Fusion of Convolutional Neural Networks and Random Forests for Brain Tumor Classification in MRI Scans
DOI:
https://doi.org/10.22399/ijcesen.1686Keywords:
CNN, Random Forest Classifier, Hybrid model CNN-RFC, MRI, Brain tumor classificationAbstract
This paper proposes a combined framework of CNN+RFC to brain tumor categorization/classification using MRI (Magnetic-Resonance Imaging) images, which combines both CNN (Convolution Neural Networks) and RFC (Random Forest Classification). Preprocessing, Feature bring-out, and Categorization are the three phases of the proposed framework. In the first step, we use the Gaussian Filter Method on the data set then we combine the original data set with processed data in parallel. The feature extraction of magnetic resonance imaging was performed automatically by CNN in the second step. We also called such a type of process in this paper as non-hand-crafted feature extraction. Several classification algorithms, including RFC (Random Forest Classifier), KNN (K-Nearest Neighbor Classifier), DT (Decision Tree Classifier), SVM (Support Vector Machine Classifier), and NB (Naïve Bayes Classifier), are used in the final step. The extracted features from the CNN model are then given to the classifier algorithms, which predict Glioma tumor, Pituitary tumor, Meningioma tumor, and no tumor as a result of the testing data set. Experiments are carried out on an open data set of images selected for classification from the Kaggle databases. This data set is very complex since it contains images of brain tumor with different angles and different depths. We don't alter this data set at all. We make a separate CSV file that contains testing images' name and their specification. Using this proposed approach, we were able to achieve 99.61% accuracy on the training data set, 92.16% on the validation data, and 71.2% on the CSV/testing data.
References
[1] K. D. Kharat and P. P. Kulkarni, (2012). Brain tumor classification using neural network based methods, International Journal Of Computer Science And Informatics, pp. 112–117, Oct., doi: 10.47893/ijcsi.2012.1075.
[2] N. Zulpe and V. Pawar, (2012). GLCM Textural Features for Brain Tumor Classification, International Journal Of Computer Science Issues, Jan.,.http://www.ijcsi.org/papers/IJCSI-9-3-3-354-359.pdf
[3] J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, and C. K. Ahuja, (2013) Segmentation, feature extraction, and multiclass brain tumor classification, Journal Of Digital Imaging, 26(6);1141–1150, doi: 10.1007/s10278-013-9600-0.
[4] Deep Learning Based Brain Tumor Classification Using Magnetic Resonance Imaging, Journal of Critical Reviews, 7(09), doi: 10.31838/jcr.07.09.74.
[5] A. Ari and D. Hanbay, (2018). Deep learning based brain tumor classification and detection system, Turkish Journal Of Electrical Engineering & Computer Sciences, 26(5);2275–2286, , doi: 10.3906/elk-1801-8.
[6] P. R. E. Arasi and M. Suganthi (2019), A clinical support system for brain tumor classification using soft computing techniques, Journal Of Medical Systems, 43(5); doi: 10.1007/s10916-019-1266-9.
[7] S. BGaikwad and M. S. Joshi, (2015). Brain Tumor Classification using Principal Component Analysis and Probabilistic Neural Network, International Journal Of Computer Applications, 120(3);5–9, doi: 10.5120/21205-3885.
[8] A. W. Simonetti, W. J. Melssen, F. S. De Edelenyi, J. J. A. Van Asten, A. Heerschap, and L. M. C. Buydens, (2005) Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification, NMR In Biomedicine, 18(1);34–43, doi: 10.1002/nbm.919.
[9] A. Biller et al., (2015) Improved Brain tumor Classification by sodium MR Imaging: prediction ofIDHMutation status and tumor progression, American Journal of Neuroradiology, 37(1);66–73, doi: 10.3174/ajnr.a4493.
[10] S. Roy, S. Sadhu, S. K. Bandyopadhyay, D. Bhattacharyya, and T.-H. Kim, (2016). Brain Tumor Classification using Adaptive Neuro-Fuzzy Inference System from MRI, International Journal of Bio-Science and Bio-Technology, 8(3);203–218, doi: 10.14257/ijbsbt.2016.8.3.21.
[11] M. Mehdi and A. Jayakumar, Brain Tumor Detection using Neural Network, International Journal of Trend in Scientific Research and Development, Dec. 2020, [Online]. Available: https://www.ijtsrd.com/papers/ijtsrd38105.pdf
[12] Madhusudhanareddy, P., & Prabha, I. S. (2013). Novel approach in brain tumor classification using artificial neural networks. International Journal of Engineering Research and Applications, 3(4), 2378-2381.
[13] Gauvain, K. M., McKinstry, R. C., Mukherjee, P., Perry, A., Neil, J. J., Kaufman, B. A., & Hayashi, R. J. (2001). Evaluating Pediatric Brain Tumor Cellularity with Diffusion-Tensor Imaging. American Journal of Roentgenology, 177(2), 449–454. https://doi.org/10.2214/ajr.177.2.1770449
[14] Sharma, R. R., & Marikkannu, P. (2015). Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification. The Scientific World Journal, 1–14. https://doi.org/10.1155/2015/184350
[15] Sarhan, A. M. (2020). Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform. Journal Of Biomedical Science And Engineering, 13(06), 102–112. https://doi.org/10.4236/jbise.2020.136010
[16] Padma, A., & R.Sukanesh. (2011). Automatic Classification and Segmentation of Brain Tumor in CT Images using Optimal Dominant Gray level Run length Texture Features. International Journal Of Advanced Computer Science And Applications, 2(10). https://doi.org/10.14569/ijacsa.2011.021009
[17] Luts, J., Poullet, J. B., Garcia‐Gomez, J. M., Heerschap, A., Robles, M., Suykens, J. A., & Huffel, S. V. (2008). Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magnetic Resonance in Medicine: An Official Journal Of The International Society For Magnetic Resonance In Medicine, 60(2), 288-298.
