A Novel Power-Optimized Optical Modem for Reliable, Long-Distance Communication Using MIMO-GFDM in Underwater Communication and Beyond 5G Wireless Systems
DOI:
https://doi.org/10.22399/ijcesen.1820Abstract
MIMO-GFDM is proposed for Underwater Optical Wireless Communication (UWOC) to address challenges like multipath fading, Doppler effects, and bandwidth constraints. Unlike traditional techniques such as OFDM, FBMC, and SC-FDMA, MIMO-GFDM offers reduced OOB emissions, lower ISI, and improved spectral efficiency. By combining MIMO with GFDM, the system enhances SNR, boosts data rates, and minimizes interference. Pulse shaping filters further optimize PAPR, improving overall efficiency. Simulation results show MIMO-GFDM outperforms conventional methods in data rate, BER, and spectral efficiency, making it a strong candidate for next-generation UWOC systems.
References
[1] Heidemann J., Stojanovic M., & Zorzi M. (2012). Underwater sensor networks: applications, advances, and challenges. Philosophical Transactions of the Royal Society A. 370(1958);158-175. https://doi.org/10.1098/rsta.2011.0214
[2] Chitre M., Shahabudeen S., & Stojanovic M. (2008). Underwater acoustic communications and networking: Recent advances and future challenges. Marine Technology Society Journal. 42(1);103-116. https://doi.org/10.4031/002533208786861263
[3] Yan H., Zhou S., & Shi Z. (2013). Optimal design of OFDM-based underwater acoustic communication systems. IEEE Journal of Oceanic Engineering. 38(4);658-672.
[4] Berkhovskikh L. & Lysanov Y. (2002). Optimal design of OFDM-based underwater acoustic communication systems. Springer.
[5] Che X., Wells I., Dickers G., Kear P., & Gong X. (2010). Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Communications Magazine. 48(12);143-151. https://doi.org/10.1109/mcom.2010.5673085
[6] Li B., Zhou S., Stojanovic M., Freitag L., & Willett P. (2008). Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering. 33(2);198-209. https://doi.org/10.1109/joe.2008.920471
[7] Stojanovic M. (2008). Underwater acoustic communications: Design considerations on the physical layer. Wireless on Demand Network Systems and Services. 2008;1-10. https://doi.org/10.1109/wons.2008.4459349
[8] Kilfoyle D. B. & Baggeroer A. B. (2000). The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering. 25(1);4-27. https://doi.org/10.1109/48.820733
[9] Goldsmith A. (2005). Wireless Communications. Cambridge University Press.
[10] Farhang-Boroujeny B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine. 28(3);92-112. https://doi.org/10.1109/msp.2011.940267
[11] Fettweis G., Krondorf M., & Bittner S. (2009). GFDM—Generalized frequency division multiplexing. Proceedings of the IEEE 69th Vehicular Technology Conference (VTC). Barcelona, Spain. 1-4. https://doi.org/10.1109/vetecs.2009.5073571
[12] Datta T., Michailow N., Lentmaier M., & Fettweis G. (2013). GFDM interference cancellation for flexible cognitive radio PHY design. Proceedings of the IEEE 77th Vehicular Technology Conference (VTC). Dresden, Germany. 1-5. https://doi.org/10.1109/vtcfall.2012.6399031
[13] Hadani R., Rakib S., Tsatsanis M., & Monk A. (2017). Orthogonal time frequency space modulation. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, CA, USA. 1-6. https://doi.org/10.1109/WCNC.2017.7925924
[14] Tse D. & Viswanath P. (2005). Fundamentals of Wireless Communication. Cambridge University Press.
[15] Hanzo L., Akhtman Y., Wang L., & Jiang M. (2011). MIMO-OFDM for LTE, WiFi, and WiMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers. Wiley.
[16] Nikopour H. & Baligh H. (2013). Sparse code multiple access. In Proceedings of the IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). London, UK. 332-336. https://doi.org/10.1109/PIMRC.2013.6666156
[17] Dai L., Wang B., Yuan Y., Han S., I. C., & Wang Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine. 53(9);74-81. https://doi.org/10.1109/mcom.2015.7263349
[18] Michailow N., Matthé M., Gaspar I., Navarro A., Mendes L., Festag A., & Fettweis G. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications. 62(9);3045-3061. https://doi.org/10.1109/tcomm.2014.2345566
[19] Matthé M., Mendes L., & Fettweis G. (2014). GFDM in a Gabor transform setting. IEEE Communications Letters. 18(8);1379-1382. https://doi.org/10.1109/LCOMM.2014.2332155
[20] Gaspar I., Matthé M., Mendes L., & Fettweis G. (2015). GFDM transceiver using precoding and successive interference cancellation. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC). Glasgow, UK. 1-5. https://arxiv.org/pdf/1506.03350
[21] Wymeersch H., Liang J., Win M. Z., & Dusl S. (2017). 5G mmWave positioning for vehicular networks. IEEE Wireless Communications. 24(6);80-86. https://doi.org/10.1109/mwc.2017.1600374
[22] Wu J., Ma X., Qi X., Babar Z., & Zheng W. (2017). Influence of Pulse Shaping Filters on PAPR Performance of Underwater 5G Communication System Technique: GFDM. Wireless Communications and Mobile Computing. 4361589;7 pages. https://doi.org/10.1155/2017/4361589
[23] Ch P. & Sreenivasulu G. (2023). A Hybrid Optical-Acoustic Modem Based on MIMO-OFDM for Reliable Data Transmission in Green Underwater Wireless Communication. Journal of VLSI Circuits and Systems. 6(1);36-42. https://doi.org/10.31838/jvcs/06.01.06
[24] Ch P. & Sreenivasulu G. (2021). A High-Speed Underwater Wireless Communication Through a Novel Hybrid Opto-Acoustic Modem Using MIMO-OFDM. Instrumentation Mesure Metrologies. 20(5);279-287. https://doi.org/10.18280/i2m.200505
[25] Ch P. & Sreenivasulu G. (2023). A Highly Compatible Optical/Acoustic Modem Based on MIMO-OFDM for Underwater Wireless Communication Using FPGA. International Journal of Electrical and Electronics Research. 11(4);993-1000. https://doi.org/10.37391/ijeer.110417
[26] Ch P. & Sreenivasulu G. (2023). Performance of a MIMO-OFDM-Based Opto-Acoustic Modem for High Data Rate Underwater Wireless Communication (UWC) System. Advances in Signal Processing, Embedded Systems and IoT. 992;Link. https://doi.org/10.1007/978-981-19-8865-3_5
[27] Ch P. & Sreenivasulu G. (2020). A Review on Underwater Acoustic/Optical Modems: Design Issues, Recent Developments, and Challenges in Underwater Communication. i-manager's Journal on Communication Engineering and Systems. 9(2);21-40. https://doi.org/10.26634/jcs.9.2.18042
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.