Anthropogenic and Climate Change Impacts on Diwaniya River Water Quality
DOI:
https://doi.org/10.22399/ijcesen.1537Keywords:
HEC-RAS 5.0.5, Euphrates River, Al-Diwaniya River, Mathematical ModellingAbstract
This study aims investigates the calibration and validation of the HEC-RAS model to simulate critical water quality parameters in Iraq’s semi-arid environment, focusing on its application for sustainable water resource management. Using a robust dataset of observed and simulated values, the research examined biochemical oxygen demand (BOD₅), total dissolved solids (TDS), dissolved oxygen (DO), electrical conductivity (EC), nitrate (NO₃⁻), phosphate (PO₄³⁻), calcium (Ca), and magnesium (Mg). The calibration and validation results demonstrated strong alignment between observed and simulated data, with high R² values for key parameters such as NO₃⁻ (R² = 0.94 for validation) and PO₄³⁻ (R² = 0.96 for calibration), affirming the model’s reliability in predicting nutrient dynamics. The study identified variations in model accuracy, with TDS exhibiting percentage errors ranging from 1.70% to 8.73% and challenges in simulating DO, where negative errors exceeded 12%. These discrepancies reflect the complexity of modeling organic matter decomposition and oxygen dynamics under fluctuating climatic and flow conditions. Additionally, pollution hotspots characterized by elevated EC and TDS levels were detected, underscoring the significant impact of anthropogenic activities on water quality. By providing a validated framework for simulating critical water quality indicators, this study contributes to water quality modeling in arid and semi-arid regions. The findings offer valuable insights for policymakers, emphasizing the integration of advanced hydrological models with sustainable management practices. This research advocates for adaptive strategies to mitigate water quality degradation, addressing challenges posed by climate change and increasing population pressures.
References
Nenny., Hamzah, Al, Imran. (2019). Sediment Rentention Models Right On The Irrigation Channels. 50-53. doi: 10.2991/ICMEME-18.2019.12 DOI: https://doi.org/10.2991/icmeme-18.2019.12
Chenoweth, J., (2008). A re-assessment of indicators of national water scarcity. Water International, 33(1): p. 5-18 DOI: https://doi.org/10.1080/02508060801927994
Kamel, A., (2008). Application of a hydrodynamic MIKE 11 model for the Euphrates River in Iraq. Slovak Journal of Civil Engineering, 2(1);1-7
Hughes, D., (2019). Facing a future water resources management crisis in sub-Saharan Africa. Journal of Hydrology: Regional Studies, 23;100600 DOI: https://doi.org/10.1016/j.ejrh.2019.100600
Gil, Y., et al., (2021) Artificial intelligence for modeling complex systems: taming the complexity of expert models to improve decision making. ACM Transactions on Interactive Intelligent Systems, 11(2);1-49 DOI: https://doi.org/10.1145/3453172
Yaseen, Z.M., et al., (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569: p. 387-408 DOI: https://doi.org/10.1016/j.jhydrol.2018.11.069
Kafle, M.R. and N.M. Shakya, (2018). Two-Dimensional Hydrodynamic Modelling of Koshi River and Prediction of Inundation Parameters. Hydrology: Current Research. 9: p. 30 DOI: https://doi.org/10.4172/2157-7587.1000298
Iris, Holzer. (2023). Using 2D HEC-RAS Modeling with Vertical Feature Extraction to Inform Ecological Design in the Lower Atchafalaya River Basin, Louisiana. doi: 10.31390/gradschool_theses.5655 DOI: https://doi.org/10.31390/gradschool_theses.5655
Budianto, Ontowirjo., Imam, Fathurrahman., M., Zahra., Hendra, Wahyudi. (2023). LiDAR DEM and HEC-RAS On-Grid Rainfall Hydrograph Model for Irrigation System. IOP conference series, 1198(1):012023-012023. doi: 10.1088/1755-1315/1198/1/012023 DOI: https://doi.org/10.1088/1755-1315/1198/1/012023
Nadia, Nazhat, Sabeeh., Waleed, M., Sh., Alabdraba. (2022). The Hydrodynamic Model using HEC-RAS: The case of Tigris River Downstream of Samarra Barrage (Iraq). IOP conference series, 1120(1):012017-012017. doi: 10.1088/1755-1315/1120/1/012017 DOI: https://doi.org/10.1088/1755-1315/1120/1/012017
