A Multinomial Logit Model for Urban Transportation Mode Choice in Nasiriyah City

Authors

  • Ishraq Hameed Naser 1Al-Iraqia University, College of Engineering, Civil Engineering Department, Baghdad
  • Halah Ali Meer Hussien University of Baghdad, College of Engineering, Environmental Engineering Department, Baghdad / Iraq
  • Nida Hussien Abid Aown 3Ashur University, College of Engineering, Baghdad Iraq
  • Firas Alrawi 4Urban and regional planning center, university of Baghdad, Baghdad Iraq

DOI:

https://doi.org/10.22399/ijcesen.2250

Keywords:

Mode Choice, Multinomial Logit Model, Transportation Planning, Private Use, Public Use

Abstract

Analyzing mode choice is essential for transportation planning, especially in urban areas where commuting significantly affects peak-hour congestion. The travel behavior of city residents regarding their transportation mode choices is crucial, as it impacts the overall efficiency of movement within the city. The multinomial logit (MNL) model is a valuable tool for estimating mode shares when travelers are presented with multiple travel options. This research investigates mode choice in Nasiriyah by applying the MNL model to identify factors that affect transportation preferences within the community. The model incorporates twelve explanatory variables that have not been previously examined in the urban context of Nasiriyah. These variables include income, age, household size, travel distance, travel time, travel cost, road conditions, availability of taxis, availability of public transportation, land use density, cultural characteristics, and safety concerns. The results revealed that private vehicle ownership is the preferred mode of transportation, closely followed by taxi services, indicating a strong inclination toward private vehicles due to their flexibility and convenience. In contrast, public transportation options, such as buses, ranked third due to inadequate service attractiveness stemming from limited geographic coverage and passenger comfort. Non-motorized modes, such as motorcycles and bicycles, received lower preference due to challenging weather conditions and insufficient infrastructure.  Additionally, the results indicate that the choice of transportation modes in Nasiriyah City is shaped by various factors, including economic conditions, travel impedances, infrastructure quality, service availability, land development patterns, and safety considerations. This underscores the immediate need to improve public transportation services, as well as infrastructure for pedestrians and cyclists. The model was trained and tested using specific datasets, ultimately achieving an F1-Score of 85.3% on the testing dataset.

References

[1] ITF. (2021). ITF transport outlook 2021. International Transport Forum.

[2] Al-Jameel, H. A., AL-Maliki, L. A., & Al-Mamoori, S. K. (2023). Assessment of public transportation facilities: Al-Kut city as a case study. AIP Conference Proceedings. 2806;1-7. https://doi.org/10.1063/5.0143399 DOI: https://doi.org/10.1063/5.0162886

[3] Jasim, I. A., Farhan, S. L., & Hasan, H. M. (2021). The impact of transit on sustainable urban form. IOP Conference Series: Materials Science and Engineering. 1058;012049. https://doi.org/10.1088/1757-899X/1058/1/012049 DOI: https://doi.org/10.1088/1757-899X/1058/1/012049

[4] Ben-Akiva, M., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand. MIT Press.

[5] Train, K. E. (2003). Discrete choice methods with simulation. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511753930

[6] Hensher, D. A., Stopher, P. R., & Bullock, P. (2005). Service quality – a focus on public transport. Journal of Public Transportation. 8(1);37-54. https://doi.org/10.5038/2375-0901.8.1.3 DOI: https://doi.org/10.5038/2375-0901.8.1.3

[7] Miller, E. J., Kennedy, C. A., Baum-Snow, N., Gauthier, P., & Cervero, R. (2020). The role of transport in urban sustainability. Sustainable Transport in the Urban Environment. 37-54.

[8] Almasri, E., & Alraee, S. (2013). Factors affecting mode choice of work trips in developing cities—Gaza as a case study. Journal of Transportation Technologies. 3;247-259. https://doi.org/10.4236/jtts.2013.34026 DOI: https://doi.org/10.4236/jtts.2013.34026

[9] Ahanchian, M., Gregg, J. S., Tattini, J., & Karlsson, K. B. (2019). Analyzing effects of transport policies on travelers' rational behaviour for a modal shift in Denmark. Case Studies on Transport Policy. 7;849-861. https://doi.org/10.1016/j.cstp.2019.07.010 DOI: https://doi.org/10.1016/j.cstp.2019.07.010

[10] Bhat, C. R., & Guo, J. (2007). A Mixed Logit Model of Travel Mode Choice. Transportation Research Part B: Methodological. 41(3);292-305. https://doi.org/10.1016/j.trb.2006.06.001 DOI: https://doi.org/10.1016/j.trb.2006.06.001

