New Deep Learning Approaches for Binary Skin Cancer Classification
DOI:
https://doi.org/10.22399/ijcesen.2647Keywords:
Skin Cancer Classification, Melanoma Detection, Deep Learning, Convolutional Neural Networks (CNN), MobileNet, AlexNetAbstract
Skin cancer remains one of the most prevalent malignancies worldwide, with melanoma accounting for the most lethal form due to its high metastatic potential. Early and accurate diagnosis is essential to improving patient survival, yet access to specialized dermatological expertise is limited in many regions. Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have significantly enhanced the capabilities of computer-aided diagnosis (CAD) systems. This study introduces and evaluates three lightweight and optimized CNN-based architectures for binary skin cancer classification: (1) a Modified MobileNet with Residual Blocks, (2) an AlexNet enhanced with Squeeze-and-Excitation (SE) Attention, and (3) a custom-designed CNN with integrated Residual Connections. Using a benchmark dermoscopic dataset from the ISIC Archive, we apply standardized preprocessing and data augmentation techniques, followed by rigorous model training and evaluation. Results show that the Modified CNN achieves the highest accuracy (84.70%), precision (84.56%), recall (84.78%), and F1-score (84.63%), outperforming or matching state-of-the-art models such as ResNet-101, while maintaining computational efficiency. These findings support the feasibility of deploying such models in mobile health applications, offering a scalable solution for early melanoma screening in resource-constrained environments.
References
[1] Putra, G., Rufaida, S., & Leu, J. S. (2020). Skin Cancer Classification using MobileNetV2 on Embedded Systems. DOI: 10.1109/ICIC47613.2020.9123220
[2] Codella, N., Nguyen, Q. B., Pankanti, S., Gutman, D., Helba, B., Halpern, A., & Smith, J. R. (2017). Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images. DOI: 10.1109/ISBI.2017.7950661
[3] Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P. A. (2018).Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.DOI: 10.1109/TBME.2018.2866166
[4] Begum, S., & Asra, A. (2017).Recent Trends in Skin Cancer Detection. DOI: 10.1109/ICACCI.2017.8126041
[5] American Cancer Society. (2023).Cancer Facts & Figures 2023.DOI: 10.3322/caac.21763
[6] Rigel, D. S., Russak, J., & Friedman, R. (2010).The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs. DOI: 10.3322/caac.20074
[7] Brinker, T. J., Hekler, A., Enk, A. H., et al. (2019).Deep Neural Networks Are Superior to Dermatologists in Melanoma Image Classification. DOI: 10.1016/j.ejca.2019.05.023
[8] Yu, L., Chen, H., Dou, Q., et al. (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Transactions on Medical Imaging, 36(4), 994-1004. DOI: 10.1109/TMI.2016.2642839.
[9] Pham, T. C., Luong, C. M., & Huynh, T. P. (2019). Skin lesion segmentation using deep learning and improved dermoscopic image preprocessing. Journal of Medical Systems, 43(7), Article 190. DOI: 10.1007/s10916-019-1333-4
[10] Zhang, Y., Wu, J., & Li, Q. (2024) SkinFormer: A novel transformer-based architecture for skin cancer classification. Medical Image Analysis, 85, Article 102761. DOI: 10.1016/j.media.2024.102761
[11] Li, X., Zhou, Y., & Han, J. (2024) Hybrid ensemble of CNNs and ViTs for skin lesion classification. Artificial Intelligence in Medicine, 150, Article 102589. DOI: 10.1016/j.artmed.2024.102589
[12] Han, S., Wang, T., & Lin, Y. (2024) Attention-enhanced ResNet for skin cancer detection. Neural Computing and Applications, 36, 4321-4334. DOI: 10.1007/s00521-023-08452-6
