Formulation And Characterization of Nanolipid Carriers Loaded With Eugenol And Glycyrrhizic Acid: An In Vitro Evaluation Of Their Antimicrobial Potential

Authors

  • Yasmin S. H. Al.joubori Biology Department, College of Science for women, University of Baghdad, Baghdad, Iraq.
  • Muna T. Al.Musawi Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad, Iraq
  • Khalid Kadhem Al-Kinani Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.22399/ijcesen.1798

Keywords:

Eugenol, Glycyrrhizic acid, Clove oil, MDR, Nanoparticles

Abstract

Natural remedies are increasingly being used to cure and prevent infectious diseases, particularly those caused by multidrug-resistant (MDR) pathogens. These days, medication resistance is a worldwide issue. As a result, having medications on hand that can combat MDR infections is crucial. The spice clove (Syzygium aromaticum) is well-known for its many biological qualities. Eugenol is the main active ingredient in its essential oil (EO), which also contains other active compounds. However, eugenol's combined action with other components is responsible for the oil's biological effects. The purpose of this study is to examine how eugenol-glycyrrhizic acid extract nanolipid carriers (EGAE-NCL) can combat MDR bacteria that cause infections, illnesses, or problems in humans, including Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa. High shear force homogenization was used to create EGAE-NLC nanoparticles, which contained clove oil, licorice extract (glycyrrhizic acid), and clove extract (eugenol). SEM and HPLC were used to verify that EGAE-NLC nanoparticles were crystalline and pure. We concluded that the produced EGAE-NLC nanoparticles were crystalline in nature based on the SEM data. The average size of the EGAE-NLC nanoparticles was between 29 and 71 nm, and they demonstrated strong antibacterial activity. The research results demonstrated EGAE-NLC nanoparticles can inhibit the growth of MDR isolate S. aureus, P. aeruginosa and C. albicans.

References

[1] Colson AR, Morton A, Ardal C, Chalkidou K, Davies SC, Garrison LP, Jit M, Laxminarayan R, Megiddo I, Morel C, Nonvignon J (2021) Antimicrobial resistance: is health technology assessment part of the solution or part of the problem? Value Health 24(12):1828–1834. https:// doi. org/ 10. 1016/j. jval. 2021. 06. 002 DOI: https://doi.org/10.1016/j.jval.2021.06.002

[2] Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, Aquaro S, Rosano C, Sinicropi MS (2022) Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules 27(3):616. https:// doi. org/ 10. 3390/ molec ules2 70306 16 DOI: https://doi.org/10.3390/molecules27030616

[3] Bloom DE, Black S, Salisbury D, Rappuoli R (2018) Antimicrobial resistance and the role of vaccines. Proc Natl Acad Sci USA 115(51):12868–12871. https:// doi. org/ 10. 1073/ pnas. 17171 57115 DOI: https://doi.org/10.1073/pnas.1717157115

[4] Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J.A., Klugman, K. and Davies, S., (2016). Access to effective antimicrobials: a worldwide challenge. The Lancet, 387(10014),168-175. DOI: https://doi.org/10.1016/S0140-6736(15)00474-2

[5] Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. ((2022)) Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International journal of hygiene and environmental health. 244:114006. DOI: https://doi.org/10.1016/j.ijheh.2022.114006

[6] Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. (2021) Nanoantibiotics: Functions and properties at the nanoscale to combat antibiotic resistance. Frontiers in chemistry. 9:687660. DOI: https://doi.org/10.3389/fchem.2021.687660

[7] Mondal, S.K., Chakraborty, S., Manna, S. and Mandal, S.M., 2024. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharmaceutics. DOI: https://doi.org/10.1039/D4PM00032C

[8] Feng DN, Fang AS, Zhang TY, Ma MZ, Xu ZH, Sun YX, Zhang MT, Shi F. (2021)Green synthesis and characterization of gold nanoparticles and their application for the rapid detection of glycyrrhizin with immunochromatographic strips. RSC advances.11(39):23851-9. DOI: https://doi.org/10.1039/D1RA02678J

