Symmetry Analysis and Exact Traveling Wave Solutions of a Time-Fractional Higher order nonlinear Partial Differential Equations

Authors

  • Arshdeep Kaur
  • Rajeev Budhiraja
  • Dhanesh Garg

DOI:

https://doi.org/10.22399/ijcesen.3354

Keywords:

Sixth order Time fractional generalized Sawada-Kotera equation, Time fractional seventh-order Korteweg-de-Vries (KdV) equation, Lie Classical method

Abstract

In the present paper, the invariant solutions of higher order time-fractional nonlinear partial differential equations namely, the sixth-order generalized Sawada-Kotera equation and seventh-order Korteweg-de Vries (KdV) equation. With the aid of conformable derivatives, symmetries are obtained and thereby reductions. The exact traveling wave solutions are obtained with the application of Expansion Method to time-fractional higher order nonlinear partial differential equations. Novel general traveling wave solutions with arbitrary parameters are effectively presented in trigonometric, hyperbolic, and rational function forms.

References

[1] Generalised KV.: Fractional calculus and applications. Pitman research notes in math- ematics, vol.301. London: Longman;(1994).

[2] IPodlubny I.(1999): Fractional differential equations. San Diego: Academic Press.

[3] Celik C. and Duman M., (2012). Crank-Nicolson method for the fractional equation with the Reisz fractional derivative. J Comput Phys 231:1743-1750. DOI: https://doi.org/10.1016/j.jcp.2011.11.008

[4] Khalil R., Horani M., Yousef A. and Sababhen M., (2014). A new definition of fractional derivative. J Comput Appl Math 264:65-70. DOI: https://doi.org/10.1016/j.cam.2014.01.002

[5] Baleanu D., Inc M., Yusuf A. and Aliyu AI. (2017). Time fractional third-order evolution equation: symmetry analysis, explicit solutions, and conservation laws. J Computation Nonlinear Dynamics 13(2):021011. DOI: https://doi.org/10.1115/1.4037765

[6] hang S. and Zhang HQ., (2011). Fractional sub-equation method and dummyTXdummy- its applications to nonlinear fractional PDEs. Phys Lett A 375(7):1069-73. DOI: https://doi.org/10.1016/j.physleta.2011.01.029

[7] Buckwar E. and Luchko Y., (1998). Invariance of a partial differential equation of fractional or- der under the lie group of scaling transformations. J Math Appl Math 227:81-97. DOI: https://doi.org/10.1006/jmaa.1998.6078

[8] Gazizov RK. and Kasatkin AA. and Lukashcuk SY., (2007). Continuous transformation groups of fractional differential equations. Vestnik, USATU 9:125-35.

[9] Griffiths DF., Dold JW. and Silvester DJ., (2010). Essential partial differential equations. Springer.

[10] Baleanu D., Inc M., Yusuf A. and Aliyu AI., (2017) Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation. Nonlinear Anal Model Control 22(6):861-76. DOI: https://doi.org/10.15388/NA.2017.6.9

[11] Zheng B., (2012). G’/G-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun Theor Phys 58:623-30. DOI: https://doi.org/10.1088/0253-6102/58/5/02

[12] Gazizov RK., Kasatkin AA. and Lukashcuk SY., (2009). Symmetry properties of fractional diffusion equations. Phys Scr 136:014-16. DOI: https://doi.org/10.1088/0031-8949/2009/T136/014016

[13] Sahadevan R. and Bakkyaraj T., (2012). Invariant analysis of time fractional generalized burg- ers and Korteweg-de vries equations. J Math Anal Appl 393:341-7. DOI: https://doi.org/10.1016/j.jmaa.2012.04.006

[14] Huang Q. and Zhdanov R., (2014). Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative. Physica A 409:110-18. DOI: https://doi.org/10.1016/j.physa.2014.04.043

[15] Wang GW. and Xu TZ., (2014). Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by lie group analysis. Nonlinear Dyn 76:571- 80.