D. V. Kalaba, I. B.Ivanović, D. Čikara and G. O. Milentijević,. (2014) The initial analysis of the river Ibar temperature downstream of the lake Gazivode. Thermal science 18, 73-80. DOI: https://doi.org/10.2298/TSCI121112175K
Mohammed, J., Mawat., Ahmed, Naseh, Ahmed, Hamdan. (2023). Integration of numerical models to simulate 2D hydrodynamic/water quality model of contaminant concentration in Shatt Al-Arab River with WRDB calibration tools. Open Engineering, 13(1) doi: 10.1515/eng-2022-0416 DOI: https://doi.org/10.1515/eng-2022-0416
Shamkhi, M. S., Hafudh, A., Qa.is, H. and Amer, R., (2019) Froude number data analysis and its implications on local scour. Proceedings - International Conference on Developments in eSystems Engineering, DeSE, October-(2019), pp. 315–320, 9073025
Shan-e-hyder, Soomro., Caihong, Hu., Muhammad, Munir, Babar., Mairaj, Hyder, Alias, Aamir. (2021). Estimation of Manning’s Roughness Coefficient Through Calibration Using HEC-RAS Model: A Case Study of Rohri Canal, Pakistan. American Journal of Civil Engineering, 9(1):1-. doi: 10.11648/J.AJCE.20210901.11 DOI: https://doi.org/10.11648/j.ajce.20210901.11
Shamkhi, M. S. and Abbasi R. T., (2024). Streamflow simulation using the integrated water resources management model on the lower basin of the Diyala river, Iraq. AIP Conf. Proc. 3091, 020014 https://doi.org/10.1063/5.0205417
Shamkhi, M. S., Hafudh, A., Qa.is, H. and Amer, R., (2019) Froude number data analysis and its implications on local scour. Proceedings - International Conference on Developments in eSystems Engineering, DeSE, 2019, October-, pp. 315–320, 9073025 DOI: https://doi.org/10.1109/DeSE.2019.00065
Shamkhi, M.S., Azeez, J.M.R. and Abdul-Sahib, A.A., (2020) Morphologic and engineering characteristics of watersheds (a case study: East wasit watersheds that feed the al-Shewicha Trough - Iraq). IOP Conference Series: Materials Science and Engineering, 870(1), 012115 DOI: https://doi.org/10.1088/1757-899X/870/1/012115
Mohammed S. Shamkhi, Marwaa K. Azeez, Rawaa J. Tuama; Evaluation of the rain water network in wasit governorate/Kut city and the commercial center of the region as a dual network (rain and sewage). AIP Conf. Proc. 26 July 2023; 2775 (1): 070001. https://doi.org/10.1063/5.0140848 DOI: https://doi.org/10.1063/5.0140848
Al-Zubaidi, H. A. M., Naje, A. S., Al-Ridah, Z. A., Chelliapan, S., & Sopian, K. (2024). Numerical Modeling of Reaeration Coefficient for Lakes: A Case Study of Sawa Lake, Iraq. https://doi.org/10.12912/27197050/185312 DOI: https://doi.org/10.12912/27197050/185312
Ahmed, A. M., & Kareem, S. L. (2024). Evaluating the role of hydraulic retention time (HRT) in pollutant removal efficiency using Arundo donax in vertical subsurface flow constructed wetlands. Bioremediation Journal, 1-15. DOI: https://doi.org/10.1080/10889868.2024.2439829
S.M. Hocaoglu, (2017)Resources, conservation and recycling evaluations of on-site wastewater reuse alternatives for hotels through water balance, Resour. Conserv. Recycl. 122;43–50. DOI: https://doi.org/10.1016/j.resconrec.2017.01.022
M. Muduli, V. Sonpal, S. Ray, S. Haldar, (2022) In-depth performance study of an innovative decentralized multistage constructed wetland system treating real institutional wastewater, Environ. Res. 210;112896. DOI: https://doi.org/10.1016/j.envres.2022.112896
Shamkhi M. S. and Auad M. H., (2023). Improvement of Hydraulic Characteristics for Dujila Canal. AIP Conference Proceedings 2977(122) https://doi.org/10.1063/5.0182187 DOI: https://doi.org/10.1063/5.0182187
L. Liu, J. Cao, M. Ali, J. Zhang, Z. Wang (2021), Impact of green roof plant species on domestic wastewater treatment, Environ. Adv. 4;100059. DOI: https://doi.org/10.1016/j.envadv.2021.100059
Alfatlawi, T. J. M., & Alsultani, R. A. A. (2019). Characterization of chloride penetration in hydraulic concrete structures exposed to different heads of seawater: Using hydraulic pressure tank. Engineering Science and Technology, an International Journal, 22(3), 939-946.