[18] Rathi, V. G. P., & Palani, S. (2015). Brain tumor detection and classification using deep learning classifier on MRI images. Research Journal Of Applied Sciences, Engineering And Technology, 10(2), 177-187.
[19] Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., & Davatzikos, C. (2009). Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 62(6), 1609-1618.
[20] Pathak, A. N., & Sunkaria, R. K. (2014). Multiclass brain tumor classification using SVM. International Journal of Computer Applications, 97(23).
[21] Srinivas, B., & Rao, G. S. (2019). A hybrid CNN-KNN model for MRI brain tumor classification. Int. J. Recent Technol. Eng, 8(2), 5230-5235.
[22] Havaei, M., Larochelle, H., Poulin, P., & Jodoin, P. M. (2016). Within-brain classification for brain tumor segmentation. International journal of computer assisted radiology and surgery, 11, 777-788.
[23] Jayachandran, A., & Dhanasekaran, R. (2017). Multi class brain tumor classification of MRI images using hybrid structure descriptor and fuzzy logic based RBF kernel SVM. Iranian Journal of Fuzzy Systems, 14(3), 41-54.
[24] Kothari, A., & Indira, B. (2015). A study on classification and detection of brain tumor techniques. International Journal of Computer Engineering and Technology, 6(11), 30-35.
[25] Narmatha, C., Eljack, S. M., Tuka, A. A. R. M., Manimurugan, S., & Mustafa, M. (2020). A hybrid fuzzy brain-storm optimization algorithm for the classification of brain tumor MRI images. Journal of ambient intelligence and humanized computing, 1-9.
[26] Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., & Baik, S. W. (2019). Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of computational science, 30, 174-182.
[27] Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in biology and medicine, 111, 103345.
[28] García‐Gómez, J. M., Tortajada, S., Vidal, C., Julià‐Sapé, M., Luts, J., Moreno‐Torres, À., ... & Robles, M. (2008). The effect of combining two echo times in automatic brain tumor classification by MRS. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 21(10), 1112-1125.
[29] Mzoughi, H., Njeh, I., Wali, A., Slima, M. B., BenHamida, A., Mhiri, C., & Mahfoudhe, K. B. (2020). Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. Journal of Digital Imaging, 33, 903-915.
[30] Chinnu, A. (2015). MRI brain tumor classification using SVM and histogram based image segmentation. International Journal of Computer Science and Information Technologies, 6(2), 1505-1508.
[31] Sumitra, N., & Saxena, R. K. (2013). Brain tumor classification using back propagation neural network. International Journal of Image, Graphics and Signal Processing, 5(2), 45.
[32] Ritschel, K., Pechlivanis, I., & Winter, S. (2015). Brain tumor classification on intraoperative contrast-enhanced ultrasound. International journal of computer assisted radiology and surgery, 10, 531-540.
[33] Dahab, D. A., Ghoniemy, S. S., & Selim, G. M. (2012). Automated brain tumor detection and identification using image processing and probabilistic neural network techniques. International journal of image processing and visual communication, 1(2), 1-8.
[34] Sawakare, S., & Chaudhari, D. (2014). Classification of brain tumor using discrete wavelet transform, principal component analysis and probabilistic neural network. Int J Res Emerg Sci Technol, 1(6), 2349-761.
[35] Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., & Ahuja, C. K. (2012). A dual neural network ensemble approach for multiclass brain tumor classification. International journal for numerical methods in biomedical engineering, 28(11), 1107-1120.
[36] Johnsymol Joy, & Mercy Paul Selvan. (2025). An efficient hybrid Deep Learning-Machine Learning method for diagnosing neurodegenerative disorders. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.701
[37] Sreetha E S, G Naveen Sundar, & D Narmadha. (2024). Enhancing Food Image Classification with Particle Swarm Optimization on NutriFoodNet and Data Augmentation Parameters. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.493
[38] Rajani Kumari Inapagolla, & K . Kalyan Babu. (2025). Audio Fingerprinting to Achieve Greater Accuracy and Maximum Speed with Multi-Model CNN-RNN-LSTM in Speaker Identification: Speed with Multi-Model CNN-RNN-LSTM in Speaker Identification. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1138
[39] Nawaz, S. M., K. Maharajan, N. N. Jose, & R.V.S. Praveen. (2025). GreenGuard CNN-Enhanced Paddy Leaf Detection for Crop Health Monitoring. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1027
[40] Bandla Raghuramaiah, & Suresh Chittineni. (2025). BCDNet: An Enhanced Convolutional Neural Network in Breast Cancer Detection Using Mammogram Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.811
[41] Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.19
[42] SHARMA, M., & BENIWAL, S. (2024). Feature Extraction Using Hybrid Approach of VGG19 and GLCM For Optimized Brain Tumor Classification. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.714
[43] Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.20
[44] M. Swathi, & S.Venkata Lakshmi. (2024). Classification of diabetic retinopathy grades using CNN feature extraction to segment the lesion. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.649
[45] Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.21
[46] L. Smitha, Maddala Vijayalakshmi, Sunitha Tappari, N. Srinivas, G. Kalpana, & Shaik Abdul Nabi. (2024). Plant Disease Detection Using CNN with The Optimization Called Beluga Whale Optimization Mechanism. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.697
[47] García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.