condensation of an aromatic aldehyde, dimedone, and p-toluidine.The protocol employs ethanol as a green solvent and triethylamine (TEA) as a simple, effective catalyst. This approach offers significant advantages over conventional methods, including operational simplicity and mild reaction conditions. The reaction proceeds efficiently, affording the target products in excellent yields of 86–91%.A key practical benefit is the simple work-up; pure products are easily isolated by filtration and recrystallization, eliminating the need for complex chromatography. This method, characterized by its high yields, minimal environmental impact, and practicality, provides a robust and scalable route to the biologically significant acridine-dione core.

References

1. Sondhi, S. M., Singh, J., Rani, R., Gupta, P. P., Agrawal, S. K., & Saxena, A. K. (2010). Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. European Journal of Medicinal Chemistry, 45(2), 555-563.‏

2. Gamage, S. A., Spicer, J. A., Atwell, G. J., Finlay, G. J., Baguley, B. C., & Denny, W. A. (1999). Structure− activity relationships for substituted bis (acridine-4-carboxamides): a new class of anticancer agents. Journal of Medicinal Chemistry, 42(13), 2383-2393.‏

3. Girault, S., Grellier, P., Berecibar, A., Maes, L., Mouray, E., Lemiere, P., ... & Sergheraert, C. (2000). Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis (9-amino-6-chloro-2-methoxyacridines): influence of the linker. Journal of medicinal chemistry, 43(14), 2646-2654.‏

4. Kelly, J. X., Smilkstein, M. J., Brun, R., Wittlin, S., Cooper, R. A., Lane, K. D., ... & Riscoe, M. K. (2009). Discovery of dual function acridones as a new antimalarial chemotype. Nature, 459(7244), 270-273.‏

5. Shchekotikhin, Y. M., Nikolaeva, T. G., Shub, G. M., & Kriven'ko, A. P. (2001). Synthesis and antimicrobial activity of substituted 1, 8-dioxodecahydroacridines. Pharmaceutical Chemistry Journal, 35(4), 206-208.‏

6. Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S., & El-Gazzar, A. B. A. (2008). A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′, 2-[1, 3, 4] thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorganic & medicinal chemistry letters, 18(16), 4538-4543.‏

7. Banerjee, A. G., Kothapalli, L. P., Sharma, P. A., Thomas, A. B., Nanda, R. K., Shrivastava, S. K., & Khatanglekar, V. V. (2016). ORIGINAL ARTICLE A Facile Microwave Assisted One Pot Synthesis of Novel Xanthene Derivatives as Potential Anti-Inflammatory and Analgesic Agents. Arab. J. Chem, 9, S480-S489.‏

8. Toobaei, Z., Yousefi, R., Panahi, F., Shahidpour, S., Nourisefat, M., Doroodmand, M. M., & Khalafi-Nezhad, A. (2015). Synthesis of novel poly-hydroxyl functionalized acridine derivatives as inhibitors of α-glucosidase and α-amylase. Carbohydrate research, 411, 22-32.‏

9. Di Giorgio, C., Benchabane, Y., Boyer, G., Piccerelle, P., & De Méo, M. (2011). Evaluation of the mutagenic/clastogenic potential of 3, 6-di-substituted acridines targeted for anticancer chemotherapy. Food and chemical toxicology, 49(11), 2773-2779.‏

10. Charmantray, F., & Martelli, A. (2001). Interest of acridine derivatives in the anticancer chemotherapy. Current pharmaceutical design, 7(17), 1703-1724.‏

11. Karunakaran, V., Ramamurthy, P., Josephrajan, T., & Ramakrishnan, V. T. (2002). Solvent effects and photophysical studies of a new class of acridine (1, 8) dione dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(7), 1443-1451.‏

12. Srividya, N., Ramamurthy, P., & Ramakrishnan, V. T. (1998). Photophysical studies of acridine (1, 8) dione dyes: a new class of laser dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(2), 245-253.‏

13. Fouassier, J. P., Morlet-Savary, F., Lalevée, J., Allonas, X., & Ley, C. (2010). Dyes as photoinitiators or photosensitizers of polymerization reactions. Materials, 3(12), 5130-5142.‏

14. Xiao, P., Dumur, F., Tehfe, M. A., Graff, B., Gigmes, D., Fouassier, J. P., & Lalevée, J. (2013). Difunctional acridinediones as photoinitiators of polymerization under UV and visible lights: Structural effects. Polymer, 54(14), 3458-3466.‏

15. Venkatachalapathy, B., Ramamurthy, P., & Ramakrishnan, V. T. (1997). Ground and excited states acid-base properties of acridine-1, 8-dione dyes. Journal of Photochemistry and Photobiology A: Chemistry, 111(1-3), 163-169.‏

16. Darviche, F., Balalaie, S., Chadegani, F., & Salehi, P. (2007). Diammonium hydrogen phosphate as a neutral and efficient catalyst for synthesis of 1, 8‐dioxo‐octahydroxanthene derivatives in aqueous media. Synthetic Communications, 37(7), 1059-1066.‏

17. Tu, S. J., Lu, Z., Shi, D., Yao, C., Gao, Y., & Guo, C. (2002). A CONVENIENT SYNTHESIS OF 9-ARYL-3, 3, 6, 6-TETRAMETHYL-1, 2, 3, 4, 5, 6, 7, 8, 9, 10-DECAHYDROACRIDINE-1, 8-DIONES UNDER MICROWAVE IRRADIATION WITHOUT SOLVENT. Synthetic communications, 32(14), 2181-2185.‏

18. Suarez, M., Loupy, A., Salfran, E., Moran, L., and Rolando, E., Hetero-cycles., 1999, vol. 51, p. 21. https://doi:10.3987/COM-98-8272

19. Tu, S., Fang, F., Zhu, S., Li, T., Zhang, X., & Zhuang, Q. (2004). One‐Pot synthesis of a novel compound N‐hydroxydecahydroacridine under microwave irradiation. Journal of heterocyclic chemistry, 41(5), 767-770.‏

20. Martín, N., Quinteiro, M., Seoane, C., Soto, J. L., Mora, A., Suárez, M., ... & Bosque, J. R. D. (1995). Synthesis and conformational study of acridine derivatives related to 1, 4‐dihydropyridines. Journal of Heterocyclic Chemistry, 32(1), 235-238.‏

21. Djemoui, A., Ouahrani, M. R., Naouri, A., Souli, L., Rahmani, S. E., & Boualem, L. M. (2018). Eco-friendly and highly efficient one-pot synthesis of symmetrical and unsymmetrical 1, 4-dihydropyridine derivatives using triethylamine as catalyst in ethanol medium. Heterocyclic Letters, 8(2), 455-467.‏

22. Hasaninejad, A., Shekouhy, M., Miar, M., & Firoozi, S. (2016). Sulfonated Polyethylene Glycol (PEG-SO3H) as eco-friendly and potent water soluble solid acid for facile and green synthesis of 1, 8-dioxo-octahydroxanthene and 1, 8-dioxo-decahydroacridine derivatives. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46(1), 151-157.‏

Downloads

Published

2025-11-14

How to Cite

Abdelkader Brahimi, Boumadiene Benlahreche, Abdelghani Elmahdaoui Rebhi, & Mokhtar Boualem Lahrech. (2025). An efficient and eco-friendly preparation of N-substituted acridine-1,8-dione derivatives using triethylamine as catalyst in ethanol medium. International Journal of Computational and Experimental Science and Engineering, 11(4). https://doi.org/10.22399/ijcesen.4300

Issue

Section

Research Article

Most read articles by the same author(s)