[16] Jefferson GF. and Carminati J., (2014). Fracsym automated symbolic computation of lie sym- metries of fractional differential equations. Comput Phys Commun 185:430-41. DOI: https://doi.org/10.1016/j.cpc.2013.09.019

[17] Inc M., Yusuf A., Aliyu AI. and Baleanu D., (2018). Time-fractional Cahn-Allen and time- fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and con- vergence analysis. Physica A 493:94-106. DOI: https://doi.org/10.1016/j.physa.2017.10.010

[18] Bluman GW. and Kumei S., (1989). Symmetries and differential equations. New York: Springer Verlag. DOI: https://doi.org/10.1007/978-1-4757-4307-4

[19] Olver PJ., (1993). Application of lie groups to differential equations. New York: Springer- Verlag. DOI: https://doi.org/10.1007/978-1-4612-4350-2

[20] Ibragimov NH., (1999). Elementary lie group analysis and ordinary differential equations. Chichester: John Wiley and Sons.

[21] Adem AR. and Khalique CM., (2012). Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system. Commun Nonlinear Sci Numer Simul 17:3465- 75. DOI: https://doi.org/10.1016/j.cnsns.2012.01.010

[22] Gandarias ML.and Khalique CM., (2016). Symmetries, solutions and conservation laws of a class of nonlinear dispersive wave equations. Commun Nonlinear Sci Numer Simul 32:114-21. DOI: https://doi.org/10.1016/j.cnsns.2015.07.010

[23] Kumar R., Kumar R., Bansal A., Biswas A., Yildirim A., Seithuti Moshokoa P. and Sirikr A A., (2023). Optical solitons and group invariants for Chen-Lee-Liu equation with time dependent chromatic dispersion and nonlinearity by Lie symmetry. Journal of Physics and Optics 4,24. DOI: https://doi.org/10.3116/16091833/24/4/04021/2023

[24] Wang G. W. & Xu T. Z., (2013). Invariant analysis and exact solutions of nonlinear time-fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dynamics, 76(1), 571–580. DOI: https://doi.org/10.1007/s11071-013-1150-y

[25] Baleanu, D., Inc, M., Yusuf, A. & Aliyu, A. I., (2018). Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Communications in Nonlinear Science and Numerical Simulation, 59, 222–234. DOI: https://doi.org/10.1016/j.cnsns.2017.11.015

[26] Saberi, E. & Hejazi, S. R., (2018). Lie symmetry analysis, conservation laws and exact solutions of the time fractional generalized Hirota–Satsuma coupled KdV system. Physica A: Statistical Mechanics and Its Applications, 492, 296–307. DOI: https://doi.org/10.1016/j.physa.2017.09.092

[27] Zhang X. and Zhang Y., (2019). Some Similarity Solutions and Numerical Solutions to the Time-Fractional Burgers system Symmetry, 11(1), 112. DOI: https://doi.org/10.3390/sym11010112

[28] Yuhang Wang and Lianzhong Li., (2019). Lie Symmetry Analysis, Analytical Solution, and Conservation Laws of a Sixth Order Generalized Time Fractional Sawada–Kotera Equation, Symmetry, 11(12), 1436. DOI: https://doi.org/10.3390/sym11121436

[29] Roul P. and Goura V. M. K. P., (2020). A high order numerical method and its convergence for time-fractional fourth order partial differential equations, Applied Mathematics and Computation, Volume 366, Article 124727. DOI: https://doi.org/10.1016/j.amc.2019.124727

[30] Zabusky N. J. and Kruskal M. D., (1965). Interaction of Solitons in a Collisionless Plasma and the Recurrence of Initial States. Physical Review Letters, 15(6), 240–243. DOI: https://doi.org/10.1103/PhysRevLett.15.240

[31] Turabi G. and Dogan K., (2005). An application for a Modified KdV equation by the decomposition method and finite element method, Applied Mathematics and Computation, 169(2), 971–981. DOI: https://doi.org/10.1016/j.amc.2004.11.017

[32] Helal M. A. and Mehanna M. S., (2007). A Comparative Study between Two Different Methods for Solving the General Korteweg–de Vries Equation (GKdV), Chaos, Solitons & Fractals, 33(3),725–739. DOI: https://doi.org/10.1016/j.chaos.2006.11.011

[33] Wang and Li., (2008). An Explicit Scheme for the KdV Equation, proposing a more stable finite-difference method. Chinese Physics Letters, 25(7). DOI: https://doi.org/10.1088/0256-307X/25/7/002

Downloads

Published

2025-07-10

How to Cite

Kaur, A., Rajeev Budhiraja, & Dhanesh Garg. (2025). Symmetry Analysis and Exact Traveling Wave Solutions of a Time-Fractional Higher order nonlinear Partial Differential Equations. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.3354

Issue

Section

Research Article