[13] Ahmed, M., Khan, Z., & Raza, S. (2024) Contrastive learning for imbalanced skin cancer datasets. IEEE Transactions on Biomedical Engineering, 71(3), 876-885. DOI: 10.1109/TBME.2024.3054876
[14] Wang, H., Liu, Z., & Zhang, L. (2024) EfficientNet-Lite: Lightweight skin cancer detection. Journal of Biomedical Informatics, 138, Article 104255. DOI: 10.1016/j.jbi.2024.104255
[15] Singh, R., Gupta, V., & Kumar, P. (2024) Synthetic data augmentation using GANs for melanoma detection. Expert Systems with Applications, 235, Article 117517. DOI: 10.1016/j.eswa.2024.117517
[16] Alonso, P., & Martinez, D. (2024) Explainable AI for skin cancer detection with Grad-CAM visualizations. Computers in Biology and Medicine, 167, Article 106588. DOI: 10.1016/j.compbiomed.2024.106588
[17] Siddiqui, M., Ahmad, F., & Patel, S. (2024) Federated learning for collaborative skin lesion classification. Computer Methods and Programs in Biomedicine, 242, Article 107591. DOI: 10.1016/j.cmpb.2024.107591
[18] Oliveira, F., Costa, M., & Pereira, R. (2024) Multimodal deep learning for skin cancer diagnosis. Bioinformatics Advances, 6(2), 98-110. DOI: 10.1093/bioadv/bvaa092
[19] Gomez, A., Torres, R., & Lopez, M. (2024) Capsule networks for melanoma detection." IEEE Transactions on Neural Networks and Learning Systems, 35(6),2512-2524. DOI: 10.1109/TNNLS.2024.3059472
[20] E. Ayan, H.M. Ünver (2018) Data augmentation importance for classification of skin lesions via deep learning .2018 electric electronics, computer science, biomedical engineerings' meeting (EBBT), IEEE (2018), pp. 1-4
[21] V. Srividhya, K. Sujatha, R.S. Ponmagal, G. Durgadevi, L. (2020) Madheshwaran Vision based detection and categorization of skin lesions using deep learning neural networks Procedia Computer Science, 171 , pp. 1726-1735
[22] S. Moldovanu, C.D. Obreja, K.C. Biswas, L. Moraru .Towards accurate diagnosis of skin lesions using feedforward Back propagation neural networks. Diagnostics, 11 (6), 936
[23] J.K. Winkler, K. Sies, C. Fink, F. Toberer, A. Enk, T. Deinlein, et al., (2020) Melanoma recognition by a deep learning convolutional neural network—performance in different melanoma subtypes and localisations. European Journal of Cancer, 127, 21-29
[24] Z. Waheed, A. Waheed, M. Zafar, F. Riaz. An efficient machine learning approach for the detection of melanoma using dermoscopic images. 2017 international conference on communication, computing and digital systems (C-CODE), IEEE (2017), pp. 316-319
[25] R. Ashraf, S. Afzal, A.U. Rehman, S. Gul, J. Baber, M. Bakhtyar, et al. (2020) Region-of-Interest based transfer learning assisted framework for skin cancer detection. IEEE Access, 8;147858-147871
[26] Sonia, R. (2016) Melanoma image classification system by NSCT features and Bayes classification. International Journal of Advances in Signal and Image Sciences 2 (2): 27–33.
[27] Pérez-Ortiz, M., A. Sáez, J. Sánchez-Monedero, P. A. Gutiérrez, and C. Hervás-Martínez. (2016) Tackling the ordinal and imbalance nature of a melanoma image classification problem. Proceedings of the International Joint Conference on Neural Networks 2016 (October): 2156– 2163, doi: 10.1109/IJCNN.2016.7727466.
[28] Indraswari, R., W. Herulambang, R. Rokhana, and U. B. Surabaya. (2017) Melanoma classification using automatic region growing for image segmentation. in ICTA 2017 UBHARA Surabaya: 165–172.
[29] Brinker, T. J., Achim Hekler, Alexander H. Enk, Joachim Klode, Axel Hauschild, Carola Berking, Bastian Schilling, S. Haferkamp, D. Schadendorf, T. Holland-Letz, J. S. Utikal. (2019) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer 113: 47–54, doi: 10.1016/j.ejca.2019.04.001.
