Two Layers of Audio Security Utilizing the International Data Encryption Algorithm (IDEA) and Lorenz Chaotic Scrambler
DOI:
https://doi.org/10.22399/ijcesen.2183Keywords:
Voice Encryption, IDEA, Chaos, Digital Chaotic Scrambler, Lorenz System, MSE, Correlation CoefficientsAbstract
Voice communication between individuals is an essential aspect of daily life. The significance of voice transmission security is increasing as digital communication channels become more prevalent. This paper suggests a secure and resilient voice encryption system that integrates traditional cryptography and chaotic systems. This paper introduces a digital chaotic scrambler (DCS) that is based on the Lorenz system and is designed to address the constraints of the International Data Encryption Algorithm (IDEA) in the context of voice encryption. The DCS also reinforces the resistance of the IDEA structure to many cryptographic attacks. The DCS and the strong mathematical operations of the IDEA establish a secure, efficiency, voice encryption system in real applications. The security metrics we define are used to quantify the performance of the proposed system; these include sensitivity to initial conditions, sensitivity to the key, and attack resistance. Keyspace analysis, Statistical analysis, MSE (mean square error), Signal-to-noise ratio (SNR), correlations and (Segmental spectral signal-to-noise ratio) SSSNR and Cepstral Distance (CD) analyses results. Statistical analyses and audio security tests performed on audio files of different sizes with a WAV file extension have shown that the algorithms proposed are resistant to brute force or statistical attacks and have a higher security level.
References
[1] A. Mahdi, A. K. Jawad, S. S. Hreshee, A. Mahdi, and A. K. Jawad, (2016). Digital Chaotic Scrambling of Voice Based on Duffing Map, Commun. Eng. J., vol. 1(2), 16–21, doi: 10.11648/j.cej.20160102.11.
[2] M. J. Orceyre and R. M. Heller, (1978) An Approach to Secure Voice Communication Based on the Data Encryption Standard, IEEE Commun. Soc. Mag., vol. 16(6), 41–50, doi: 10.1109/MCOM.1978.1089785.
[3] N. J. Corron and D. W. Hahs, (1997). A New Approach to Communications Using Chaotic Signals, IEEE Trans. circuits Syst., vol. 4(1) , 373–382, doi: 10.17950/ijer/v3s7/711.
[4] A. K. Jawad, G. Karimi, and M. Radmalekshahi, (2024). A Novel Digital Audio Encryption Algorithm Using Three Hyperchaotic Rabinovich System Generators, ARO-The Sci. J. Koya Univ., vol. XII(2), 234–245, 2024, doi: 10.14500/aro.11869.
[5] M. J. M. Ameen and S. S. Hreshee, (2023) Security analysis of encrypted audio based on elliptic curve and hybrid chaotic maps within GFDM modulator in 5G networks, Bull. Electr. Eng. Informatics, vol. 12(6), 3467–3479, doi: 10.11591/eei.v12i6.4913.
[6] B. Rahul, K. Kuppusamy, and A. Senthilrajan, (2023). Chaos-based audio encryption algorithm using biometric image and SHA-256 hash algorithm, Springer US. vol. 82(28). doi: 10.1007/s11042-023-15289-x.
[7] X. Wang and Y. Su, (2020). An Audio Encryption Algorithm Based on DNA Coding and Chaotic System, IEEE Access, vol. 8, 9260–9270, doi: 10.1109/ACCESS.2019.2963329.
[8] H. N. Abdullah, S. S. Hreshee, G. Karimi, and A. K. Jawad, (2022). Performance Improvement of Chaotic Masking System Using Power Control Method, in International Middle Eastern Simulation and Modelling Conference 2022, MESM 2022, 19–23.
[9] H. N. Abdullah, S. S. Hreshee, and A. K. Jawad, (2015). Design of Efficient noise reduction scheme for secure speech masked by chaotic signals, J. Am. Sci., vol. 11(7), 49–55.
[10] H. N. Abdullah, S. S. Hreshee, and A. K. Jawad, (2016). Noise Reduction of Chaotic Masking System using Repetition Method. https://www.researchgate.net/publication/291356303
[11] W. Al Nassan, T. Bonny, and A. Baba, (2020). A New Chaos-Based Cryptoystem for Voice Encryption, 2020 3rd Int. Conf. Signal Process. Inf. Secur. ICSPIS 2020, 1–4, doi: 10.1109/ICSPIS51252.2020.9340132.