[11] Hensher, D. A., & Greene, W. H. (2010). The Role of Socio-Demographic Factors in Public Transport Use: A Study of the Sydney Metropolitan Area. Transportation Research Part A: Policy and Practice. 44(1);1-12. https://doi.org/10.1016/j.tra.2009.09.001 DOI: https://doi.org/10.1016/j.tra.2009.09.001

[12] Miller, E. J., & Wu, Y. (2020). Economic Factors and Personal Attitudes: Implications for Sustainable Transportation. Transportation Research Part D: Transport and Environment. 79;102-112. https://doi.org/10.1016/j.trd.2019.12.010

[13] Hensher, D. A., & Mulley, C. (2020). Public Transport Service Quality and Fare Structures: Impacts on Ridership. Transport Policy. 87;1-10. https://doi.org/10.1016/j.tranpol.2019.12.007

[14] Zhou, J., & Sinha, K. C. (2021). Exploring Mode Choice in Urban Areas: A Nested Logit Approach. Journal of Transport Geography. 91;102-115. https://doi.org/10.1016/j.jtrangeo.2020.102813 DOI: https://doi.org/10.1016/j.jtrangeo.2020.102813

[15] Sonia, M., Nugroho, M. W., Sundari, T., & Ramadhani, R. (2024). Analysis of transportation mode choice in malang city using multinomial logistics method. Journal Innovation of Civil Engineering. 5(1);63-69. https://doi.org/10.33474/jice.v5i1.21348 DOI: https://doi.org/10.33474/jice.v5i1.21348

[16] Ali, M., Macioszek, E., & Ali, N. (2024). Travel Mode Choice Prediction to Pursue Sustainable Transportation and Enhance Health Parameters Using R. Sustainability. 16(14);5908. https://doi.org/10.3390/su16145908 DOI: https://doi.org/10.3390/su16145908

[17] Ghosh, T., & Nagaraj, N. (2024). Evaluating the Determinants of Mode Choice Using Statistical and Machine Learning Techniques in the Indian Megacity of Bengaluru. arXiv.org. abs/2401.13977.

[18] Hao, Y. (2023). Residents' Choice of Transportation Mode Based on Multiple Logit Model. Highlights in Science, Engineering and Technology. 37;166-173. https://doi.org/10.54097/hset.v37i.8711 DOI: https://doi.org/10.54097/hset.v37i.6071

[19] Herath, P., Dharmarathna, W. R. S. S., Wickramasinghe, W. A. S. M., & Edirisinghe, A. G. H. J. (2023). Travel Behaviour Analysis and Exploration of Mode Choice Variability of Short-Distance Travellers. Engineer. 56(1);51-62. https://doi.org/10.4038/engineer.v56i1.7596 DOI: https://doi.org/10.4038/engineer.v56i1.7560

[20] Bucsky, P. (2020). Modal share changes due to COVID-19: The case of Budapest. Transportation Research Interdisciplinary Perspectives. 8;100141. https://doi.org/10.1016/j.trip.2020.100141 DOI: https://doi.org/10.1016/j.trip.2020.100141

[21] Guerra, E., & Li, M. (2021). The relationship between urban form and mode choice in US and Mexican cities: A comparative analysis of workers' commute. The Journal of Transport and Land Use. 14(1);441-462. https://doi.org/10.5198/jtlu.2021.1779 DOI: https://doi.org/10.5198/jtlu.2021.1789

[22] Novačko, L., Babojelic, K., God, N., & Babic, L. (2020). Estimation of the model split parameters - a case study. International Scientific Journal "Trans and Motauto World". 5(2);51-61.

[23] Mendiola, L., & Gonzalez, P. (2021). Urban development and sustainable mobility: A spatial analysis in the Buenos Aires metropolitan area. Land. 10;157. https://doi.org/10.3390/land10020157 DOI: https://doi.org/10.3390/land10020157

[24] Shukla, R. N., Bhola, A. D., Gundahya, P. J., & Zala, L. B. (2019). Mode choice analysis of trips of urban residents using multinomial logit model. Journal of Emerging Technologies and Innovative Research. 6(5);268-375. http://www.jetir.org/papers/JETIR1905A62.pdf

[25] Asmael, M. N. M., & Alkawaaz, N. G. A. (2019). The Influence Change of Private Car Ownership on Patterns of Mode Choice in Baghdad city. Proceedings of the 2nd International Conference on Sustainable Engineering Techniques (ICSET 2019). 127-134. https://doi.org/10.1088/1757-899x/518/2/022025 DOI: https://doi.org/10.1088/1757-899X/518/2/022025

