Artificial Intelligence and Machine Learning in Biochemical and Molecular Diagnostics: A Transformative Review of Current Applications and Future Prospects

Authors

  • Ian Pranandi Research Scholar
  • Francisca Tjhay

DOI:

https://doi.org/10.22399/ijcesen.2634

Keywords:

Artificial Intelligence, Machine Learning , Biochemical Diagnostics, Molecular Diagnostics, Clinical Decision Support, Biomarker Detection

Abstract

Advancements in artificial intelligence (AI) and machine learning (ML) are rapidly transforming the landscape of biochemical and molecular diagnostics. These technologies have demonstrated exceptional capabilities in processing large-scale omics data, identifying subtle biomarker patterns, and enhancing diagnostic accuracy across a wide range of diseases. This review aims to provide a comprehensive overview of current AI/ML applications in biochemical and molecular diagnostics, highlighting their integration in laboratory test interpretation, metabolomic profiling, genomic variant annotation, and transcriptomic analysis. We examine the role of machine learning algorithms such as support vector machines, random forests, and deep neural networks in enabling predictive, high-throughput, and personalized diagnostics. Additionally, the review addresses key challenges including data standardization, model interpretability, and clinical validation. Emerging trends such as federated learning, real-time diagnostics, and AI-integrated multi-omics platforms are discussed as promising frontiers. By synthesizing current findings and projecting future directions, this review underscores the transformative potential of AI and ML in advancing precision diagnostics and personalized medicine.

References

[1] Al-antari MA. (2024). Advancements in Artificial Intelligence for Medical Computer-Aided Diagnosis. Diagnostics. 14(12):1265.

doi:10.3390/diagnostics14121265.

[2] Al-Antari MA. (2023). Artificial Intelligence for Medical Diagnostics—Existing and Future AI Technology! Diagnostics.;13(4):688.

doi:10.3390/diagnostics13040688.

[3] Chakravarthi GP, Rambabu V, Ramamurty DSVNM, Rahul G, Prasad SVGVA. (2024). AI and Machine Learning in Biotechnology: A Paradigm Shift in Biochemical Innovation. Int J Plant Anim Environ Sci. 14(4):70–80.

doi:10.26502/ijpaes.4490166.

[4] Ali MJA, Rangreze I. (2023). Emerging Applications of Artificial Intelligence (AI) and Machine Learning (ML) in Modern Urology. In: Emerging Trends in Expert Applications and Security. IGI Global; p. 1–20.

doi:10.4018/978-1-6684-5260-8.ch001.

[5] Li H, Xu H, Li Y, Li X. (2024). Application of artificial intelligence (AI)-enhanced biochemical sensing in molecular diagnosis and imaging analysis: Advancing and challenges. TrAC Trends Anal Chem. 174:117700. doi:10.1016/j.trac.2024.117700.

[6] Razzaq K, Shah M. (2025). Machine Learning and Deep Learning Paradigms: From Techniques to Practical Applications and Research Frontiers. Computers. 14(3):93.

doi:10.3390/computers14030093.

[7] Rahmah A, Sepriyanti N, Zikri MH, Ambarani I, Shahar MYB. (2023). Implementation of Support Vector Machine and Random Forest for Heart Failure Disease Classification. Public Res J Eng Data Technol Comput Sci. 1(1):34–40.

doi:10.57152/predatecs.v1i1.816.

[8] Husi H, editor. (2019). Computational Biology. Brisbane (AU): Codon Publications;

doi:10.15586/computationalbiology.2019.

[9] Mowbray M, Savage TR, Wu C, Song Z, Anye Cho B, del Rio-Chanona EA, Zhang D. (2021). Machine learning for biochemical engineering: A review. Biochem Eng J. Aug;172:108054.

doi:10.1016/j.bej.2021.108054.

[10] Ahsan MM, Luna SA, Siddique Z. (2022). Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare.;10(3):541.

doi:10.3390/healthcare10030541.

[11] Budholiya K, Shrivastava SK, Sharma V. (2022). An optimized XGBoost based diagnostic system for effective prediction of heart disease. J King Saud Univ Comput Inf Sci. 34(7):4514–23.

doi:10.1016/j.jksuci.2020.10.013.

[12] Ljubicic ML, Madsen A, Juul A, Almstrup K, Johannsen TH. (2021). The Application of Principal Component Analysis on Clinical and Biochemical Parameters Exemplified in Children With Congenital Adrenal Hyperplasia. Front Endocrinol (Lausanne). 12:652888.

doi:10.3389/fendo.2021.652888.

[13] 0Alam MZ, Rahman MS, Rahman MS. (2019). A Random Forest based predictor for medical data classification using feature ranking. Informatics in Medicine Unlocked.15:100180.

doi:10.1016/j.imu.2019.100180.

[14] Gaspar D, Silva P, Silva C. (2024). Explainable AI for Intrusion Detection Systems: LIME and SHAP Applicability on Multi-Layer Perceptron. IEEE Access.;12:30164–30175.

doi:10.1109/ACCESS.2024.3368377.

[15] Ganetzky RD, Master SR. (2020). Machine Learning for the Biochemical Genetics Laboratory. Clin Chem. 66(9):1134–1135. doi:10.1093/clinchem/hvaa168.

[16] Cobre AF, Morais AA, Selege F, Stremel DP, Wiens A, Ferreira LM, Tonin FS, Pontarolo R. (2024). Use of biochemical tests and machine learning in the search for potential diagnostic biomarkers of COVID-19, HIV/AIDS, and pulmonary tuberculosis. J Braz Chem Soc.;35(7):e20240020.

doi:10.21577/0103-5053.20240020.

