Examining the Neutron and Gamma Attenuation Characteristics of Various Amorphous Structures with Bioactive Properties

Authors

DOI:

https://doi.org/10.22399/ijcesen.2176

Keywords:

Radiation Protection, Gamma-ray, Neutron, Bioactive Amorphous Glass, PHITS code

Abstract

Bioactive glasses are silicates that have phosphorus, calcium, and sodium in them. These glasses were created to help or carry out essential functions in the living tissues of the human body. The exceptional mechanical and physical properties of bioactive glasses make them suitable for radiation protection This study presents the neutron and gamma shielding properties of thirteen bioactive amorphous glass samples that are divided into three groups. The mass attenuation coefficient, represented by (μ/ρ), for the selected bioactive glasses was calculated using the Phy-X/PSD program in the photon energy range of 0.02 to 15 MeV. The μ/ρ was also used to evaluate other important metrics for the selected bioactive glasses, including the half and tenth value layer (HVL and TVL), mean free path (MFP), effective atomic number (Zeff), and effective electron number (Neff). The transition factors (TFs) of bioactive amorphous materials, whose radiation shielding parameters were calculated theoretically, were simulated at three energies by PHITS (Particle and Heavy Ion Transport Code System). The FPG6 in particular shows a noticeable drop in TF values among the CaF-doped samples, indicating their enhanced radiation-shielding capacity. When compared to other bioactive glasses, it is clear that FPG6 glass has the lowest HVL, TVL, and MFP values. To evaluate the neutron protection properties of the bioactive glasses under study, effective removal cross-section values (ΣR) have been developed. According to the findings, BG4B possesses outstanding neutron attenuation capabilities.

References

[1] Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117-141. https://doi.org/10.1002/jbm.820050611

[2] Jones, J. R., Ehrenfried, L. M., & Hench, L. L. (2006). Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 27(7), 964-973. https://doi.org/10.1016/j.biomaterials.2005.07.017

[3] Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117-141. https://doi.org/10.1002/jbm.820050611

[4] Hench, L. L., & Andersson, Ö. (1993). Bioactive glasses. In An introduction to bioceramics (pp. 41-62). https://doi.org/10.1142/9789814317351_0003

[5] Carvalho, S. M., Moreira, C. D. F., Oliveira, A. C. X., Oliveira, A. A. R., Lemos, E. M. F., & Pereira, M. M. (2019). Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. In Nanobiomaterials in Clinical Dentistry (pp. 351-383). Elsevier. https://doi.org/10.1016/B978-0-12-815886-9.00015-2

[6] Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. In The Biomaterials: Silver Jubilee Compendium, Elsevier Science, 175-189. https://doi.org/10.1016/B978-008045154-1.50021-6

[7] Rahaman, M. N., Day, D. E., Bal, B. S., Fu, Q., Jung, S. B., Bonewald, L. F., & Tomsia, A. P. (2011). Bioactive glass in tissue engineering. Acta Biomaterialia, 7(6), 2355-2373. https://doi.org/10.1016/j.actbio.2011.03.016

[8] Zhai, W., Lu, H., Chen, L., Lin, X., Huang, Y., Dai, K., Kawazoe, N., Chen, G., & Jiang, C. (2012). Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomaterialia, 8(1), 341-349.https://doi.org/10.1016/j.actbio.2011.09.008

[9] Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., et al. (2010). 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. Journal of the European Ceramic Society, 30, 2563-2567.https://doi.org/10.1016/j.jeurceramsoc.2010.04.037

[10] Sergi, R., Bellucci, D., & Cannillo, V. (2020). A review of bioactive glass/natural polymer composites: state of the art. Materials, 13, 5560.https://doi.org/10.3390/ma13235560

[11] Hench, L. L., Xynos, I. D., & Polak, J. M. (2004). Bioactive glasses for in situ tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 15, 543-562. https://doi.org/10.3390/ma13235560

[12] Elgayar, I., Aliev, A. E., Boccaccini, A. R., & Hill, R. G. (2005). Structural analysis of bioactive glasses. Journal of Non-Crystalline Solids, 351, 173-183. https://doi.org/10.1016/j.jnoncrysol.2004.07.067

[13] Baino, F., Fiorilli, S., & Vitale-Brovarone, C. (2016). Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2016.06.033

[14] Qiu, Q. Q., Ducheyne, P., & Ayyaswamy, P. S. (2000). New bioactive, degradable composite microspheres as tissue engineering substrates. Journal of Biomedical Materials Research. https://doi.org/10.1002/1097-4636(200010)52:1<66::AID-JBM9>3.0.CO;2-2