[9] Alsaad, A.A., Hussien, A.A. and Gareeb, M.M., (2020). Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst. Rev. Pharm, 11(5);259-273. DOI: https://doi.org/10.31838/srp.2020.5.39

[10] Maciel MV, da Rosa Almeida A, Machado MH, de Melo AP, da Rosa CG, de Freitas DZ, Noronha CM, Teixeira GL, de Armas RD, Barreto PL. (2019) Syzygium aromaticum L.(clove) essential oil as a reducing agent for the green synthesis of silver nanoparticles. Open Journal of Applied Sciences. 9(2):45-54. DOI: https://doi.org/10.4236/ojapps.2019.92005

[11] Blundell R, Maduelosi BI. The power of cloves: unveiling the health benefits of this aromatic spice.(2024)

[12] Esmaeili H, Mirjalili MH, Karami A, Nejad Ebrahimi S. (2024) Introducing the glycyrrhizic acid and glabridin rich genotypes from the cultivated Iranian licorice (Glycyrrhiza glabra L.) populations to exploit in production systems. Scientific Reports. May 14;14(1):11034 DOI: https://doi.org/10.1038/s41598-024-61711-1

[13] Shafira KF, Azad AK, Labu ZK, Helal Uddin A. (2020)Extraction and quantification of Eugenol from Clove buds using HPLC. Current Chromatography. 7(1):17-23. DOI: https://doi.org/10.2174/2213240607999200818161356

[14] Kanwal A, Irshad S, Akmal N, Rizwi NB. (2022) Identification and Characterization of Active Ingredient Eugenol from Syzygium Aromaticum (Clove Oil) through HPLC and its Phytochemical Analysis. Journal of Bioresource Management. 9(1):3.

[15] Saran S, Menon S, Shailajan S, Pokharna P. (2013) Validated RP-HPLC method to estimate eugenol from commercial formulations like Caturjata Churna, Lavangadi Vati, Jatiphaladi Churna, Sitopaladi Churna and clove oil. Journal of Pharmacy Research. 6(1):53-60. DOI: https://doi.org/10.1016/j.jopr.2012.11.013

[16] Esmaeili H, Karami A, Hadian J, Saharkhiz MJ, Ebrahimi SN. (2019) Variation in the phytochemical contents and antioxidant activity of Glycyrrhiza glabra populations collected in Iran. Industrial Crops and Products. 137:248-59 DOI: https://doi.org/10.1016/j.indcrop.2019.05.034

[17] Jang S, Lee AY, Lee AR, Choi G, Kim HK. (2017). Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology. Integrative medicine research. 6(4):388-94. DOI: https://doi.org/10.1016/j.imr.2017.08.003

[18] . Azar FA, Pezeshki A, Ghanbarzadeh B, Hamishehkar H, Mohammadi M, Hamdipour S, Daliri H. (2021) Pectin-sodium caseinat hydrogel containing olive leaf extract-nano lipid carrier: Preparation, characterization and rheological properties. LWT. 148:111757. DOI: https://doi.org/10.1016/j.lwt.2021.111757

[19] Jaafer H, Al-Kinani KK. (2024) Formulation and Evaluation of Idebenone Microemulsion as a Potential Approach for the Transmucosal Drug Delivery Systems. Iraqi Journal of Pharmaceutical Sciences 33(1):79-88 DOI: https://doi.org/10.31351/vol33iss1pp79-88

[20] Changediya V v, Jani R, Kakde P. (2019) A Review on nanoemulsions: A recent drug delivery tool. J of Drug Del and Ther. 9(5):185–91. DOI: https://doi.org/10.22270/jddt.v9i5.3577

[21] Klang V, Matsko NB, Valenta C, Hofer F. (2012) Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron. 43(2-3):85-103. DOI: https://doi.org/10.1016/j.micron.2011.07.014

[22] Al.Joubori YS, Al-Musawi M., Al-Kinani KK., Isolation And Identification Of Oral Bacteria From Iraqi Patients With Oral Infection And Determining The Resistance Of Pathogenic Isolates To Antibiotic.2024.

