Radiation Shielding Properties of B2O3-Bi2O3 Glass
DOI:
https://doi.org/10.22399/ijcesen.2157Keywords:
Radiation, Glass, B2O3, Bi2O3, Radiation shieldingAbstract
While technological developments in the modern world offer many opportunities that make human life easier, they also bring various health risks. One of these risks is radiation. Today, radiation is widely used in many areas, such as industry, medicine, agriculture, and nuclear energy production. Although it significantly contributes to social life, exposure can cause various health problems. To protect from the harmful effects of radiation, it is inevitable to research new shielding materials. This study determined the LAC, MAC, HVL, MFP, and Zeff values, which are essential parameters in radiation shielding calculations of the glass system with a chemical content of 65B2O3–35Bi2O3. The research results showed that LAC and MAC values decreased with increasing energy, HVL and MFP values showed a decreasing trend at high energies, and Zeff values increased.
References
[1] Sayyed, M. I., Lakshminarayana, G., Kityk, I. V., & Mahdi, M. A. (2017). Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiation Physics and Chemistry, 139, 33-39. DOI: https://doi.org/10.1016/j.radphyschem.2017.05.013
[2] Kumar, A. (2017). Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiation Physics and chemistry, 136, 50-53. DOI: https://doi.org/10.1016/j.radphyschem.2017.03.023
[3] Sayyed, M. I., Dong, M. G., Tekin, H. O., Lakshminarayana, G., & Mahdi, M. A. (2018). Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code. Materials Chemistry and Physics, 215, 183-202. DOI: https://doi.org/10.1016/j.matchemphys.2018.04.106
[4] Kaur T., Sharma J., Singh T. Thickness optimization of Sn–Pb alloys for experimentally measuring mass attenuation coefficients. Nuclear Energy and Technology 2017; 3(1): 1–5. DOI: https://doi.org/10.1016/j.nucet.2017.02.001
[5] Ersundu AE., Büyükyıldız M., Çelikbilek Ersundu M., Şakar E., Kurudirek M. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Progress in Nuclear Energy 2018; 104: 280–287. DOI: https://doi.org/10.1016/j.pnucene.2017.10.008
[6] Gaikwad DK., Sayyed MI., Obaid SS., Issa SAM., Pawar PP. Gamma ray shielding properties of TeO2-ZnF2- As2O3-Sm2O3 glasses. Journal of Alloys and Compounds 2018; 765: 451–458. DOI: https://doi.org/10.1016/j.jallcom.2018.06.240
[7] Obaid SS., Sayyed MI., Gaikwad DK., Pawar PP. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiation Physics and Chemistry 2018; 148: 86–94. DOI: https://doi.org/10.1016/j.radphyschem.2018.02.026
[8] Aygün B., Şakar E., Korkut T., Sayyed MI., Karabulut A., Zaid MHM. Fabrication of Ni, Cr reinforced new high alloyed stainless steels for radiation shielding applications. Results in Physics, 2019; 12: 1-6. DOI: https://doi.org/10.1016/j.rinp.2018.11.038
[9] Temircik, Ş. B. (2022). Optik Cam ve Çeşitlerinde Radyasyon Geçirgenliği ve Soğurma Katsayıları. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1791-1800. DOI: https://doi.org/10.47495/okufbed.1085364
[10] Akarslan, F., Molla, T., Akkurt, I., Kılınçarslan, Ş., & Üncü, I. S. (2014). Radiation protection by the barite coated fabrics via image processing methodology. Acta Physica Polonica A, 125(2), 316–318. DOI: https://doi.org/10.12693/APhysPolA.125.316
[11] Emikönel, S. (2015). Barit Kaplanmış Bazı Kumaş Türlerinin Radyasyon Soğurma Özelliklerinin Araştırılması. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Yüksek Lisans Tezi, 71.
[12] Akkurt, İ., Emikönel, S., Akarslan, F., Günoğlu, K., Kilinçarslan, Ş., & Üncü, İ. (2015a). Barite effect on radiation shielding properties of cotton-polyester fabric. Acta Physica Polonica A, 128(2B). DOI: 10.12693/APhysPolA.128.B-53 DOI: https://doi.org/10.12693/APhysPolA.128.B-53
[13] Akkurt, İ., Emikönel, S., Günoğlu, K., Akarslan, F., Kılınçarslan, Ş., & Üncü, İ. S. (2015b). Radiation shielding properties of barite coated tericoton fabric at 662 keV. Avrupa Bilim ve Teknoloji Dergisi, 3(6), 1-2.