[15] Islam, M. T., Felfel, R. M., Abou Neel, E. A., Grant, D. M., Ahmed, I., & Hossain, K. M. Z. (2017). Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: a review. Journal of Tissue Engineering, 8. https://doi.org/10.1177/2041731417719170

[16] Bertolla, L., Dlouhý, I., Tatarko, P., Viani, A., Mahajan, A., Chlup, Z., et al. (2017). Pressureless spark plasma–sintered Bioglass®45S5 with enhanced mechanical properties and stress–induced new phase formation. Journal of the European Ceramic Society. https://doi.org/10.1016/j.jeurceramsoc.2017.02.003

[17] Al-Buriahi, M. S., & Singh, V. P. (2020). Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. Journal of the Australasian Ceramic Society, 1-7. https://doi.org/10.1007/s41779-020-00457-1

[18] Obaid, S., et al. (2018). Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022

[19] Agar, O., Sayyed, M. I., Akman, F., Tekin, H. O., & Kaçal, M. R. (2019). An extensive investigation on gamma ray shielding features of Pd/Ag based alloys. Nuclear Engineering and Technology, 51, 853-859.https://doi.org/10.1016/j.net.2018.12.014

[20] Tekin, H. O., Kavaz, E., Papachristodoulou, A., Kamislioglu, M., Agar, O., Altunsoy Guclu, E. E., Kilicoglu, O., & Sayyed, M. I. (2019). Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron radiation. Ceramics International, 45, 19206-19222.https://doi.org/10.1016/j.ceramint.2019.06.168

[21] Susoy, G., Altunsoy Guclu, E. E., Kilicoglu, O., Kamislioglu, M., Al Buriahi, M. S., Abuzaid, M. M., Tekin, H. O. (2020). The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Materials Chemistry and Physics, 242, 122481. https://doi.org/10.1016/j.matchemphys.2019.122481

[22] Tekin, H. O., Kavaz, E., Altunsoy, E. E., Kilicoglu, O., Agar, O., Erguzel, T. T., Sayyed, M. I. (2019). An extensive investigation on gamma ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceramics International, 45(8),9934-9949. https://doi.org/10.1016/j.ceramint.2019.02.036

[23] Kilicoglu, O. (2019). Characterization of copper oxide and cobalt oxide substituted bioactive glasses for gamma and neutron shielding applications. Ceramics International, 45(17), 23619-23631. https://doi.org/10.1016/j.ceramint.2019.08.073

[24] Kilicoglu, O., Tekin, H. O. (2019). Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceramics International, 46(2), 1323-1333.https://doi.org/10.1016/j.ceramint.2019.09.095

[25] Al-Hadeethi, Y., Al-Buriahi, M. S., Sayyed, M. I. (2020). Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceramics International, 46(4), 5306-5314. https://doi.org/10.1016/j.ceramint.2019.10.281

[26] Almatari, M. (2017). Energy absorption and exposure buildup factors for some bioactive glasses’ samples: penetration depth photon energy, and atomic number dependence. Journal of Optoelectronics and Biomedical Materials, 9, 95-105. https://chalcogen.ro/95_AlmatariM.pdf

[27] Sayyed, M. I., Manjunatha, H. C., Gaikwad, D. K., Obaid, S. S., Zaid, M. H. M., Matori, K. A., et al. (2018). Energy-absorption buildup factors and specific absorbed fractions of energy for bioactive glasses. Digest Journal of Nanomaterials and Biostructures, 13, 701-712.

[28] Syam Prasad, P., Pasha, M. B., Narasimha Rao, R., Venkateswara Rao, P., Madaboosi, N., & Özcan, M. (2024). A review on enhancing the life of teeth by toothpaste containing bioactive glass particles. Current Oral Health Reports, 11, 87–94.

[29] Loh, Z. W., Mohd Zaid, M. H., Awang Kechik, M. M., Yap, W. F., Amin, K. M., & Cheong, W. M. (2024). New formulation calcium-based 45S5 bioactive glass: In vitro assessment in PBS solution for potential dental applications. Journal of Dental Materials, 15(2), 123–130. https://doi.org/10.1016/j.jdm.2024.04.005

[30] Mostafa, A. M. A., Uosif, M. A. M., Alrowaili, Z. A., Issa, S. A., Ivanov, V. Y., & Zakaly, H. M. (2024). Exploring the potential of strontium oxide-enriched borate bioactive glass as a bone graft material: Comprehensive analysis of physical characteristics and gamma shielding properties. Radiation Physics and Chemistry, 218, 111641.https://doi.org/10.1016/j.radphyschem.2024.111641

[31] Khattari, Z. Y., Mahdy, E. A., Salem, W. M., & Ibrahim, S. (2024). Enhancement of optical and radiation shielding properties in calcium–magnesium silicate bioactive glasses through Na2O and P2O5 additives. Optical Materials, 147, 114503.https://doi.org/10.1016/j.optmat.2023.114503

