Formulation and Evaluation of Eugenol/Glycyrrhizic Acid -Loaded Nano-Lipid Carrier Gel for Treating Multidrug-Resistant Oral Infections: Histological Changes in a Mouse Model

Authors

  • Yasmin S. H. Al.joubori Research Scholar
  • Muna T. Al. Musawi
  • Khalid Kadhem Al-Kinani

DOI:

https://doi.org/10.22399/ijcesen.2526

Keywords:

Nano-Lipid Carriers, MDR Pathogens, Biofilms, Eugenol, Glycyrrhizic Acid

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans are pathogens that are drug-resistant and biofilm-forming. Therefore, they are responsible for severe infections, high morbidity, and mortality all over the world. Their ability to form biofilms and develop resistance against conventional antibiotics calls for a big need for new antimicrobial strategies. In this study, a nano-lipid carrier (NLC) gel containing eugenol and glycyrrhizic acid extract (EGAE) was developed as a topical treatment system and it was evaluated for its efficacy against multidrug-resistant (MDR) clinical isolates. The EGAE-NLC gel showed a very good physico-chemical stability by maintaining its visual appearance, uniform consistency, and drug content (98.9%) over a period of 12 weeks standard storage conditions. The gel formulation demonstrated a thermodynamically stable microemulsion with a globule size ranging between 29.1 and 60.5 nm. The zeta potential ranged from -35 to -43 mV and a pH range of 6.5–6.7. All these make the gel suitable for topical administration. The antimicrobial evaluation showed that the EGAE-NLC gel exerts a significant inhibitory activity against the studied pathogens, where a marked reduction in the minimum inhibitory concentrations (MICs) compared to individual components was attained. It is believed that the gel disrupted the biofilms and increased microbial cell membrane permeability. Eventually, leading to leakage of intracellular materials, cell lysis, and death. The anti-biofilm activity was seen as the highest against S. aureus, in which severe disruption of cell-to-cell connections was observed. In conclusion, this study suggests that EGAE-NLC gel represents a promising alternative antimicrobial therapy for fighting against infections caused by MDR pathogens. The mechanism of direct bactericidal action and biofilm disruption can provide a strong basis for further development into a clinically useful formulation.

References

[1] Abbas, N. K., & Shaker, D. S. (2024). Study the Effects of Pure Tin Oxide Nanoparticles Doped with Cu, Prepared by the Biosynthesis Method, on Bacterial Activity. Baghdad Science Journal. 21(11);3543-3553.

[2] Abirami, G., Alexpandi, R., Durgadevi, R., Kannappan, A., & Veera Ravi, A. (2020). Inhibitory effect of morin against Candida albicans pathogenicity and virulence factor production: An in vitro and in vivo approaches. Frontiers in Microbiology. 11;561298.

[3] Albano, M., Alves, F. C. B., Andrade, B. F. M. T., Barbosa, L. N., Pereira, A. F. M., de Souza, M. D. L. R., et al. (2016). Antibacterial and anti-staphylococcal enterotoxin activities of phenolic compounds. Innovative Food Science & Emerging Technologies. 38;83-90.

[4] Ali, M. N., & Heydarlou, M. M. (2023). Histopathological Effect of Extracellular Products of Clinical Isolates of Pseudomonas aeruginosa on Mice Lungs. World Journal of Experimental Biosciences. 36-40.

[5] Al-Tawalbeh, D. M., Alawneh, J. M., Momani, W., & Mayyas, A. (2025). Comparative antibacterial activity of clove extract against Pseudomonas aeruginosa. BMC Complementary Medicine and Therapies. 25(1);7.

[6] Ashjazadeh, M. A., Jahandideh, A., Abedi, G., Akbarzadeh, A., & Hesaraki, S. (2019). Histopathology and histomorphological study of wound healing using Clove extract nanofibers (eugenol) compared to zinc oxide nanofibers on the skin of rats. Archives of Razi Institute. 74(3);267-277.

