Effect of Thermal Activation on the Mineralogical Structure of Magnesium Slag

Authors

  • Abdul Vahap Korkmaz Yok

DOI:

https://doi.org/10.22399/ijcesen.251

Abstract

Magnesium slag's production process is similar to the Portland cement production process. The raw material used is carbonate-containing dolomite, and is calcined in a rotary kiln at 850-900 oC. Afterwards, ferrosilicon and fluorite raw materials are added to the calcined material, they are ground together and turned into pellets, and then they are reduced at a temperature close to the firing temperature of Portland cement clinker (1250-1350 oC) to obtain crown magnesium and magnesium slag. The reduction time of pellet material in reduction furnaces is 12 hours. During this period, almost all of the magnesium minerals in the mixture material are reduced and taken as crown magnesium metal. The remaining material, described as magnesium production slag (reduction furnace waste), consists of Alite (C3S), Belite (C2S), Celite (C3A) and C4AF minerals contained in Portland cement clinker. Some of the minerals contained in Portland cement clinker in the rotary kiln are formed at temperatures below 1400 °C, which is the clinker firing temperature. The only difference other than the firing temperature is that after the Portland cement clinker is fired in the rotary kiln, the clinker is cooled rapidly, increasing the alite (C3S) crystals formed in its structure and preventing the alite minerals from turning back into belite (C2S) minerals. This study produced magnesium slags at different temperatures (1200-1350 oC) by thermal activation method in an industrial environment. The Bogue and XRD methods calculated the mineral phase amounts of the products produced.

References

Li, H., Huang, Y., Yang, X., Jiang, Z., Yang, Z. (2018). Approach to the management of magnesium slag via the production of Portland cement clinker. Journal Of Material Cycles And Waste Management, 20, 1701-1709. DOI:10.1007/s10163-018-0735-4.

Ji, G., Peng, X., Wang, S., Hu, C., Ran, P., Sun, K., Zeng, L. (2021). Influence of magnesium slag as a mineral admixture on the performance of concrete. Construction and Building Materials, 295, 123619. DOI: 10.1016/j.conbuildmat.2021.123619.

Xie, G., Liu, L., Suo, Y., Zhu, M., Yang, P., & Sun, W. (2024). High-value utilization of modified magnesium slag solid waste and its application as a low-carbon cement admixture. Journal of Environmental Management, 349, 119551. DOI: 10.1016/j.jenvman.2023.119551.

Lu, F., Bai, R. Y., Cai, J. W. (2013). Study on Clinker Production Using Magnesium Slag on a 4500tpd Line. Advanced Materials Research, 690, 724-727.DOI: 10.428/www.scientific.net/AMR.690-693.724

Wang, S. Y., Xiao, L. G., Zhou, Q., Xu, K., Chen, B. L., Wang, J. F., & Wu, Z. Z. (2011). Research and application on magnesium slag. Advanced Materials Research, 280, 208-211. DOI: 10.428/www.scientific.net/AMR.280.208.

Aguirre Castillo, J., Broström, M., Eriksson, M. (2023). Phase evolution and burnability of cement raw meal. Advances in Cement Research, 1-24. DOI:10.1680/jadcr.23.00034.

Korkmaz, A. V. (2019). Evaluation of chemical, mineralogical and clinker burnability properties of mudstones as cement raw materials. Case Studies in Construction Materials, 11, e00254. DOI: 10.1016/j.cscm. 2019.e00254.

Ruan, S., Liu, L., Zhu, M., Shao, C., Xie, L. (2023). Development and field application of a modified magnesium slag-based mine filling cementitious material. Journal of Cleaner Production, 419, 138269. DOI: 10.1016/j.jclepro.2023.138269.

Oliveira, C. A., Gumieri, A. G., Gomes, A. M., Vasconcelos, W. L. (2004). Characterization of magnesium slag aiming the utilization as a mineral admixture in mortar. In International RILEM Conference on the Use of Recycled Materials in Building and Structures (pp. 919-924).

