Decoding GBM Tumor Dynamics: AI-Driven Segmentation with RANO Criterion Validation for the Prediction of Radiotherapy Outcomes
DOI:
https://doi.org/10.22399/ijcesen.1630Keywords:
GBM, Radiotheraphy, Artificial Intelligence, Segmentation, RANOAbstract
Glioblastoma Multiforme (GBM) is a very aggressive brain tumor which has poor prognosis despite wide range of treatment modalities with specific enhancements in radiotherapy. Correct evaluation of tumor response to treatment is crucial for guiding treatment decision-making for patients. Despite the wide application of deep learning models for tumor segmentation and evaluation, their fundamental complexity has cast doubt on whether a simpler, traditional approach can yield insights of comparable reliability. A retrospective analysis was performed using MRI data from 18 GBM patients who had radiotherapy. An experienced radiologist evaluated all pre- and post-treatment MRI’s and provided RANO scores to determine the tumor response. Multiparametric MRI sequences were segmented using Otsu's thresholding and GMM methods across sagittal, coronal, and axial planes. Dice Similarity Coefficients (DSC) and Intensity Distribution Scores (IDS) were used to evaluate tumor changes, with low DSC and high IDS values indicating successful treatment. The segmentation and statistical results were then compared with RANO scores to confirm the findings. The results demonstrated different tumor dynamics among patients, highlighting the variability in treatment outcomes. DSC and IDS offered additional insights into tumor alterations, where low DSC and high IDS values were determined as signs of successful radiotherapy. Both techniques effectively predicted outcomes with notable alterations, showcasing their capability for evaluating radiotherapy effectiveness in GBM treatment. This method provides a more straightforward, budget-friendly option compared to deep learning, yielding valuable understanding of tumor dynamics. Future research should prioritize confirming these results in more extensive groups by integrating advanced AI techniques.
References
Jovčevska, I., Kočevar, N., & Komel, R. (2013). Glioma and glioblastoma how much do we (not) know?. Molecular and clinical oncology, 1(6), 935-941.
Urbańska, K., Sokołowska, J., Szmidt, M., & Sysa, P. (2014). Glioblastoma multiforme – an overview. Contemporary Oncology/Współczesna Onkologia, 18(5), 307-312. https://doi.org/10.5114/wo.2014.40559
Roth, J. G., & Elvidge, A. R. (1960). Glioblastoma multiforme: a clinical survey. Journal of neurosurgery, 17(4), 736-750.
Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., ... & Mirimanoff, R. O. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England journal of medicine, 352(10), 987-996.
Ylanan, A. M. D., Pascual, J. S. G., Cruz-Lim, E. M. D., Ignacio, K. H. D., Cañal, J. P. A., & Khu, K. J. O. (2021). Intraoperative radiotherapy for glioblastoma: A systematic review of techniques and outcomes. Journal of Clinical Neuroscience, 93, 36-41.
Wu, C. X., Lin, G. S., Lin, Z. X., Zhang, J. D., Liu, S. Y., & Zhou, C. F. (2015). Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World journal of surgical oncology, 13, 1-9.
Young, R. J., Gupta, A., Shah, A. D., Graber, J. J., Zhang, Z., Shi, W., ... & Omuro, A. M. P. (2011). Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology, 76(22), 1918-1924.
Sengul, A., Ünalan, S., Can, S., Gunay, O., Karaçetin, D., & Sayyed, M. I. (2024). Volumetric rigid MR-CT registration for glioblastoma in radiation oncology: A Novel approach. Journal of Radiation Research and Applied Sciences, 17(1), 100798.
Zlochower, A., Chow, D. S., Chang, P., Khatri, D., Boockvar, J. A., & Filippi, C. G. (2020). Deep learning AI applications in the imaging of glioma. Topics in Magnetic Resonance Imaging, 29(2), 115-00.
Zhang, J., & Hu, J. (2008, December). Image segmentation based on 2D Otsu method with histogram analysis. In 2008 international conference on computer science and software engineering (Vol. 6, pp. 105-108). IEEE.
Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of biometrics, 741(659-663).
Thada, V., & Jaglan, V. (2013). Comparison of jaccard, dice, cosine similarity coefficient to find best fitness value for web retrieved documents using genetic algorithm. International Journal of Innovations in Engineering and Technology, 2(4), 202-205.
Jacobsen, N., Deistung, A., Timmann, D., Goericke, S. L., Reichenbach, J. R., & Güllmar, D. (2019). Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Zeitschrift für Medizinische Physik, 29(2), 128-138.
Gaillard F, Glick Y, Campos A, et al. RANO criteria for glioma. Reference article, Radiopaedia.org (Accessed on 23 Feb 2025) https://doi.org/10.53347/rID-29155
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer International Publishing.
Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV) (pp. 565-571). Ieee.
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P. M., & Larochelle, H. (2017). Brain tumor segmentation with Deep Neural Networks. Medical image analysis, 35, 18–31. https://doi.org/10.1016/j.media.2016.05.004
Myronenko, A. (2019). 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018. Lecture Notes in Computer Science(), vol 11384. Springer, Cham. https://doi.org/10.1007/978-3-030-11726-9_28
Ahmed, M. N., Yamany, S. M., Mohamed, N., Farag, A. A., & Moriarty, T. (2002). A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE transactions on medical imaging, 21(3), 193–199. https://doi.org/10.1109/42.996338
Li, C.H., & Tam, P.K. (1998). An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit. Lett., 19, 771-776.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.