Genetic diversity and population structure of Saharan bread wheat (Triticum aestivum L.) landraces from Algeria revealed by SSR markers
DOI:
https://doi.org/10.22399/ijcesen.4896Keywords:
Genetic diversity, Population structure, Saharan landraces, SSR markers, Arid-zone adaptationAbstract
Bread wheat (Triticum aestivum L.) cultivation in the Algerian Sahara relies on traditional landraces that have evolved to withstand extreme hyper-arid environmental conditions. These local populations represent a vital yet under-utilized genetic resource for modern breeding programs aiming to improve drought and heat tolerance. This study investigated the genetic diversity and population structure of 16 local landraces collected from the Adrar and Tamanrasset regions in southern Algeria. Genotyping was performed using 13 polymorphic simple sequence repeat (SSR) markers selected for their reliable genome coverage. Genetic diversity parameters were estimated using standard metrics, while population structure was analyzed using Bayesian clustering approaches and Principal Coordinate Analysis (PCoA). Results revealed a total of 72 alleles across the studied loci, with a mean of 5.54 alleles per locus. The genetic diversity indices indicated a moderate level of diversity, with a mean polymorphic information content (PIC) of 0.57, a mean expected heterozygosity (He) of 0.573, and a mean observed heterozygosity (Ho) of 0.271. Analysis of Molecular Variance (AMOVA) revealed that the majority of genetic variation resided among individuals (56%) and within individuals (32%), with a significant 12% attributed to genetic differentiation between the two geographic populations. Bayesian STRUCTURE analysis and PCoA consistently identified two distinct genetic pools that largely corresponded to the geographic origin of the accessions, although some admixture was observed. Overall, the results demonstrate substantial genetic variability and a clear structured population pattern within Saharan bread wheat. These landraces represent a valuable genetic resource for conservation strategies and for future research and breeding efforts targeting wheat improvement under water-limited environments.
References
[1] S. Ceccarelli, «Efficiency of Plant Breeding,» Crop Science, vol. 55(1), pp. 87-97, 2015, DOI: 10.2135/cropsci2014.02.0158.
[2] Halewood M., Chiurugwi T., Hamilton R. S., Kurtz B., Marden E., Welch E., Michiels F., Mozafari J., Sabran M., Patron N., Kersey P., Bastow R., Dorius S., Dias S., McCouch S. & Powell W., «Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution,» New Phytologist Foundation, vol. 217(4), pp. 1407-1419, 2018, DOI:10.1111/nph.14993.
[3] Lopes M.S and Reynolds M.P., «Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology,» Journal of Experimental Botany, vol. 63(10), p. 3789–3798, 2012, DOI: 10.1093/jxb/ers071.
[4] Shi X. & Ling H-Q., «Current advances in genome sequencing of common wheat and its ancestral species,» The Crop Journal, vol. 6(1), pp. 15-21, 2017, DOI:10.1016/j.cj.2017.11.001.
[5] Bapela T., Shimelis H., Tsilo T.J. & Mathew I., «Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities,» Plants, vol. 11(10), p. 1331, 2022, DOI: 10.3390/plants11101331.
[6] Reynolds M., Foulkes J., Furbank R., Griffiths S., King J., Murchie E., Parry M. & Slafer G., «Achieving yield gains in wheat,» Plant, cell & Environment, vol. 35(10), pp. 1799-1823, 2012, DOI: 10.1111/j.1365-3040.2012.02588.x.
[7] Dixon J., Braun H-J., Kosina P. & Crouch J, «Wheat facts & futures 2009,» CIMMYT, Mexico City, Mexic, 2009.
[8] Li Y-C., Korol A.B., Tzion F. & Eviatar N., «Microsatellites within genes: structure, function, and evolution,» Mol Biol Evol, vol. 21(6), pp. 991-1007, 2004, DOI: 10.1093/molbev/msh073.
[9] Nielsen N.H., Gunter B., Jens S., Stig U.A. & Jahoor A., «Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties,» PLOS ONE, vol. 9, 2014, DOI:10.1371/journal.pone.0094000.
[10] Kara K., Rached-Kanouni M., Mnasri S. & Ben Nacer M., «Genetic variability assessment in bread wheat (Triticum aestivum) grown in Algeria using microsatellites SSR markers,» Biodiversitas,, vol. 21(6), pp. 2638-2644, 2020, DOI:10.13057/biodiv/d210635.
[11] FAO, «Food and Agriculture Organization,» 2023. [En ligne]. Available: http://faostat.fao.org.
[12] B. Benarba, «Enhancing food security through scientific research in Algeria. A novel vision and unified national strategy,» Nor. Afr. J. Food Nutr. Res, vol. 8(18), p. 68 – 69, 2024, DOI:10.51745/najfnr.8.18.68-69.
[13] Oumata S., Amouroux P., De Rouw A. & Kane N. A., «Oasis wheats of the South of Algeria: landraces, cultural practices and utilization,» Genetic Resources and Crop Evolution, vol. 67, p. 211–230, 2020, DOI:10.1007/s10722-019-00874-7.