[12] T. Bonny, W. Al Nassan, and A. Baba, Voice encryption using a unified hyper-chaotic system, Multimed. Tools Appl., vol. 82(1), 1067–1085, 2023.
[13] A. K. Jawad, H. N. Abdullah, and S. S. Hreshee, (2018). Secure speech communication system based on scrambling and masking by chaotic maps, in IEEE, International Conference on Advances in Sustainable Engineering and Applications, ICASEA 2018 - Proceedings, 2018, 7–12. doi: 10.1109/ICASEA.2018.8370947.
[14] E. A. R. E. A. E. A. R. Hussein, M. K. M. K. Khashan, and A. K. A. K. Jawad, (2020). A high security and noise immunity of speech based on double chaotic masking, Int. J. Electr. Comput. Eng., vol. 10(4), 4270–4278, doi: 10.11591/ijece.v10i4.pp4270-4278.
[15] S. S. Hreshee, H. N. Abdullah, and A. K. Jawad, A high security communication system based on chaotic scrambling and chaotic masking, Int. J. Commun. Antenna Propag., vol. 8(3), 257–264, 2018, doi: 10.15866/irecap.v8i3.13541.
[16] M. Baykara, R. Das, and G. Tuna, (2017). A Novel Symmetric Encryption Algorithm and its Implementation Muhammet, Turkish J. Sci. Technol., vol. 12(1), 5–9.
[17] S. Basu, (2011). International Data Encryption Algorithm (Idea) – A Typical Illustration, vol. 2(7), 116–118.
[18] S. Patil and V. Bhusari, (2014). An Enhancement in International Data Encryption Algorithm for Increasing Security, Int. J. Appl. or Innov. Eng. Manag., vol. 3(8), 64–70.
[19] A. Mostafa, N. F. Soliman, M. Abdalluh, and F. E. Abd El-Samie, (2016). Speech encryption using two dimensional chaotic maps, 2015 11th Int. Comput. Eng. Conf. Today Inf. Soc. What’s Next?, ICENCO 2015, 235–240, doi: 10.1109/ICENCO.2015.7416354.
[20] S. M. H. Alwahbani and E. B. M. Bashier, (2013). Speech scrambling based on chaotic maps and one time pad, Proc. - 2013 Int. Conf. Comput. Electr. Electron. Eng. Research Makes a Differ. ICCEEE 2013, 128–133, doi: 10.1109/ICCEEE.2013.6633919.
[21] S. Pati, M. Mishra, and J. Rout, (2024). Securing Audio with 3D-Chaotic Map Based Hybrid Encryption Technique, Int. J. Comput. Digit. Syst., vol. 16(1), 1–11.
[22] A. Mahdi, A. K. Jawad, and S. S. Hreshee, (2016). Digital chaotic scrambling of voice based on duffing map, Int. J. Inf. Commun. Sci., vol. 1(2), 16–21.
[23] I. Jomaa, W. M. Saleh, R. R. I. Hassan, and S. H. H. Wadi, (2023). Secured drone communication based on Esalsa20 algorithm and 1D logistic map, Indones. J. Electr. Eng. Comput. Sci., vol. 29(2), 861–874, doi: 10.11591/ijeecs.v29.i2.pp861-874.
[24] Ameer k. Jawad; Gholamreza Karimi; Mazdak Radmalekshahi, (2024). A Novel Lorenz-Rossler-Chan (LRC) Algorithm for Efficient Chaos-Based Voice Encryption, in 2024 3rd International Conference on Advances in Engineering Science and Technology (AEST), IEEE, 1–6. doi: 10.1109/AEST63017.2024.10959812.
[25] M. Khalid, E. A. E. A. R. Hussein, Ameer K. Jawad, and A. K. Jawad, (2019). Digital Image Encryption Based on Random Sequences and XOR Operation, J. Eng. Appl. Sci., vol. 14(8), 10331–10334, 2019.
[26] B. W. H. A.-Z. S. S. Hreshee, (2024). Encryption Audio Signal with IDEA Technique Enhanced by Chaotic System, in 2024 3rd International Conference on Advances in Engineering Science and Technology (AEST), Babil, Iraq: IEEE, 1–6.
[27] A. A. Abdul-Kareem and W. A. M. Al-Jawher, (2024). An image encryption algorithm using hybrid sea lion optimization and chaos theory in the hartley domain, Int. J. Comput. Appl., 1–14.