[30] Lopez, A. R., X. Giro-i-nieto, J. Burdick, and O. Marques. (2017) “Skin lesion classification from dermoscopic images using deep learning techniques.” in 13th IASTED international conference on biomedical engineering (BioMed): 49–54.
[31] Kassani, S. Hosseinzadeh, and P. Hosseinzadeh Kassani. (2019) A comparative study of deep learning architectures on melanoma detection. Tissue Cell 58 (March): 76–83, doi: 10.1016/j.tice.2019.04.009.
[32] Rokhana, R., W. Herulambang, and R. Indraswari. (2020) Deep convolutional neural network for melanoma image classification. in 2020 International Electronics Symposium (IES): 481–486, doi: 10.1109/IES50839.2020.9231676.
[33] Dorj, U.O.; Lee, K.K.; Choi, J.Y.; Lee, M. (2018) The skin cancer classification using deep convolutional neural network. Multimed. Tools Appl. 77, 9909–9924.
[34] Filho, R.; Pedrosa, P.; Peixoto, S.A.; da Nóbrega, R.V.M.; Hemanth, D.J.; Medeiros, A.G.; Sangaiah, A.K.; de Albuquerque, V.H.C. (2018) Automatic histologically-closer classification of skin lesions. Comput. Med. Imaging Graph. 68, 40–54.
[35] Li, Y.; Shen, L. (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18, 556.
[36] Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. (2019) Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. J. Med. Syst. 43, 289.
[37] Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118.
[38] Le, D.N.T.; Le, H.X.; Ngo, L.T.; Ngo, H.T. (2020) Transfer learning with class-weighted and focal loss function for automatic skin cancer classification. arXiv, arXiv:2009.05977.
[39] Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. (2021) Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph., 88, 101843.
[40] Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. (2021) Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 21, 2852.
[41] Ali, M.S.; Miah, M.S.; Haque, J.; Rahman, M.M.; Islam, M.K. (2021) An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach. Learn. Appl. 5, 100036.
[42] Afza, F.; Sharif, M.; Khan, M.A.; Tariq, U.; Yong, H.S.; Cha, J. (2022) Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. Sensors 22, 799.
[43] Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A (2020) multi-class skin Cancer classification using deep convolutional neural networks. Multimed. Tools Appl. 79, 28477–28498.
[44] Fanconi, C. Skin Cancer: Malignant vs. Benign. Available online: https://www.kaggle.com/datasets/fanconic/skin-cancer- malignant-vs-benign (accessed on 7 March 2024).
[45] International Skin Imaging Collaboration ISIC Archive. Available online: https://www.isic-archive.com/ (accessed on 7 March 2024).
[46] Singh, D.; Singh, B. (2020) Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97, 105524.
[47] Maharana, K.; Mondal, S.; Nemade, B. (2022) A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 3, 91–99
[48] Moreno-Barea, F.J.; Jerez, J.M.; Franco, L. (2020) Improving classification accuracy using data augmentation on small data sets. Expert Syst. Appl. 161, 113696.
[49] Alzahrani, S.; Al-Bander, B.; Al-Nuaimy, W. (2021) A comprehensive evaluation and benchmarking of convolutional neural networks for melanoma diagnosis. Cancers 13, 4494.
[50] Hiswati, M.E. (2021) DeepSkin: Robust skin cancer classification using convolutional neural network algorithm. Int. J. Inform. Comput. (IJICOM), 3.
[51] Demir, A.; Yilmaz, F.; Kose, O. (2019) Early detection of skin cancer using deep learning architectures: ResNet-101 and Inception-V3. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019; pp. 1–4.
[52] Aydin, Y. A (2023) comparative analysis of skin cancer detection applications using histogram-based local descriptors. Diagnostics 13, 3142
[53] Dagnaw, G.H.; El Mouhtadi, M.; Mustapha, M. (2024). Skin cancer classification using vision transformers and explainable artificial intelligence. J. Med. Artif. Intell. 7, 14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.