[32] Deliormanlı, A. M., ALMisned, G., & Tekin, H. O. (2024). Synthesis and characterization of Nb5+ and Sm3+-doped 13–93 bioactive glass particles with improved photon transmission properties for advanced biomedical and dental applications. Ceramics International, 50(17), 31211-31224.https://doi.org/10.1016/j.ceramint.2024.05.426

[33] Prasad, S., Datta, S., Adarsh, T., Diwan, P., Annapurna, K., Kundu, B., & Biswas, K. (2018). Effect of boron oxide addition on structural, thermal, in vitro bioactivity and antibacterial properties of bioactive glasses in the base S53P4 composition. Journal of Non-Crystalline Solids, 498, 204-215.https://doi.org/10.1016/j.jnoncrysol.2018.06.027

[34] Liang, W., Rüssel, C., Day, D. E., & Völksch, G. (2006). Bioactive comparison of a borate, phosphate and silicate glass. Journal of Materials Research, 21, 125-131. https://doi.org/10.1557/jmr.2006.0025

[35] Rahaman, M. N., Day, D. E., Bal, B. S., Fu, Q., Jung, S. B., Bonewald, L. F., & Tomsia, A. P. (2011). Bioactive glass in tissue engineering. Acta Biomaterialia, 7, 2355-2373.https://doi.org/10.1016/j.actbio.2011.03.016

[36] Balasubramanian, P., Büttner, T., Pacheco, V. M., & Boccaccini, A. R. (2018). Boron-containing bioactive glasses in bone and soft tissue engineering. Journal of the European Ceramic Society, 38, 855-869. https://doi.org/10.1016/j.jeurceramsoc.2017.11.001

[37] Newnham, R. E. (1991). Agricultural practices affect arthritis. Nutrition and Health, 7, 89-100. https://doi.org/10.1177/026010609100700204

[38] Moseman, R. F. (1994). Chemical disposition of boron in animals and humans. Environmental Health Perspectives, 102, 113. https://doi.org/10.1289/ehp.94102s7113

[39] Newnham, R. E. (1994). Essentiality of boron for healthy bones and joints. Environmental Health Perspectives, 102, 83. https://doi.org/10.1289/ehp.94102s783

[40] Chapin, R. E., Ku, W. W., Kenney, M. A., McCoy, H. (1998). The effects of dietary boric acid on bone strength in rats. Biological Trace Element Research, 66, 395-399. https://doi.org/10.1007/BF02783150

[41] Satyanarayana, T., Vasu Babu, M., Nagarjuna, G., Rama Koti Reddy, D. V., Venkateswara Rao, P., & Syam Prasad, P. (2017). Structural investigations on P2O5-CaO-Na2O-K2O: SrO bioactive glass ceramics. Ceramics International, 43(13), 10144-10150. https://doi.org/10.1016/j.ceramint.2017.05.037

[42] Xue, W., Moore, J. L., Hosick, H. L., Bose, S., Bandyopadhyay, A., Lu, W. W., Cheung, K. M., Luk, K. D. (2006). Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. Journal of Biomedical Materials Research, 79, 804.https://doi.org/10.1002/jbm.a.30815

[43] Tian, M., Chen, F., Song, W., Song, Y., Chen, Y., Wan, C., Yu, X., & Zhang, X. J. (2009). In vivo study of porous strontium-doped calcium polyphosphate sintered discs for bone substitute applications. Journal of Materials Science: Materials in Medicine, 20, 1505-1512. https://doi.org/10.1007/s10856-009-3713-5

[44] Bellucci, D., Sola, A., Cacciotti, I., Bartoli, C., Gazzarri, M., Bianco, A., Chiellini, F., & Cannillo, V. (2014). Mg and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness. Materials Science & Engineering C, 42, 312-324. https://doi.org/10.1016/j.msec.2014.05.047

[45] Zhang, W., Shen, Y., Pan, H., Lin, K., Liu, X., Darvell, B., Lu, W., Chang, J., Deng, L., Wang, D., & Huang, W. (2011). Effects of strontium in modified biomaterials. Acta Biomaterialia, 7(2), 800-808. https://doi.org/10.1016/j.actbio.2010.08.031

[46] Dziadek, M., Zagrajczuk, B., Menaszek, E., Wegrzynowicz, A., Pawlik, J., & Cholewa-Kowalska, K. (2016). Gel–derived SiO2–CaO–P2O5 bioactive glasses and glass ceramics modified by SrO addition. Ceramics International, 42, 5842-5857.https://doi.org/10.1016/j.ceramint.2015.12.128