[7] Bai, J., Li, J., Chen, Z., Bai, X., Yang, Z., Wang, Z., & Yang, Y. (2023). Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. Lwt. 173;114249.

[8] Bassetti, M., Vena, A., Croxatto, A., Righi, E., & Guery, B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs in Context. 7.

[9] Basualdo, C., Sgroy, V., Finola, M. S., & Marioli, J. M. (2007). Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Veterinary Microbiology. 124(3-4);375-381.

[10] Betoni, J. E. C., Mantovani, R. P., Barbosa, L. N., Di Stasi, L. C., & Fernandes Junior, A. (2006). Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Memórias do Instituto Oswaldo Cruz. 101;387-390.

[11] Campos, J., Pires, M. F., Sousa, M., Campos, C., da Costa, C. F. F. A., & Sampaio-Maia, B. (2023). Unveiling the relevance of the oral cavity as a Staphylococcus aureus colonization site and potential source of antimicrobial resistance. Pathogens. 12(6);765.

[12] Chaieb, K., Zmantar, T., Ksouri, R., Hajlaoui, H., Mahdouani, K., Abdelly, C., & Bakhrouf, A. (2007). Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses. 50(5);403-406.

[13] Collins, D. S., & Huey, R. J. (2014). Gracey's meat hygiene. John Wiley & Sons.

[14] De Paula, S. B., Bartelli, T. F., Di Raimo, V., Santos, J. P., Morey, A. T., Bosini, M. A., et al. (2014). Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV‐Infected Patients. Evidence‐Based Complementary and Alternative Medicine. 2014(1);505204.

[15] de Souza, T. B., de Oliveira Brito, K. M., Silva, N. C., Rocha, R. P., de Sousa, G. F., Duarte, L. P., et al. (2016). New eugenol glucoside-based derivative shows fungistatic and fungicidal activity against opportunistic Candida glabrata. Chemical Biology & Drug Design. 87(1);83-90. https://doi.org/10.1111/cbdd.12625

[16] Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology. 130(1);107-115.

[17] Dhedan, R. M., Awaad, S. H., & Fadhl, S. N. (2025). Synthesis and Characterization of New Acrylamide Derivatives and Studying Their Antibacterial Activity. Baghdad Science Journal. 22(2).

[18] El-Haroun, H. (2021). Histological, Immunohistochemical and Biochemical assessment of the protective capacity of Cloves against Furan-induced submandibular changes in adult male albino rats. Egyptian Journal of Histology. 44(4);916-931.

[19] Faujdar, S. S., Bisht, D., & Sharma, A. (2020). Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta-lactamase: Are we close to getting a new antibacterial agent. Journal of Family Medicine and Primary Care. 9(1);180-186.

[20] Ferreira, G. L. S., Pérez, A. L. A. D. L., Rocha, Í. M., Pinheiro, M. A., Castro, R. D. D., Carlo, H. L., et al. (2015). Does scientific evidence for the use of natural products in the treatment of oral candidiasis exist? A systematic review. Evidence‐Based Complementary and Alternative Medicine. 2015(1);147804. https://doi.org/10.1155/2015/147804

[21] Ghafil, J. A., & Zgair, A. K. (2022). Bacterial secretions in growth medium stimulate the mouse respiratory innate immune response. Journal of Medical Microbiology. 71(10);001588.

[22] Ginting, E. V., Retnaningrum, E., & Widiasih, D. A. (2021). Antibacterial activity of clove (Syzygium aromaticum) and cinnamon (Cinnamomum burmannii) essential oil against extended-spectrum β-lactamase-producing bacteria. Veterinary World. 14(8);2206.

[23] Gupta, C., & Prakash, D. (2021). Comparative study of the antimicrobial activity of clove oil and clove extract on oral pathogens. Dent-Open J. 6(1);12-15.

