Assessment of groundwater quality and its suitability for drinking in the ouargla region northeastern Algerian Sahara

Authors

  • Abdelmalek Merkhoufi
  • Samir Kateb
  • Kais Baouia
  • Samir Djireb

DOI:

https://doi.org/10.22399/ijcesen.4888

Keywords:

OuarglaBasin, Groundwater, Potability, WaterQualityIndex, GIS

Abstract

This study focused on the determination of the different physicochemical characteristics of groundwater from 59 boreholes distributed over the three main aquifers of the Ouargla region (South-East of Algeria). The quality of the water was also assessed in order to evaluate their amenities and the international standards of drinking water quality of the World Health Organization (WHO) and the water quality index (WQI). The physicochemical parameters selected for this study, namely pH, total dissolved solids, electrical conductivity, total hardness, alkalinity, calcium, magnesium, sodium, potassium, bicarbonate, chloride, sulfate, and Temperature, were determined by following the procedures prescribed by international standards. were determined by following the procedures prescribed by international standards. In groundwater quality studies, statistical analysis techniques such as correlation analysis, principal component analysis (PCA) and analysis of variance (ANOVA) were used to assess the main factors and mechanisms governing spatial variations in the Ouargla basin region. The results obtained showed that the facies characterizing the study area were a mixed combination of Ca–Mg–Cl, Ca-Cl and Na-Cl, with the dominant ions being most often chlorides and sulfates, as well as calcium and magnesium. The WQI values ​​calculated for the Ouargla basin region ranged from 174.69 to 312.71. The geospatial distribution of the water quality index shows that the water of the Albian aquifer is poor, while the majority of the water of the Miopliocene and Senonian aquifers is very poor. However, the results of this study indicate that most of the water is not potable and requires additional pre-treatment before consumption.

References

1- Sarita, G. M., Manoj, K. A., and Shailesh, K. S. (2014). Assessment of ground water quality. Lambert Academic Publishing, Germany, ISBN 978-3-659-53985-5

2- BEL, F., and CUCHE, D. (1970). Etude des nappes du complexe terminal du bas Sahara. Données géologiques et hydrogéologiques pour la construction du modèle mathématique, D.H.W., Ouargla.

3- Nora, T., and Samia, A. (2004). Etude de la qualité des eaux souterraines de la région orientale DU Sahara Septentrional Algérien. Larhyss Journal, ISSN 1112-3680, n° 03, pp.99-113

4- Mohammed, B., Salah, O., Paula, M.C., and Kamel, Z. (2019). Relationship between hydrochemical variation and the seawater intrusion within coastal alluvial aquifer of Essaouira basin (Morocco) using HFE-diagram. Springer Nature Switzerland. pp.195-197 https://doi.org/10.1007/978-3-030-01572-5_47

5- Shah, C.A., Ahmad, Z.A., Mohd, K.Y., Mohammad, F.R., and Hafizan, J. (2015). Classification of river water quality using multivariate analysis. Procedia EnvironSci 30(1):79-84. https://doi.org/10.1016/j.proenv.2015.10.014.

6- Younes, H., Riheb, H., Belgicus, R., Karim, Z., Fathi, B., and Attiya, E. (2018). Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration 3(1). ttps://doi.org/10.1007/s41207-018-0067-8

7- Vasant, W., Dipak, P., Manesh, A., Yogesh, L., Shrikant, M and Narsimha, A. (2018). Hydrochemical characterisation and groundwater suitability for drinking and irrigation uses in semiarid region of Nashik, Maharashtra, India. Journal Hydrospat Analysis, 2(1), 43–60. https://doi.org/10.21523/gcj3.18020104.

8- Chan, J.H. (2001). Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology 253(1-4):194-210.https://doi.org/10.1016/S0022-1694(01)00481-4.

9- Adimalla, N. (2019). Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Exposure and Health, 11(2),109-123. https://doi.org/10.1007/s12403-018-0288-8.

10- Riyadh, B.A., and Djamel, B. (2017). Characterization of groundwater in arid zones (case of Ouargla basin). Science Direct Energy Procedia, 119 -556-564 https://doi.org/10.1016/j.egypro.2017.07.077.

