Influence of Stenosis Shape, Lesion Length, Eccentricity, and Diameter on Fractional Flow Reserve in Coronary Arteries: A CFD Study
DOI:
https://doi.org/10.22399/ijcesen.1802Keywords:
Frational Flow Reserve, Arterial Stenosis, Stenosis Geometry, Lesion Length, Computational ModellingAbstract
Arterial stenosis, condition characterized by abnormal narrowing of blood vessels, disrupts blood flow and raises the risk of serious cardiovascular complications. Previous studies indicate highlight that stenosis geometry, lesion length and eccentricity can significantly impact on blood flow characteristics; however, detailed analyses on the combined effects of these parameters remain limited. This study aims to investigate the effects of different stenosis geometries, lengths, and eccentricities on artery’s fractional flow reserve (FFR), velocity magnitude and static pressure. Using two stenosis levels (80% and 90%) and two lesion lengths (10 mm and 20 mm), arterial flow across rectangular, elliptical, triangular, and trapezoidal geometries are computationally modelled under both concentric and eccentric configurations. The results show that abrupt shapes, such as triangular and rectangular lesion, create high velocity spikes and pressure gradient near lesion edges, resulting in elevated shear stress. Shear stress and flow disturbance were reduced by smoother shapes, especially elliptical and trapezoidal configurations, which were linked to more gradual velocity and pressure transitions. Additionally, concentric models generally yield higher FFR values, indicating better flow preservation. Rectangular and trapezoidal shapes showed lower FFR values, particularly in eccentric conditions with severe stenosis, while triangular shapes showed relatively high FFR values, suggesting a lower impact on flow.
References
[1] McDermott, M. M., Kramer, C. M., Tian, L., Carr, J., Guralnik, J. M., Polonsky, T., Carroll, T., Kibbe, M., Criqui, M. H., Ferrucci, L., Zhao, L., Hippe, D. S., Wilkins, J., Xu, D., Liao, Y., McCarthy, W., & Yuan, C. (2016b). Plaque composition in the proximal superficial femoral artery and peripheral artery disease events. JACC. Cardiovascular Imaging, 10(9), 1003–1012. https://doi.org/10.1016/j.jcmg.2016.08.012
[2] Khan, F. R., Ali, J., Ullah, R., Hassan, Z., Khattak, S., Lakhta, G., & Gul, N. (2021b). Relationship between high glycated hemoglobin and severity of coronary artery disease in type II diabetic patients hospitalized with acute coronary syndrome. Cureus. https://doi.org/10.7759/cureus.13734
[3] Chahour, K. (2019). Modeling coronary blood flow using a non newtonian fluid model : fractional flow reserve estimation. https://hal.inria.fr/tel-02430901
[4] Ciccarelli, G., Renon, F., Bianchi, R., Tartaglione, D., Bigazzi, M. C., Loffredo, F., Golino, P., & Cimmino, G. (2021). Asymptomatic stroke in the setting of percutaneous Non-Coronary intervention procedures. Medicina, 58(1), 45. https://doi.org/10.3390/medicina58010045
[5] Mastoi, Q., Wah, T. Y., Raj, R. G., & Iqbal, U. (2018). Automated Diagnosis of Coronary Artery Disease: A review and Workflow. Cardiology Research and Practice, 2018, 1–9. https://doi.org/10.1155/2018/2016282
[6] Zengin, I., & Karakus, A. (2023). The importance of baseline fractional flow reserve to detect significant coronary artery stenosis in different patient populations. Cardiovascular Journal of South Africa, 34(4), 56–63. https://doi.org/10.5830/cvja-2023-045
[7] Pirković, M. S., Pavić, O., Filipović, F., Saveljić, I., Geroski, T., Exarchos, T., & Filipović, N. (2023). Fractional Flow Reserve-Based patient risk classification. Diagnostics, 13(21), 3349. https://doi.org/10.3390/diagnostics13213349