[24] Hamad, G., Elaziz, A., Hassan, S., Shalaby, M., & Mohdaly, A. A. A. A. (2020). Chemical composition, antioxidant, antimicrobial and anticancer activities of licorice (Glycyrrhiza glabra L.) root and its application in functional yoghurt. J. Food Nutr. Res. 8(12);707-715.

[25] Haripriyan, J., Omanakuttan, A., Menon, N. D., Vanuopadath, M., Nair, S. S., Corriden, R., et al. (2018). Clove bud oil modulates pathogenicity phenotypes of the opportunistic human pathogen Pseudomonas aeruginosa. Scientific Reports. 8(1);3437.

[26] Hartnoll, G., Moore, D., & Douek, D. (1993). Near fatal ingestion of oil of cloves. Archives of Disease in Childhood. 69(3);392-393.

[27] Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology. 51;224-233.

[28] Hemaiswarya, S., & Doble, M. (2009). Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine. 16(11);997-1005.

[29] Ibezim, E. C., Esimone, C. O., Nnamani, P. O., Onyish, I. V., Brown, S. A., & Obodo, C. E. (2006). In vitro study of the interaction between some fluoroquinolones and extracts of kola nitida seed. African Journal of Biotechnology. 5(19).

[30] Isticato, R., & Ricca, E. (2016). Spore surface display. In The Bacterial Spore: From Molecules to Systems (pp. 349-366).

[31] Jaafer, H., & Al-Kinani, K. K. (2023). Preparation of Idebenone as a Thermosetting Nasal Gel for Better Bioavailability and Histopathological Effect. Journal of the Faculty of Medicine Baghdad. 65(3);234-240.

[32] Jiang, M., Zhao, S., Yang, S., Lin, X., He, X., Wei, X., et al. (2020). An "essential herbal medicine"—Licorice: A review of phytochemicals and its effects in combination preparations. Journal of Ethnopharmacology. 249;112439.

[33] Jimoh, S. O., Arowolo, L. A., & Alabi, K. A. (2017). Phytochemical screening and antimicrobial evaluation of Syzygium aromaticum extract and essential oil. Int. J. Curr. Microbiol. Appl. Sci. 6(7);4557-4567.

[34] Jonas, O. B., Irwin, A., Berthe, F. C. J., Le Gall, F. G., & Marquez, P. V. (2017). Drug-resistant infections: a threat to our economic future. World Bank Group.

[35] Kassem, M. A., Ghalwash, M. M., & Abdou, E. M. (2020). Development of nanoemulsion gel drug delivery systems of cetirizine; factorial optimisation of composition, in vitro evaluation and clinical study. Journal of Microencapsulation. 37(6);413-430.

[36] Khames, S. A. S. K., & Ahmed, S. T. (2024). Effect of Chemically synthesis compared to biosynthesized zinc oxide nanoparticles using extract of Vitex agnus on the expression of MexAB-OprM efflux pump genes of Multi-Drug Resistance Pseudomonas aeruginosa. Baghdad Science Journal. 21;4050.

[37] Mandal, S., Mandal, M. D., & Pal, N. K. (2012). Enhancing chloramphenicol and trimethoprim in vitro activity by Ocimum sanctum Linn.(Lamiaceae) leaf extract against Salmonella enterica serovar Typhi. Asian Pacific Journal of Tropical Medicine. 5(3);220-224.

[38] Mohammad, T. H., Shehab, Z. H., & Tawfiq, A. A. (2024). Growth inhibition of Pseudomonas aeruginosa using products of some probiotic microorganisms and secondary metabolites of Commiphora myrrha extracts estimated by GC-MS technique. Baghdad Science Journal. 21(11);3463-3475.

[39] Montelongo-Jauregui, D., & Lopez-Ribot, J. L. (2018). Candida interactions with the oral bacterial microbiota. Journal of Fungi. 4(4);122.

[40] Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019. Lancet. 399;629-655. https://doi.org/10.1016/S0140-6736(21)02724-0

[41] Nirmala, M. J., Durai, L., Gopakumar, V., & Nagarajan, R. (2019). Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. International Journal of Nanomedicine. 6439-6450.