11- ANRH. (2004). Data on the stratigraphic logs of boreholes in the Wilaya of Ouargla. Algeria. National Agency for Hydraulic Resources. Regional Direction South, Ouargla.

12- Houari, I.M., Imed, E.N and Slimane, B. (2014). Description géologique et géométrique des formations aquifères de la cuvette de Ouargla. Algerian journal of arid environment. 4, n° 1: 12-19. DOI :10.12816/0008906.

13- Cornet, A. (1964). Introduction à l’hydrogéologie saharienne. Géographie Physique et Géologie Dynamique. Vol.VI. 1964. fascl, pp.5-72.

14- OSS, (2003). Système Aquifère du Sahara Septentrional. Vol.4 : Modèle Mathématique. Projet SASS rapport interne. Annexes. Tunis. Tunisie 229P.

15- Aziez, Z., Elfadel, D., and Samia, H. S. (2010). Salinity Origin of Terminal Complex Water in Ouargla Region (South East of Algeria). Physical and Chemical News, 53, 62–69.

16- Boualem, B., Aziez, Z., Mohamed, S.B., and Bilal, F. (2015). Contribution de la Méthode de Vulnérabilité Intrinsèque GOD à l’Etude de la Pollution de la Nappe Libre d’Ouargla (SE Algérie). International Journal for Environment & Global Climate Change,3(4), 92–99.

17- Jean, R. (2009). L’analyse de l’eau : Eaux naturelles, Eaux résiduaires, Eau de mer (9e édn, pp. 100-110). Paris: Dunod. ISBN/ISSN :978-2-10-053027-4.

18- WHO, (2011). Guidelines for drinking-water quality”. 4th edition. World Health Organization, Geneva ISBN: 9789241548151.

19- Laxmi, P.C. (2018). Assessment of ground-water quality using water quality index in and around Korba City, Chhattisgarh, India. Am J Software Eng Appl 7(1) :15–21 DOI: 10.11648/j.ajsea.20180701.12.

20- Rao, G.S., and Nageswararao, G. (2013). Assessment of ground water quality using water quality index. Arch Environ Sci7(1):1–5.

21- Saber, K., Samir, K., and Rachid, Z. (2021). Spatial and temporal model for WQI prediction based on back-propagation neural network, application on EL MERK region (Algerian southeast). Journal of the Saudi Society of Agricultural Sciences 20(5):324-336 DOI: 10.1016/j.jssas.2021.03.004.

22- Robert, K.H. (1965) An Index Number System for Rating Water Quality. Journal of the Water Pollution Control Federation, 37, 300-306.

23- Robert, M.B., Nina, I.M., Rolf, A.D., and Ronald, G.T. (1970). Water quality index-do we dare. Water Sew Works 117(10):339–343.

24- Paulami, S., and Sikdar, P.K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environ Geol 55:823–835 DOI 10.1007/s00254-007-1034-x.

25- Vasant, M.V., Shrikant, M., Dipak, P., and Aniket, A.M. (2019). Study of groundwater hydrochemistry and drinking suitability through Water Quality Index (WQI) modelling in Kadava river basin India. SN Appl Sci (1):10 DOI:10.1007/s42452-019-1268-8.

26- Mahmood, Y., Hossein, N.S., Ali, A.M., Amir, HM., Mansour, G., and Hamed, S. (2017). Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran. Data Brief 15 :901–907. https: ://doi.org/10.1016/j.dib.2017.10.052.

27- ESRI, ArcGIS 10.5. (2015). Using ArcGIS Spatial Analyst. Software User Guide ESRI.USA.

28- Zina, M., Youcef, L., Saber, K., and Nadhir, A. (2022). Hydro-Geochemistry and Groundwater Quality Assessment of Ouargla Basin, South of Algeria. Water, 14, 2441. https://doi.org/10.3390/w14152441.

29- Magesh, N. S., Krishnakumar, S., Chandrasekar, N., and John, P.S. (2012). Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arabian Journal of Geosciences 6(11) :4179–4189. https://doi.org/10.1007/s12517-012-0673-8.