[26] Yousif, O. A., Abed, A. N., & Awad, H. A. (2021). Modal Split Model Using Multiple Linear Regression Analysis. Anbar Journal of Engineering Science. 12(2);222-228. https://doi.org/10.37649/aengs.2022.175878 DOI: https://doi.org/10.37649/aengs.2021.171190

[27] Mohammed, A. A., & Joni, H. H. (2015). Evolution of the transportation mode from private cars to public transport by logit method: a case study in Baghdad. Proceedings of the 2nd International Conference on Buildings, Construction and Environmental Engineering (BCEE2). 201-209.

[28] Mueller, N. (2018). Health impact assessment of cycling network expansions in European cities. Preventive Medicine. 109;62-70. https://doi.org/10.1016/j.ypmed.2017.12.011 DOI: https://doi.org/10.1016/j.ypmed.2017.12.011

[29] Santos, G., Maoh, H., Potoglou, D., & Von Brunn, T. (2013). Factors influencing modal split of commuting journeys in medium-size European cities. Journal of Transport Geography. 30;127-137. https://doi.org/10.1016/j.jtrangeo.2013.04.005 DOI: https://doi.org/10.1016/j.jtrangeo.2013.04.005

[30] Lierop, D. v., & Badami, M. G. (2018). What influences satisfaction and loyalty in public transport? A review of the literature. Transport Reviews. 38(1);52-72. https://doi.org/10.1080/01441647.2017.1298683 DOI: https://doi.org/10.1080/01441647.2017.1298683

[31] Naser, I. H., Mahdi, M. B., Meqtoof, F. H., & Etih, H. A. (2021). Modelling trip distribution using the gravity model and Fratar's method. Mathematical Modelling and Engineering Problems. 8(2);230-236. https://doi.org/10.18280/mmep.080208

[32] Hasan, A. S., & Falih, K. T. (2021). Using Geographic Information System (GIS) as a Supporting Tool in Public Facilities Planning: A Case Study on the City of Nasiriyah. IMDC-IST 2021: Proceedings of the 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies. 55-63. https://doi.org/10.4108/eai.7-9-2021.2315484 DOI: https://doi.org/10.4108/eai.7-9-2021.2315484

[33] Qasim, Z., Ziboon, A. R., & Falih, K. (2017). TransCad Analysis and GIS Techniques to Evaluate Transportation Network in Nasiriyah city. MATEC Web of Conferences. 162;03029. https://doi.org/10.1051/matecconf/201816203029 DOI: https://doi.org/10.1051/matecconf/201816203029

[34] Satchet, M. S. (2018). Geomatics Techniques to Evaluate Bus Service Coverage, a Case Study on Nasiriyah, Iraq. Engineering and Technology Journal. 36A(11);1148-1157. https://doi.org/10.30684/etj.36.11A.5 DOI: https://doi.org/10.30684/etj.36.11A.3

[35] Al-Obaidy, N. K., Aodah, H. H., & Oleiwi, G. H. (2020). The Applicability of Reinforcing the Subgrade with Geosynthetics: Al-Nasiriya Roadways Soil As a Case Study. Solid State Technology. 63(6);247-259.

[36] Al-Obaidy, N., Al-Shueli, A., Sattar, H., Majeed, Z., & Hamid, N. A. H. (2019). An experimental study on geotechnical and electrical properties of an oil-contaminated soil at thi-qar governorate/Iraq. International Review of Civil Engineering. 10(3);148-154. Retrieved from https://www.researchgate.net/publication/349111419 DOI: https://doi.org/10.15866/irece.v10i3.16503

[37] Al-Shueli, A., Al-Kinani, A., & Al-Obaidy, N. (2022). Inexpensive DC to AC Inverter Device for Artificial Saline Soils Resistivity Analysis. International Review on Modelling and Simulations. 15(4);244-251. https://doi.org/10.15866/iremos.v15i4.21794 DOI: https://doi.org/10.15866/iremos.v15i4.22533

[38] Al-Obaidy, N., Jefferson, I., & Ghataora, G. (2015). Treatment of Iraqi collapsible soil using encased stone columns. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability. 564-569. DOI: https://doi.org/10.3208/jgssp.IRQ-01

[39] Al-Obaidy, N. K., & Al-Shueli, A. (2020). Utilizing an artificial neural network model to predict bearing capacity of stone. International Journal of Emerging Technology. 11;124-129.