[14] Oumata S, Monneveux P., Zaharieva M., Mekliche-Hanifi L. & Jacques D, «Variation of morphological traits among wheat (Triticum aestivum L.) landraces from two regions of the Algerian Sahara: Potential interest for wheat breeding,» Genetic Resources and Crop Evolution, vol. 70, p. 235–250, 2023, DOI:10.1007/s10722-022-01429-z.
[15] Bellatreche A., Mahdad M.Y., Kaouadji Z. & Gaouar S.B.S., «Agro-morphological diversity of some accessions of bread wheat (Triticumaestivum L.) in western Algeria,» Biodiversitas, vol. 18, p. 409–415, 2017.
[16] Sehgal S.A., Tahir R.A. & Nawaz M., «Molecular Characterization of Wheat Genotypes Using SSR Markers,» Bio Inter-national Journal Automation, vol. 16(2), pp. 119-128, 2012, DOI:10.1007/s12298-017-0492-1.
[17] Vieira M.L.C., Santini L., Diniz A.L. & Munhoz C.F., «Microsatellite markers: What they mean and why they are so useful,» Genetics and Molecular Biology, vol. 39(3), p. 312–328, 2016, DOI:10.1590/1678-4685-GMB-2016-0027.
[18] Bellatreche A., Mnasri S.R., Ben Naceur M. & Gaouar S.S.B., «Study of the Molecular Biodiversity of the Saharan Bread Wheat in Algeria,» Cereal Research Communications, pp. 1-16, 2019, DOI:10.1556/0806.47.2019.39.
[19] Rabieyan E., Bihamta M.R., Esmaeilzadeh M., Alipour H., Mohammadi V., Azizyan K., Javid S., «Analysis of genetic diversity and genome-wide association study for drought tolerance related traits in Iranian bread wheat,» vol. 23(431), 2023, DOI:10.1186/s12870-023-04416-3.
[20] Nouraei S., Mia M.S., Liu H., Turner N.C. and Guijun Y, «Genome wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes,» Molecular Genetics and Genomics, vol. 299(1), p. 22, 2024, DOI: 10.1007/s00438-024-02104-x.
[21] Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A & Allard R.W., «Ribosomal DNA sepacer-lengtb polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics,» P. Natl. Acad. Sci, vol. 81, p. 8014–8019, 1984.
[22] Alhosein H., Miyuki Ni., Shuhei., Kenji., Masaya F., Hitoshi M & Yutaka O., «Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.),» Plant Soil, p. 395–405, 2012, DOI: 10.1007/s11104-011-1075-5.
[23] Ashraf S., Shahzad A., Karamat F., Iqbal M. & Ali G.M., «Quantitative trait loci (QTLs) analysis of drought tolerance at germination stage in a wheat population derived synthetic hexaploid and opata,» J. Anim. Plant. Sci, vol. 25(2), p. 539–545, 2015, DOI: 10.5555/20153154245.
[24] Peakall R. & Smouse P.E., «Smouse, P.E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research an update,» Bioinformatics, vol. 28, p. 2537–2539, 2012, DOI: 10.1093/bioinformatics/bts460.
[25] C. Shannon, «Weaver, W. A mathematical theory of communication,» Bell Syst. Tech. J, vol. 27, p. 379–423, 1948.
[26] Wright, «The genetical structure of populations,» Ann. Eugen, vol. 15, p. 323–354, 1951.
[27] Kalinowski S., Taper M.L. & Marshall T.C., «Revising how the computer program Cervus accommodates geno-typing error increases success in paternity assignment,» Mol. Ecol, vol. 16, p. 1099–1106, 2007, DOI: 10.1111/j.1365-294X.2007.03089.x.
[28] Botstein D., White R.L., Skolnick M. & Davis R.W, «Construction of a genetic linkage map in man using re-striction fragment length polymorphisms,» Am. J. Hum. Genet, vol. 32, p. 314–331, 1980.
[29] J. Felsenstein, «Confidence limits on phylogenies: An approach using the bootstrap,» Evolution, vol. 39(4), p. 783–791, 1985, https:/DOI: doi.org/10.2307/2408678.
[30] Pritchard J.K., Stephens M., Rosenberg N.A. & Donnelly P., «Association mapping in structured populations,» AJHG, vol. 67, p. 170–181, 2000.
[31] Evanno G., Regnaut S. & Goudet J., «Detecting the number of clusters of individuals using the software STRUCTURE: assimilation study,» Mol Ecol, vol. 14, p. 2611–2620, 2005.
[32] Rosenberg N.A., Pritchard J.K., Weber J.L., Cann H.M., Kidd K., Zhivotovsky L.A. & Feldman M.W., «Genetic structure of human populations,» Science, vol. 298, p. 2381–2385, 2002.
[33] S. Ceccarelli, «Efficiency of Plant Breeding,» Crop Science, vol. 55(1), pp. 87-97, 2015, doi:10.2135/cropsci2014.02.0158.