30- Kalyan, A., and Ujjal, M. (2019). Application of multivariate statistics in the analysis of groundwater geochemistry in and around the open cast coal mines of Barjora block, Bankura district, West Bengal, India. Environ Earth Sci 78, 72 (2019). https://doi.org/10.1007/s12665-019-8071-0.

31- Sikdar, P.K., and Chakraborty, S. (2008). Genesis of arsenic in groundwater of North Bengal Plain using PCA: A case study of English Bazar Block, Malda District, West Bengal, India. Hydrol. Process. 12,1796–1809. https://doi.org/10.1002/hyp.6742.

32- Agelos, P., Athena, M., Christos, H., Panagiotis, P., Olga, P., Eleni, D., and Ioannis, R. (2009). Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health. Environ. Monit. Assess.170, 87–97. DOI:10.1007/s10661-009-1217-x.

33- Karen, K. W., David, L., David, W.H., and Bryan, C.P. (2003). Identifying relationships between base flow geochemistry and land use with synoptic sampling and r-mode factor analysis. J. Environ. Qual.32, 180–190. DOI :10.2134/jeq2003.0180.

34- Saadu, U.W., Kabiru, J. U., Cheikh, D.A., Ifatokun, P. I., Ibrahim, M. D., Ibrahim, M.S., and Safiyanu G.Y. (2019). Hydrochemical Characterization of Shallow and Deep Groundwater in Basement Complex Areas of Southern Kebbi State, Sokoto Basin, Nigeria. Applied Water Science.9, 169. https://doi.org/10.1007/s13201-019-1042-5.

35- Morris, P.J., Baird, A.J., Phil, A.E., and Ben, W.J.S. (2019). Controls on near-surface hydraulic conductivity in a Raised Bog. water resources Research.55,1531–1543. https://doi.org/10.1029/2018WR024566.

36- Nawel, B., Boualem, B., Slimane, B., and Nabila, H. (2023). Geochemistry and water quality Assessment of continental Intercalary Aquifer in Ouargla Region (Sahara, Algeria). Journal of Ecological Engineering JEE24,279–294 https://doi.org/10.12911/22998993/156832.

37- Bernard, D. (1966). Limnologie : Etude des eaux continentales. Ed Paris: Gauthier-Villars. ISBN :138 F.

38- Imed, E. N. (2009). Approche hydrogéochimique à l’étude des aquifères de la basse vallée de l’Oued M’ya (Ouargla). Thèse. Doc, Univ. Biskra, 143.

39- Robert, B., and René, V. (1973). Les paramètres 34. de la qualité des eaux. Ed. La Documentation Française, Paris, 173p.

40- Edmund, J.L., and Charles, M.S. (1955). Water as a sodium source and its relation to sodium restriction therapy patient response. Am. J. Public Health 45: 1337–1338. DOI: 10.2105/ajph.45.10.1337.

41- Jack, E.M., and Harold, W. W. (1963). Water quality criteria. California State Water Quality Control Board, Pub. No: 3-A.

42- Piper, A.M. (1944). A graphical interpretation of water—analysis. Trans Am Geophys Union 25:914–928.

43- Fadoua, H.A., Mouna, K., Rachida, B., Moncef, G., and Luis, R. (2011). Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss-Koutine aquifer, southeastern Tunisia. Environ. Monit. Assess. (174):283-98. DOI: 10.1007/s10661-010-1457-9.

44- Manish, K., Ramanathan, A., Rao, MS., and Bhishm, K. (2006). Identification and evaluation of hydrogeochemical processes in the ground-water environment of Delhi, India. J. Environ. Geol. 50: 1025 – 1039. DOI: 10.1007/s00254-006-0275-4

Downloads

Published

2026-02-08

How to Cite

Abdelmalek Merkhoufi, Samir Kateb, Kais Baouia, & Samir Djireb. (2026). Assessment of groundwater quality and its suitability for drinking in the ouargla region northeastern Algerian Sahara. International Journal of Computational and Experimental Science and Engineering, 12(1). https://doi.org/10.22399/ijcesen.4888

Issue

Section

Research Article