[40] Naser, I. H., & Shaia, H. (2020). Estimation Trip Generation for Urban Area of Nasiriyah City. Journal of Global Scientific Research. 3;451-460.

[41] Naser, I. H. (2020). Studying of Household Characteristic and Their Impact on a Trip Generation Model by MLR. International Journal of Civil & Environmental Engineering. 20(1);1-10.

[42] Naser, I. H., Mahdi, A. M., & Jasim, Y. H. (2020). Performance of Artificial Neural Networks (ANN) at Transportation Planning Model. IOP Conference Series: Materials Science and Engineering. 928(2);022032. https://doi.org/10.1088/1757-899X/928/2/022032 DOI: https://doi.org/10.1088/1757-899X/928/2/022032

[43] Naser, I. H., Mahdi, M. B., Meqtoof, F. H., & Etih, H. A. (2021). Modelling trip distribution using the gravity model and Fratar's method. Mathematical Modelling and Engineering Problems. 8(2);230-236. https://doi.org/10.18280/mmep.080208 DOI: https://doi.org/10.18280/mmep.080209

[44] Levy, P. S., & Lemeshow, S. (2013). Sampling of populations: methods and applications. Wiley.

[45] Ben-Akiva, M., & Bierlaire, M. (1999). Discrete choice methods and their application to short term travel decisions. The MIT Press. DOI: https://doi.org/10.1007/978-1-4615-5203-1_2

[46] Domencich, T., & McFadden, D. (1975). Urban travel demand: a behavioral analysis. North-Holland Publishing Company.

[47] Su, P., Liu, Y., & Zhao, L. (2022). General Deep Multinomial Logit Model. Computing and Informatics / Computers and Artificial Intelligence. 41(5);1240-1259. https://doi.org/10.31577/cai_2022_5_1240 DOI: https://doi.org/10.31577/cai_2022_5_1240

[48] Wang, K., Xu, J., Chen, Y., Liu, Z., Zhang, Y., & Wei, X. (2019). Examining Factors Affecting Public Transport Ridership: A Case Study of New York City. Transportation Research Record. 2673(3);1-9. https://doi.org/10.1177/0361198119834916 DOI: https://doi.org/10.1177/0361198119834916

[49] Deneke, Y., Desta, R., Afeworkb, A., & Tóth, J. (2023). Transportation Mode Choice Behavior with Multinomial Logit Model: Work and School Trips. Transactions on Transport Sciences. https://doi.org/10.5507/tots.2023.019 DOI: https://doi.org/10.5507/tots.2023.019

[50] Schneider, R., Handy, S., Shafizadeh, K., Sperry, S., & Clifton, K. (2015). Private Vehicle Ownership and Modes of Transportation. Urban Studies. 52(5);924-949. https://doi.org/10.1177/0042098014528393 DOI: https://doi.org/10.1177/0042098014528393

[51] Demetrio, C., Festa, D., Condino, G., & Mazzulla, G. (2003). A Behavioural Model For The Modal Choice In The Trip-chains. WIT Transactions on the Built Environment. 65;181-190. https://doi.org/10.2495/UT030181

[52] Zhao, J., Webb, V., Shah, P., Komanduri, A., Karam, A., & Fatema, N. (2017). Impact of Road Quality on Travel Mode Choice. Transport Policy. 56;149-157. https://doi.org/10.1016/j.tranpol.2017.03.005 DOI: https://doi.org/10.1016/j.tranpol.2017.03.005

[53] Reul, J., Grube, T., & Stolten, D. (2021). Urban transportation at an inflection point: an analysis of potential influencing factors. Transportation Research Part D: Transport and Environment. 93;102755. https://doi.org/10.1016/J.TRD.2021.102733 DOI: https://doi.org/10.1016/j.trd.2021.102733

[54] Akter, T., & Alam, B. M. (2024). Travel mode choice behavior analysis using multinomial logit models towards creating sustainable college campus: a case study of the University of Toledo, Ohio. Frontiers in future transportation. 5;1052724. https://doi.org/10.3389/ffutr.2024.1389614 DOI: https://doi.org/10.3389/ffutr.2024.1389614

Downloads

Published

2025-06-03

How to Cite

Ishraq Hameed Naser, Halah Ali Meer Hussien, Nida Hussien Abid Aown, & Firas Alrawi. (2025). A Multinomial Logit Model for Urban Transportation Mode Choice in Nasiriyah City. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.2250

Issue

Section

Research Article