[17] Odom JD, Sutton VR. (2021). Metabolomics in Clinical Practice: Improving Diagnosis and Informing Management. Clin Chem.;67(12):1606–1617. doi:10.1093/clinchem/hvab184.

[18] Al-Sulaiti H, Almaliti J, Naman CB, Al Thani AA, Yassine HM. (2023). Metabolomics approaches for the diagnosis, treatment, and better disease management of viral infections. Metabolites. 13(8):948. doi:10.3390/metabo13080948.

[19] Bhinderwala F, Wase N, DiRusso C, Powers R. (2018). Combining Mass Spectrometry and NMR Improves Metabolite Detection and Annotation. J Proteome Res. 17(11):4017–4022.

doi:10.1021/acs.jproteome.8b00567.

[20] Ye J, Woods D, Jordan N, Starren J. (2024). The role of artificial intelligence for the application of integrating electronic health records and patient-generated data in clinical decision support. AMIA Jt Summits Transl Sci Proc. May 31;2024:459–467. PMID: 38827061; PMCID: PMC11141850.

[21] Abdullah DM, Abdulazeez AM. (2021). Machine Learning Applications Based on SVM Classification: A Review. Qubahan Acad J. 1(2):81–90. doi:10.48161/qaj.v1n2a50.

[22] Kufel J, Bargieł-Łączek K, Kocot S, Koźlik M, Bartnikowska W, Janik M, Czogalik Ł, Dudek P, Magiera M, Lis A, et al. (2023). What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics. 13(15):2582.

doi:10.3390/diagnostics13152582.

[23] Gomes B, Ashley EA. (2023). Artificial Intelligence in Molecular Medicine. N Engl J Med.;388(26):2456–2465. doi:10.1056/NEJMra2204787.

[24] O'Leary TJ, O'Leary BJ, O'Leary DP. (2025). A Perspective on Artificial Intelligence for Molecular Pathologists. J Mol Diagn.;27(5):323–335.

doi:10.1016/j.jmoldx.2025.01.005.

[25] Zhang B, Shi H, Wang H.( 2023;). Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. J Multidiscip Healthc. 16:1779–1791.

doi:10.2147/JMDH.S410301.

[26] Rauschert S, Raubenheimer K, Melton PE, Huang RC. (2020). Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenetics. 12(1):51.

doi:10.1186/s13148-020-00842-4.

[27] Nazir S. (2023). Medical diagnostic value of digital PCR (dPCR): A systematic review. Biomed Eng Adv.;6:100092. doi:10.1016/j.bea.2023.100092.

[28] Fountzilas E, Pearce T, Baysal MA, Chakraborty A, Tsimberidou AM. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med. 2025;8(1):75. doi:10.1038/s41746-025-01471-y.

[29] Cesaro A, Hoffman SC, Das P, de la Fuente-Nunez C. (2025). Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance. NPJ Antimicrob Resist. 3(1):2.

doi:10.1038/s44259-024-00068-x.

[30] Chowdhury MA, Rizk R, Chiu C, Zhang JJ, Scholl JL, Bosch TJ, Singh A, Baugh LA, McGough JS, Santosh K, et al. (2025). The Heart of Transformation: Exploring Artificial Intelligence in Cardiovascular Disease. Biomedicines. 13(2):427.

doi:10.3390/biomedicines13020427.

[31] Tsui WA, Ding SC, Jiang P, Lo YMD. (2025). Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res. 35(1):1–19. doi:10.1101/gr.278413.123.

[32] Diakiw SM, Hall JMM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, Briones YG, Lim AYX, Dakka MA, Nguyen TV, et al. (2022). Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 37(8):1746–1759.

doi:10.1093/humrep/deac131.

[33] Wang J, Zeng Z, Li Z, Liu G, Zhang S, Luo C, Hu S, Wan S, Zhao L. (2025). The clinical application of artificial intelligence in cancer precision treatment. J Transl Med. 23(1):120.

doi:10.1186/s12967-025-06139-5.

[34] Zhang X, Zhang D, Zhang X, Zhang X. (2024). Artificial intelligence applications in the diagnosis and treatment of bacterial infections. Front Microbiol. 15:1449844.

doi:10.3389/fmicb.2024.1449844.

[35] Shabeer H, Haider HMA, Khatri T, Khan N, Rafique AA, Anjam F. (2025). The Role of Artificial Intelligence in Early Diagnosis and Management of Cardiovascular Diseases. Indus J Biosci Res. 3(2):213–224.

doi:10.70749/ijbr.v3i2.667.

[36] Duong D, Solomon BD. (2025). Artificial intelligence in clinical genetics. Eur J Hum Genet. 33(3):281–288. doi:10.1038/s41431-024-01782-w.

[37] Kale M, Wankhede N, Pawar R, Ballal S, Kumawat R, Goswami M, et al. (2024). AI-driven innovations in Alzheimer's disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res Rev. Nov;101:102497.

doi:10.1016/j.arr.2024.102497.

Downloads

Published

2025-06-08

How to Cite

Pranandi, I., & Francisca Tjhay. (2025). Artificial Intelligence and Machine Learning in Biochemical and Molecular Diagnostics: A Transformative Review of Current Applications and Future Prospects. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.2634

Issue

Section

Research Article