[14] Emikönel, S., & Akkurt, İ. (2023). Transmission rate of fabric to test radiation shielding properties. International Journal of Computational and Experimental Science and Engineering, 9(4), 409-411. DOI: 10.22399/ijcesen.1376597
[15] Emikonel, S., Malidarre, R. B., Sayyed, M. I., Akkurt, I., & Tuncel, N. (2023). Radiation shielding properties of barite coated terry-cotton fabric. Journal of Radiation Research and Applied Sciences, 16(4), 100751, https://doi.org/10.1016/j.jrras.2023.100751. DOI: https://doi.org/10.1016/j.jrras.2023.100751
[16] Emikonel, S., Akkurt, I., & Sayyed, M. I. (2024). The radiation attenuation coefficients (RAC) of barite coated fabric for 137Cs and 60Co sources. Journal of Radiation Research and Applied Sciences, 17(1), 100797. https://doi.org/10.1016/j.jrras.2023.100797 DOI: https://doi.org/10.1016/j.jrras.2023.100797
[17] Hall, D. W., Newhouse, M. A., Borrelli, N. F., Dumbaugh, W. H., & Weidman, D. L. (1989). Nonlinear optical susceptibilities of high‐index glasses. Applied Physics Letters, 54(14), 1293-1295. DOI: https://doi.org/10.1063/1.100697
[18] Stehle, C., Vira, C., Hogan, D., Feller, S., & Affatigato, M. (1998). Optical and physical properties of bismuth borate glasses related to structure. Physics and chemistry of glasses, 39(2), 83-86.
[19] Baia, L., Stefan, R., Kiefer, W., Popp, J., & Simon, S. (2002). Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. Journal of Non-Crystalline Solids, 303(3), 379-386. DOI: https://doi.org/10.1016/S0022-3093(02)01042-6
[20] K. Gerth, C. Rüssel, J. Non-Cryst. Solids 221 (1997) 10. DOI: https://doi.org/10.1016/S0022-3093(97)00306-2
[21] Akkurt, I., Akyıldırım, H., Mavi, B., Kilincarslan, S., & Basyigit, C. (2010). Photon attenuation coefficients of concrete includes barite in different rate. Annals of Nuclear Energy, 37–7, 910–914. https://doi.org/10.1016/j.anucene.2010.04.001 DOI: https://doi.org/10.1016/j.anucene.2010.04.001
[22] Nazrin, S. N., Halimah, M. K., Tahir, M. H. M., Amami, M., Hamid, M. A., Gowda, G. J., ... & Al-Buriahi, M. S. (2024). Thermal and radiation shielding characteristics of erbium ions doped zinc tellurite glasses. Progress in Nuclear Energy, 168, 104995. DOI: https://doi.org/10.1016/j.pnucene.2023.104995
[23] Akkurt, I. (2009). Effective atomic and electron numbers of some steels at different energies. Annals of Nuclear Energy, 36(11-12), 1702-1705. DOI: https://doi.org/10.1016/j.anucene.2009.09.005
[24] Akkurt, I., & Tekin, H. O. (2020). Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software. Emerging Materials Research, 9(3), 1020-1027. DOI: https://doi.org/10.1680/jemmr.20.00209
[25] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. DOI: https://doi.org/10.1016/j.radphyschem.2019.108496
[26] Lakshminarayana, G., Dong, M. G., Kumar, A., Elmahroug, Y., Wagh, A., Lee, D. E., ... & Park, T. (2019). Assessment of gamma-rays and fast neutron beam attenuation features of Er2O3-doped B2O3–ZnO–Bi2O3 glasses using XCOM and simulation codes (MCNP5 and Geant4). Applied Physics A, 125, 1-14. DOI: https://doi.org/10.1007/s00339-019-3099-2
[27] Baykal, D. Ş., Tekin, H. O., & Mutlu, R. B. Ç. (2021). An investigation on radiation shielding properties of borosilicate glass systems. International Journal of Computational and Experimental Science and Engineering, 7(2), 99-108. DOI: https://doi.org/10.22399/ijcesen.960151
[28] Tekin, H.O., Almisned, G., Zakaly, H.M.H., Zamil, A., Khoucheich, D., Bilal, G., Al- Sammarraie, L., Issa, Shams A.M., Al-Buriahi, M., Ene, A., 2022b. Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses. Open Chem. 20 (1), 130–145. https://doi.org/10.1515/chem-2022- 0128. DOI: https://doi.org/10.1515/chem-2022-0128
[29] Malidarre, R.B., Akkurt, I., 2022. A comprehensive study on the charged-uncharged particle shielding features of (70-x) CRT–30K2O–xBaO glass system. J. Australas. Ceram. Soc. 58, 841–850. https://doi.org/10.1007/s41779-022-00733-2. DOI: https://doi.org/10.1007/s41779-022-00733-2
[30] Akkurt, I., Alomari, A., Imamoglu, M. Y., & Ekmekçi, I. (2023). Medical radiation shielding in terms of effective atomic numbers and electron densities of some glasses. Radiation Physics and Chemistry, 206, 110767. DOI: https://doi.org/10.1016/j.radphyschem.2023.110767
[31] Karpuz, N. (2023). Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689. DOI: https://doi.org/10.1016/j.jrras.2023.100689
[32] Karpuz, N. (2024). Effect of La2O3 on Magnesium Borosilicate glasses glass for radiation shielding materials in nuclear application. Radiation Physics and Chemistry, 214, 111305. DOI: https://doi.org/10.1016/j.radphyschem.2023.111305
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.