[47] Gentleman, E., Fredholm, Y. C., Jell, G., O’Donnell, M. D., Hill, R. G., & Stevens, M. M. (2010). The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials, 31, 3949-3956. https://doi.org/10.1016/j.biomaterials.2010.01.121

[48] Goel, A., Rajagopal, R. R., & Ferreira, J. M. F. (2011). Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomaterialia, 7, 4071-4080. https://doi.org/10.1016/j.actbio.2011.06.047

[49] Isaac, J., Nohra, J., Lao, J., Jallot, E., Nedelec, J. M., Berdal, A., & Sautier, J. M. (2011). Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. European Cells & Materials, 21, 130-143. https://doi.org/10.22203/ecm.v021a11

[50] Rajkumar, G., Dhivya, V., Mahalaxmi, S., Rajkumar, K., Sathishkumar, G. K., & Karpagam, R. (2018). Influence of fluoride for enhancing bioactivity onto phosphate-based glasses. Journal of Non-Crystalline Solids, 493, 108-118. https://doi.org/10.1016/j.jnoncrysol.2018.04.046

[51] Brauer, D. S., Karpukhina, N., Law, R. V., & Hill, R. G. (2009). Structure of fluoride-containing bioactive glasses. Journal of Materials Chemistry, 19(31), 5629-5636. https://doi.org/10.1039/B900956F

[52] Biswas, R., Sahadath, H., Mollah, A. S., & Huq, M. F. (2016). Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron. Journal of Radiation Research and Applied Sciences, 9(1), 26–34. https://doi.org/10.1016/j.jrras.2015.08.005

[53] Şakar, E., Özpolat, Ö. F., Alım, M. I. B., & Sayyed, M. K. (2020). Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, Article 108496.https://doi.org/10.1016/j.radphyschem.2019.108496

[54] Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S.-i., Kai, T., Tsai, P.-E., Matsuda, N., Iwase, H., et al. (n.d.). Features of particle and heavy ion transport code system (PHITS) version 3.02. https://doi.org/10.1080/00223131.2017.1419890

[55] Niita, K., et al. (2006). PHITS—a particle and heavy ion transport code system. Radiation Measurements, 41(9–10), 1080–1090.https://doi.org/10.1016/j.radmeas.2006.07.013

[56] Agar, O., Sayyed, M. I., Akman, F., Tekin, H. O., & Kaçal, M. R. (2019). An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nuclear Engineering and Technology, 51, 853–859. https://doi.org/10.1016/j.net.2018.12.014

[57] Jackson, D. F., & Hawkes, D. J. (1981). X-ray attenuation coefficients of elements and mixtures. Physics Reports, 70, 169–233. https://doi.org/10.1016/0370-1573(81)90014-4

[58] Tekin, H. O., Kilicoglu, O., Kavaz, E., Altunsoy, E. E., Almatari, M., Agar, O., & Sayyed, M. I. (2017). The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code. Results in Physics, 12, 1797–1804. https://doi.org/10.1016/j.rinp.2019.02.017

[59] Akman, F., Geçibesler, I. H., Demirkol, I., & Çetin, A. (2018). Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Canadian Journal of Physics, 97(1), 86–92. https://doi.org/10.1139/cjp-2017-0923

[60] Hine, G. J. (1952). The effective atomic numbers of materials for various gamma ray interactions. Physical Review, 85, 725.

[61] Yılmaz Alan, H. (2024). A Study on the Effect of Addition Li, Na, and K on the Radiation Shielding Capabilities of B2O3-TeO2-ZnO-PbF2-Er2O3 Glass Structure. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 789-797. https://doi.org/10.35414/akufemubid.1411091

[62] Almisned, Baykal Sen, D., Alkarrani, H., Susoy, G., Tekin, H.O., (2024). Advancing mechanical durability and radiation shielding properties in Silicon dioxide (SiO2) glasses through various incorporations: A comparative analysis. Journal of Non-Crystalline Solids Advances, 17, 100232.https://doi.org/10.1016/j.jnoncrysoladv.2024.100232

[63] Süsoy Doğan, G. (2020). Lithium-boro-tellurite glasses with ZnO additive: Exposure Buildup Factors (EBF) and Nuclear Shielding Properties. Avrupa Bilim Ve Teknoloji Dergisi(18), 531-544. https://doi.org/10.31590/ejosat.697254

Downloads

Published

2025-09-23

How to Cite

AYDIN, H., SÜSOY DOĞAN, G., TEKİN, H. O., ŞEN BAYKAL, D., & İLTUŞ, Y. C. (2025). Examining the Neutron and Gamma Attenuation Characteristics of Various Amorphous Structures with Bioactive Properties. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.2176

Issue

Section

Research Article

Most read articles by the same author(s)