[34] Lopes M.S and Reynolds M.P., «Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology,» Journal of Experimental Botany, vol. 63(10), n° %110, p. 3789–3798, 2012, DOI: 10.1093/jxb/ers071.
[35] Faheem M., Talat M., Ghulam S., Naeem A., Alvina G.K. & Abdul Mujeeb K., «Assessment of D-genome Based Genetic Diversity in Drought Tolerant Wheat Germplasm,» Int J Agric Biol, vol. 17(4), p. 791–796, 2015.
[36] Bellatreche A., Mnasri S.R., Ben Naceur M. & Gaouar S.S.B., «Study of the Molecular Biodiversity of the Saharan Bread Wheat in Algeria,» Cereal Research Communications, pp. 1-16, 2019, doi:10.1556/0806.47.2019.39.
[37] Kara K., Mnasri-Rahmani S., Zerrouki A., Rached-Kanouni M., Hamidechi M.A., Saddoud-Dabbabi O., Beldjazia A. & Missaoui K., «Molecular Characterization, Assessment of Bread Wheat Genotypes Triticum aestivum L. Grown in Algeria using Microsatellites SSR Markers,» AMA, vol. 55(10), pp. 1-15, 2024.
[38] Türkoğlu A., Haliloğlu K., Mohammadi S.A., Öztürk A., Bolouri P., Özkan G., Bocianowski J., Pour-Aboughadareh A. & Jamshidi B., «Genetic Diversity and Population Structure in Türkiye Bread Wheat Genotypes Revealed by Simple Sequence Repeats (SSR) Marker,» Genes, vol. 14, p. 1182, 2023, DOI: 10.3390/genes14061182.
[39] V. Sork, «Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications,» Evol Appl,, vol. 9(1), pp. 291-310, 2014, DOI: 10.1111/eva.12316.
[40] Sall A.T., Chiari T., Legesse W., Seid-Ahmed K., Ortiz R., van Ginkel M. & Bassi F.M., «Durum wheat (Triticum durum Desf.): Origin, cultivation and potential expansion in Sub-Saharan Africa,» Agronomy, vol. 9(5), p. 263, 2019, DOI: 10.3390/agronomy9050263.
[41] Özlem A.S. & Begüm T., «Characterization of some bread wheat genotypes using molecular markers for drought tolerance,» Physiol Mol Biol Plants, vol. 24(1), p. 159–166, 2018, DOI: 10.1007/s12298-017-0492-1.
[42] Mohi-Ud-Din M., Alamgir H.M., Motiar R.M., Nesar Uddin. M., Sabibul Haque. M., Eldessoky S.D., Alqurashi M. & Salman A., «Assessment of Genetic Diversity of Bread Wheat Genotypes for Drought Tolerance Using Canopy Reflectance-Based Phenotyping and SSR Marker-Based Genotyping,» Sustainability, vol. 9818(14), pp. 1-19, 2022, DOI: 10.3390/su14169818.
[43] Sehgal S.A., Tahir R.A. & Nawaz M., «Molecular Characterization of Wheat Genotypes Using SSR Markers,» Bio Inter-national Journal Automation, vol. 16(2), pp. 119-128, 2012, DOI:10.1007/s12298-017-0492-1.
[44] Urquijo-Zamora L., Pereira-Lorenzo S., Romero-Rodríguez Á., Lombardero-Fernández M., Ramos-Cabrer A.M. & Fernández-Otero C.I., «Genetic Diversity of Local Wheat (Triticum aestivum L.) and Traceability in the Production of Galician Bread (Protected Geographical Indication) by Microsatellites,» Agriculture, vol. 15(1), p. 51, 2025, DOI: 10.3390/agriculture15010051.
[45] Oumata S, Monneveux P., Zaharieva M., Mekliche-Hanifi L. & Jacques D, «Variation of morphological traits among wheat (Triticum aestivum L.) landraces from two regions of the Algerian Sahara: Potential interest for wheat breeding,» Genetic Resources and Crop Evolution, vol. 70, p. 235–250, 2023, DOI: 10.1007/s10722-022-01429-z.
[46] Zhang H., Zhang F., Li G., Zhang S., Zhang Z. & Ma L., «Genetic diversity and association mapping of agronomic yield traits in eighty six synthetic hexaploid wheat,» Euphytica, vol. 213, p. 1–13, 2017, DOI: 10.1007/s10681-017-1887-3.
[47] Ahmed H.G.M., Khan A., Kashif M. & Khan S., «Genetic mechanism of leaf venation and stomatal traits for breeding drought tolerant lines in wheat,» Bangl J Bot, vol. 46(1), pp. 35-41, 2017.
[48] Devi J., Dubey R.K., Sagar V., Verma R.K., Singh P.M. & Behera T.K., «Vegetable peas (Pisum sativum L.) diversity: An analysis of available elite germplasm resources with relevance to crop improvement,» Span J Agric Res, vol. 21(2), pp. 1-13, 2023, DOI: 10.56093/ijas.v93i9.139173.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.