[28] Zahra Saeidi, A. Yazdi, S. Mashhadi, and M. Hadian, (2023). Introducing a New Evaluation Criteria for EMD- Base Steganography Method, Electron., vol. 12, 1–13, doi: 10.1007/978-3-642-19542-6_51.
[29] O. Elnoamy et al. (2023), “Dynamic Analysis and Robust Control of a Chaotic System with Hidden Attractor, Int. J. Electr. Comput. Eng., vol. 13, 38–43, 2023, doi: 10.33971/bjes.23.1.8.
[30] M. Moghtadaei and M. R. Hashemi Golpayegani, (2012). Complex dynamic behaviors of the complex Lorenz system, Sci. Iran., vol. 19(3), 733–738, doi: 10.1016/j.scient.2010.11.001.
[31] D. Raghuvanshi, K. Joshi, R. Nandal, H. Sehrawat, S. Singh, and S. Singh, (2024). Improved security with novel M-Log chaos steganography algorithm for huffman compressed english text, Multimed. Tools Appl., 1–24.
[32] Ameer K. Jawad, Wa’il a. H. Hadi, and Hyayder F. Y. Husseain, (2016). Enhancement of Image Transmission Using Chaotic Interleaver over Wireless Sensor Network. www.ijntr.org
[33] X. Li, H. Yu, H. Zhang, X. Jin, H. Sun, and J. Liu, (2020). Video encryption based on hyperchaotic system, Multimed. Tools Appl., vol. 79(33–34), 23995–24011, doi: 10.1007/s11042-020-09200-1.
[34] A. R. Alharbi et al. (2022), A New Multistage Encryption Scheme Using Linear Feedback Register and Chaos-Based Quantum Map, Complexity, 2022, doi: 10.1155/2022/7047282.
[35] A. H. Elsafty, M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, (2018). FPGA Speech Encryption Realization Based on Variable S-Box and Memristor Chaotic Circuit, IEEE, Int. Conf. Microelectron. ICM, 152–155, doi: 10.1109/ICM.2018.8704019.
[36] A. H. ElSafty, M. F. Tolba, L. A. Said, A. H. Madian, and A. G. Radwan, (2021). Hardware realization of a secure and enhanced s-box based speech encryption engine, Analog Integr. Circuits Signal Process., vol. 106(2), 385–397, , doi: 10.1007/S10470-020-01614-Z.
[37] S. B. Sadkhab, A. M. Raheema, and S. M. A. Sattar, (2019). Design and Implementation Voice Scrambling Model Based on Hybrid Chaotic Signals, IEEE, 1st Int. Sci. Conf. Comput. Appl. Sci. CAS 2019, 193–198, doi: 10.1109/CAS47993.2019.9075626.
[38] W. A. Al-Musawi, M. A. A. Al-Ibadi, and W. A. Wali, (2023). Artificial intelligence techniques for encrypt images based on the chaotic system implemented on field-programmable gate array, IAES Int. J. Artif. Intell., vol. 12(1), 347–356, doi: 10.11591/ijai.v12.i1.pp347-356.
[39] H. Wen, L. Ma, and L. Liu, (2022). High-quality restoration image encryption using DCT frequency-domain compression coding and chaos, Sci. Rep., vol. 12(1), 1–17, doi: 10.1038/s41598-022-20145-3.
[40] F. J. Farsana, V. R. Devi, and K. Gopakumar, (2019). An audio encryption scheme based on Fast Walsh Hadamard Transform and mixed chaotic keystreams, Appl. Comput. Informatics, doi: 10.1016/j.aci.2019.10.001.
[41] H. Elkamchouchi, W. M. Salama, and Y. Abouelseoud, (2020). New video encryption schemes based on chaotic maps, IET Image Process., vol. 14(2), 397–406, doi: 10.1049/iet-ipr.2018.5250.
[42] Z. Ali, K. Saleem, R. Brown, N. Christofides, and S. Dudley, (2022) Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems, Energies, vol. 15(5), doi: 10.3390/en15051867.
[43] S. Mokhnache, M. E. H. Daachi, T. Bekkouche, and N. Diffellah, (2022). A Combined Chaotic System for Speech Encryption, Eng. Technol. Appl. Sci. Res., vol. 12(3), 8578–8583, doi: 10.48084/etasr.4912
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.