Kacimi, L., Simon-Masseron, A., Ghomari, A., Derriche, Z. (2006). Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties. Comptes Rendus Chimie, 9(1), 154-163. DOI: 10.1016/j.crci.2005.10.001.

Dominguez, O., Torres-Castillo, A., Flores-Velez, L. M., Torres, R. (2010). Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF2. Materials Characterization, 61(4), 459-466. DOI: 10.1016/j.matchar.2010.02.002.

Bouregba, A., Diouri, A., Elghattas, B., Boukhari, A., & Guedira, T. (2018). Influence of Fluorine on Clinker burnability and mechanical properties of CPA Moroccan cement. In MATEC web of conferences (Vol. 149, p. 01075). EDP Sciences. DOI:10.1051/macconf/201814901075.

Yamashita, M., Tanaka, H. (2012). Low-temperature burnt Portland cement clinker using mineralizer. Cement Science and Concrete Technology, 65(1), 82-87. DOI: 10.14250/cement.65.82.

Altun, A. (1999). Influence of heating rate on the burning of cement clinker, Cement and Concrete Research, s.600. DOI:10.1016/S0008-8846(98)00196-3.

Korkmaz, A. V. (2017). Usability of metaschist as an alternative to clay raw material in cement production, Doctoral Thesis, Istanbul University Institute of Science and Technology).

Korkmaz, A. V., Hacıfazlıoğlu, H. (2019). An Alternatıve Raw Materıal To Clay Stone In Cement Productıon: Meta-Schist. Scientific Mining Journal, 58(2), 95-110.doi.org/10.30797/madencilik.580138.

Ludwig, H. M., & Zhang, W. (2015). Research review of cement clinker chemistry. Cement and Concrete Research, 78, 24-37. DOI: 10.1016/j.cemconres.2015.05.018.

Ángeles, G., De Vera, R. N., Cuberos, A. J., Aranda, M. A. (2008). Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis. Cement and Concrete Research, 38(11), 1261-1269. DOI: 10.1016/j.cemconres.2008.06.005.

Wang, F., Long, G., Bai, M., Wang, J., Shi, Y., Zhou, X., Zhou, J. L. (2023). A new perspective on Belite-ye'elimite-ferrite cement manufactured from electrolytic manganese residue: Production, properties, and environmental analysis. Cement and Concrete Research, 163, 107019. DOI: 10.1016/j.cemconres.2022.107019.

Bouregba, A., Diouri, A., Elghattas, B., Boukhari, A., Guedira, T. (2018). Influence of Fluorine on Clinker burnability and mechanical properties of CPA Moroccan cement. In MATEC web of conferences (Vol. 149, p. 01075). EDP Sciences. DOI:10.1051/macconf/201814901075.

Bouge, R.H. (1955) The Chemistry of Portland Cement. 2nd Edition, Reinhold, New York.

Kapeluszna, E., Kotwica, Ł., Malata, G., Murzyn, P., Nocuń-Wczelik, W. (2020). The effect of highly reactive pozzolanic material on the early hydration of alite–C3A–gypsum synthetic cement systems. Construction and Building Materials, 251, 118879. DOI: 10.1016/j.conbuildmat.2020.118879.

Cho, S., Suh, H., Im, S., Kim, G., Kanematsu, M., Morooka, S., Bae, S. (2023). Characteristic microstructural phase evolution and the compressive strength development mechanisms of tricalcium silicate pastes under various initial carbonation curing environments. Construction and Building Materials, 409, 133866. DOI: 10.1016/j.conbuildmat.2023.133866.

Downloads

Published

2024-02-21

How to Cite

Korkmaz, A. V. (2024). Effect of Thermal Activation on the Mineralogical Structure of Magnesium Slag. International Journal of Computational and Experimental Science and Engineering, 10(1). https://doi.org/10.22399/ijcesen.251

Issue

Section

Research Article