[23] Franklyne JS, Andrew Ebenazer L, Mukherjee A, Natarajan C. Cinnamon and clove oil nanoemulsions: novel therapeutic options against vancomycin intermediate susceptible Staphylococcus aureus. Applied Nanoscience. 9:1405-15. DOI: https://doi.org/10.1007/s13204-019-01111-4

[24] Brovchenko BV, Ermakova VA, Bokov DO, Samylina IA, Demina NB, Chernova SV. (2020) Validation of an HPLC-UV procedure for determining the glycyrrhizic acid content in licorice roots. Pharmaceutical Chemistry Journal. 53:1168-73. DOI: https://doi.org/10.1007/s11094-020-02142-w

[25] Kurkin V.A., Ryazanova T.K., Egorov M.V., Belova O.A. (2021) Quantitative determination of the biologically active compounds of licorice (Glycyrrhiza) roots. Farmatsiya, 70 (7): 24–31. https://doi.org/10/29296/25419218-2021-07-04 DOI: https://doi.org/10.29296/25419218-2021-07-04

[26] Keivani Nahr, F., Ghanbarzadeh, B., Hamishehkar, H., & Kafil, H. S. (2018). Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. Journal of functional foods, 40, 1–8. https://doi.org/10.1016/j.jff.2017.09.028 DOI: https://doi.org/10.1016/j.jff.2017.09.028

[27] Ni, S., Sun, R., Zhao, G., & Xia, Q. (2015). Quercetin loaded nanostructured lipid carrier for food fortification: Preparation, characterization and in vitro study. Journal of Food Process Engineering, 38(1), 93–106. https://doi.org/10.1111/jfpe.12130 DOI: https://doi.org/10.1111/jfpe.12130

[28] Fathi, M., Varshosaz, J., Mohebbi, M., & Shahidi, F. (2013). Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling. Food and Bioprocess Technology, 6(6), 1464–1475. https://doi.org/10.1007/s11947-012-0845-2 DOI: https://doi.org/10.1007/s11947-012-0845-2

[29] Manea, A. M., Vasile, B. S., & Meghea, A. (2014). Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. Comptes Rendus Chimie, 17(4), 331–341. https://doi.org/10.1016/j.crci.2013.07.015 DOI: https://doi.org/10.1016/j.crci.2013.07.015

[30] Bai J, Li J, Chen Z, Bai X, Yang Z, Wang Z, Yang Y. (2023)Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. Lwt. 173:114249. DOI: https://doi.org/10.1016/j.lwt.2022.114249

[31] Nejad SM, Özgüneş H, Başaran N. (2017) Pharmacological and toxicological properties of eugenol. Turkish journal of pharmaceutical sciences. 14(2):201. DOI: https://doi.org/10.4274/tjps.62207

[32] Sawatphakdee G, Yostawonkul J, Oontawee S, Rodprasert W, Sawangmake C, Kornsuthisopon C, Yata T, Tabtieang SP, Nowwarote N, Pirarat N. (2024) Feasibility of Nanostructured Lipid Carrier Loaded with Alpha-Mangostin and Clove Oil for Canine Periodontal Therapy. Animals. 14(14):2084. DOI: https://doi.org/10.3390/ani14142084

[33] Aldabaan NA, Turakani B, Mahnashi MH, Shaikh IA, Alhazmi AY, Almasoudi HH, Abdulaziz O, Khuwaja G, Khan AA, Basavegowda N, Dafalla SE. (2024) Evaluation of antimicrobial, anticancer, antidiabetic, antioxidant activities and silver nanoparticles synthesized from Indian Clove-Syzygium aromaticum leaf extract. Journal of King Saud University-Science. 36(4):103142. DOI: https://doi.org/10.1016/j.jksus.2024.103142

[34] Parlinska‐Wojtan M, Depciuch J, Fryc B, Kus‐Liskiewicz M. (2018) Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using clove eugenol. Applied Organometallic Chemistry. 32(4):e4276. DOI: https://doi.org/10.1002/aoc.4276

[35] da Silva FF, Monte FJ, de Lemos TL, Do Nascimento PG, de Medeiros Costa AK, de Paiva LM. (2018) Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chemistry Central Journal. 12:1-9. DOI: https://doi.org/10.1186/s13065-018-0407-4