[42] Nisar, M. F., Khadim, M., Rafiq, M., Chen, J., Yang, Y., & Wan, C. C. (2021). Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxidative Medicine and Cellular Longevity. 2021(1);2497354.

[43] Oh, E., & Jeon, B. (2015). Synergistic anti Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Frontiers in Microbiology. 6;1129.

[44] Pachori, P., Gothalwal, R., & Gandhi, P. (2019). Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Diseases. 6(2);109-119.

[45] Pramod, K., Ansari, S. H., & Ali, J. (2010). Eugenol: a natural compound with versatile pharmacological actions. Natural Product Communications. 5(12);1999-2006.

[46] Prinsloo, A., van Straten, A. M., & Weldhagen, G. F. (2008). Antibiotic synergy profiles of multidrug resistant Pseudomonas aeruginosa in a nosocomial environment. South African Journal of Epidemiology and Infection. 23;7-9.

[47] Rempe, C. S., Burris, K. P., Lenaghan, S. C., & Stewart, C. N. (2017). The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Frontiers in Microbiology. 8;422.

[48] Ribeiro-Santos, R., Andrade, M., de Melo, N. R., dos Santos, F. R., de Araújo Neves, I., de Carvalho, M. G., & Sanches-Silva, A. (2017). Biological activities and major components determination in essential oils intended for a biodegradable food packaging. Industrial Crops and Products. 97;201-210.

[49] Ríos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology. 100;80-84.

[50] Saeed, R. S., Hassan, H. A., Hassan, D. F., & Al-rawi, M. S. (2024). Modification and Study Biological Activity of Chitosan with Compounds Containing Azo Group. Baghdad Science Journal.

[51] Sangeeta, J. P., Aishwarya, O. B., Omkar, D. B., & Madhura, N. B. (2024). Anti-biofilm effect of clove oil against Candida albicans: A systematic review. Journal of Oral and Maxillofacial Pathology. 28(4);665-671.

[52] Schulze, A., Mitterer, F., Pombo, J. P., & Schild, S. (2021). Biofilms by bacterial human pathogens: Clinical relevance-development, composition and regulation-therapeutical strategies. Microbial Cell. 8(2);28.

[53] Shaker, D. S., Ishak, R. A., Ghoneim, A., & Elhuoni, M. A. (2019). Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Scientia Pharmaceutica. 87(3);17.

[54] Thakur, N., Garg, G., Sharma, P. K., & Kumar, N. (2012). Nanoemulsions: a review on various pharmaceutical application. Global Journal of Pharmacology. 6(3);222-225.

[55] Ultee, A., Kets, E. P. W., & Smid, E. J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology. 65(10);4606-4610.

[56] Wijesinghe, G. K., de Oliveira, T. R., Maia, F. C., De Feiria, S. B., Barbosa, J. P., Joia, F., et al. (2021). Efficacy of true cinnamon (Cinnamomum verum) leaf essential oil as a therapeutic alternative for Candida biofilm infections. Iranian Journal of Basic Medical Sciences. 24(6);787.

[57] Xiao, S., Lin, R., Ye, H., Li, C., Luo, Y., Wang, G., & Lei, H. (2024). Effect of contact precautions on preventing meticillin-resistant Staphylococcus aureus transmission in intensive care units: a review and modelling study of field trials. Journal of Hospital Infection. 144;66-74.

[58] Xu, J. G., Liu, T., Hu, Q. P., & Cao, X. M. (2016). Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules. 21(9);1194.

Downloads

Published

2025-06-08

How to Cite

S. H. Al.joubori , Y., Muna T. Al. Musawi, & Khalid Kadhem Al-Kinani. (2025). Formulation and Evaluation of Eugenol/Glycyrrhizic Acid -Loaded Nano-Lipid Carrier Gel for Treating Multidrug-Resistant Oral Infections: Histological Changes in a Mouse Model. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.2526

Issue

Section

Research Article