[8] Papafaklis, M. I., Muramatsu, T., Ishibashi, Y., Lakkas, L. S., Nakatani, S., Bourantas, C. V., Ligthart, J., Onuma, Y., Echavarria-Pinto, M., Tsirka, G., Kotsia, A., Nikas, D. N., Mogabgab, O., Van Geuns, R., Naka, K. K., Fotiadis, D. I., Brilakis, E. S., Garcia-Garcia, H. M., Escaned, J., . . . Serruys, P. W. (2014). Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire – fractional flow reserve. EuroIntervention, 10(5), 574–583. https://doi.org/10.4244/eijy14m07_01
[9] Tu, S., Barbato, E., Köszegi, Z., Yang, J., Sun, Z., Holm, N. R., Tar, B., Li, Y., Rusinaru, D., Wijns, W., & Reiber, J. H. C. (2014). Fractional flow reserve calculation from 3-Dimensional quantitative coronary angiography and TIMI frame count. КАРДИОЛОГИЯ УЗБЕКИСТАНА, 7(7), 768–777. https://doi.org/10.1016/j.jcin.2014.03.004
[10] Morris, J. R., Bellolio, M. F., Sangaralingham, L. R., Schilz, S. R., Shah, N. D., Goyal, D. G., Bell, M. R., Kopecky, S. L., Gilani, W. I., & Hess, E. P. (2016). Comparative trends and downstream outcomes of coronary computed tomography angiography and cardiac stress testing in emergency department patients with chest pain: An Administrative Claims analysis. Academic Emergency Medicine, 23(9), 1022–1030. https://doi.org/10.1111/acem.13005
[11] Berglund, H., Luo, H., Nishioka, T., Fishbein, M. C., Eigler, N. L., Tabak, S. W., & Siegel, R. J. (1997c). Highly localized arterial remodeling in patients with coronary atherosclerosis. Circulation, 96(5), 1470–1476. https://doi.org/10.1161/01.cir.96.5.1470
[12] Tang, D., Yang, C., Kobayashi, S., Zheng, J., & Vito, R. P. (2003c). Effect of stenosis asymmetry on blood flow and artery compression: A Three-Dimensional Fluid-Structure Interaction model. Annals of Biomedical Engineering, 31(10), 1182–1193. https://doi.org/10.1114/1.1615577
[13] Moser, K. W., Kutter, E. C., Georgiadis, J. G., Buckius, R. O., Morris, H. D., & Torczynski, J. R. (2000b). Velocity measurements of flow through a step stenosis using Magnetic Resonance Imaging. Experiments in Fluids, 29(5), 438–447. https://doi.org/10.1007/s003480000110
[14] Wilson, R. F., Johnson, M. R., Marcus, M. L., Aylward, P. E., Skorton, D. J., Collins, S., & White, C. W. (1988f). The effect of coronary angioplasty on coronary flow reserve. Circulation, 77(4), 873–885. https://doi.org/10.1161/01.cir.77.4.873
[15] Sarfaraz, K. (2016). Computational hemodynamic analysis of stenosed coronary artery Sarfaraz Kamangar. http://studentsrepo.um.edu.my/6790/
[16] Cho, Z. H., Mun, C. W., & Friedenberg, R. M. (1991). NMR angiography of coronary vessels with 2‐D planar image scanning. Magnetic Resonance in Medicine, 20(1), 134–143. https://doi.org/10.1002/mrm.1910200114
[17] He, X., Lu, Y., Saha, N., Yang, H., & Heng, C. (2005). Acyl-CoA: cholesterol acyltransferase-2 gene polymorphisms and their association with plasma lipids and coronary artery disease risks. Human Genetics, 118(3–4), 393–403. https://doi.org/10.1007/s00439-005-0055-3
[18] Konala, B. C., Das, A., & Banerjee, R. K. (2011b). Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters. Journal of Biomechanics, 44(5), 842–847. https://doi.org/10.1016/j.jbiomech.2010.12.011
[19] Rajabi-Jaghargh, E., Kolli, K. K., Back, L. H., & Banerjee, R. K. (2011b). Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: An analytical approach. BioMedical Engineering OnLine, 10(1). https://doi.org/10.1186/1475-925x-10-51
[20] Pijls, N. H. J., Van Gelder, B., Van der Voort, P., Peels, K., Bracke, F. A. L. E., Bonnier, H. J. R. M., & El, M. I. H. (1996). Fractional flow reserve: A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation, 93(9), 1806–1813. https://doi.org/10.1161/01.CIR.93.9.1806
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.