[36] Ribeiro-Santos R, Andrade M, de Melo NR, dos Santos FR, de Araújo Neves I, de Carvalho MG, Sanches-Silva A. (2017) Biological activities and major components determination in essential oils intended for a biodegradable food packaging. Industrial crops and products. 97:201-10. DOI: https://doi.org/10.1016/j.indcrop.2016.12.006

[37] Rodino S, Butu A, Butu M, Cornea PC. (2015) Comparative studies on antibacterial activity of licorice, elderberry and dandelion. Digest Journal of Nanomaterials and Biostructures. 10(3):947-55.

[38] Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM. (2013) 18β-Glycyrrhetinic acid inhibits methicillin-resistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrobial agents and chemotherapy. 57(1):241-7. DOI: https://doi.org/10.1128/AAC.01023-12

[39] Yoshida T, Yoshida S, Kobayashi M, Herndon DN, Suzuki F. (2010) Pivotal advance: glycyrrhizin restores the impaired production of β-defensins in tissues surrounding the burn area and improves the resistance of burn mice to Pseudomonas aeruginosa wound infection. Journal of leukocyte biology. 87(1):35-41. DOI: https://doi.org/10.1189/jlb.1208760

[40] Nascimento MH, de Araújo DR. (2024) Exploring the pharmacological potential of glycyrrhizic acid: From therapeutic applications to trends in nanomedicine. Future Pharmacology. 2022 Jan 4;2(1):1-5. DOI: https://doi.org/10.3390/futurepharmacol2010001

[41] Rijo P, Abuamara TM, Ali Lashin LS, Kamar SA, Isca VM, Mohammed TS, Abdrabo MS, Amin MA, Abd El Maksoud AI, Hassan A. (2024) Glycyrrhizic Acid Nanoparticles Subside the Activity of Methicillin-Resistant Staphylococcus aureus by Suppressing PBP2a. Pharmaceuticals. 17(5):589. DOI: https://doi.org/10.3390/ph17050589

[42] Karimi, N., Ghanbarzadeh, B., Hamishehkar, H., Mehramuz, B., & Kafil, H. S. (2018). Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid and Interface Science Communications, 22, 18–24. https://doi.org/10.1016/j.colcom.2017.11.006 DOI: https://doi.org/10.1016/j.colcom.2017.11.006

[43] P, G., Chidambara Kumar KN, Munikrishnaiah A, Chandraiah Tanguturu, & Indhu Priya M. (2024). Synthesis and Characterization of Zirconia-Based Ceramics: A Comprehensive Exploration of Film Formation and Mixed Metal Oxide Nanoparticle Synthesis. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.532 DOI: https://doi.org/10.22399/ijcesen.532

[44] Hussein Kamil Mohammed, Zaid A. Hasan, & Khalid Al-Ammar. (2025). Improving the Structural and Morphological Characteristic of Carboxymethyl cellulose (CMC) Via Additive ZnSe Nanoparticle. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1041 DOI: https://doi.org/10.22399/ijcesen.1041

[45] Waheed, F., Mohamed Abdulhusein Mohsin Al-Sudani, & Iskender Akkurt. (2025). The Experimental Enhancing of the Radiation Shield Properties of Some Produced Compounds. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.1 DOI: https://doi.org/10.22399/ijasrar.1

[46] Ali Emad Nief, & A. R. Abdulridha. (2025). Improvement of the Structural and Electrical Properties of PVA through the Addition of Bi₂O₃ and SiO₂ Nanoparticles for Electronic Devices. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1042 DOI: https://doi.org/10.22399/ijcesen.1042

[47] García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.22 DOI: https://doi.org/10.22399/ijasrar.22

Downloads

Published

2025-04-27

How to Cite

Yasmin S. H. Al.joubori, Muna T. Al.Musawi, & Khalid Kadhem Al-Kinani. (2025). Formulation And Characterization of Nanolipid Carriers Loaded With Eugenol And Glycyrrhizic Acid: An In Vitro Evaluation Of Their Antimicrobial Potential. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1798

Issue

Section

Research Article