Shamkhi, M.S., Tuama, R.J. and Azeez, M.K., (2023) Experimental and 3D Numerical Simulations of Flow Over a Rounded Edge-Broad Crested Weir. AIP Conference Proceedings, 2806(1), 040035. https://doi.org/10.1063/5.0166656 DOI: https://doi.org/10.1063/5.0166656
A.C. del _Alamo, M.I. Pariente, R. Molina, F. Martínez, (2022) Advanced bio-oxidation of fungal mixed cultures immobilized on rotating biological contactors for the removal of pharmaceutical micropollutants in a real hospital wastewater, J. Hazard Mater. 425;128002. DOI: https://doi.org/10.1016/j.jhazmat.2021.128002
Shamkhi, M. S. and Abbasi R. T., (2024) Streamflow simulation using the integrated water resources management model on the lower basin of the Diyala river, Iraq. AIP Conf. Proc. 3091, 020014. https://doi.org/10.1063/5.0205417 DOI: https://doi.org/10.1063/5.0205417
S.M. Hocaoglu, M.D. Celebi, I. Basturk, R. Partal, (2021) Treatment-based hospital wastewater characterization and fractionation of pollutants, J. Water Proc. Eng. 43;102205. DOI: https://doi.org/10.1016/j.jwpe.2021.102205
Alsultani, R., Karim, I. R., & Khassaf, S. I. (2023). Dynamic Response Analysis of Coastal Piled Bridge Pier Subjected to Current, Wave and Earthquake Actions with Different Structure Orientations. International Journal of Concrete Structures and Materials, 17(1), 1-15. DOI: https://doi.org/10.1186/s40069-022-00561-5
Salahaldain, Z., Naimi, S. and Alsultani, R., (2023). Estimation and Analysis of Building Costs Using Artificial Intelligence Support Vector Machine. Mathematical Modelling of Engineering Problems. 10(2), pp. 405-411. DOI: https://doi.org/10.18280/mmep.100203
S. Santana-viera, M. Esther, T. Padr_on, Z. Sosa-ferrera, J.J. Santana-rodríguez, (2020) Quantification of cytostatic platinum compounds in wastewater by inductively coupled plasma mass spectrometry after ion exchange extraction, Microchem. J. 157;104862. DOI: https://doi.org/10.1016/j.microc.2020.104862
S. Mahesh, K.K. Garg, V.C. Srivastava, I.M. Mishra, B. Prasad, I.D. Mall, (2016) Continuous electrocoagulation treatment of pulp and paper mill wastewater: operating cost and sludge study, RSC Adv. 6;16223–16233. DOI: https://doi.org/10.1039/C5RA27486A
J. Liu, G. Zhu, P. Wan, Z. Ying, B. Ren, P. Zhang, Z. Wang, (2017) Current applications of electrocoagulation in water treatment: a review, Desalination Water Treat. 74; 53–70. DOI: https://doi.org/10.5004/dwt.2017.20371
Alsultani, R., Karim, I. R., & Khassaf, S. I. (2022) b. Dynamic Response of Deepwater Pile Foundation Bridge Piers under Current-wave and Earthquake Excitation. Engineering and Technology Journal, 40(11), 1589-1604. DOI: https://doi.org/10.30684/etj.2022.135776.1285
Thair, J. M., Imad, A. D., & Riyadh, A. A. 2018. Experimental determination and numerical validation of the chloride penetration in cracked hydraulic concrete structures exposed to severe marine environment. In IOP Conference Series: Materials Science and Engineering (Vol. 454, No. 1, p. 012099). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/454/1/012099
M. Sahul (2016), An Experimental Investigation on Treatment of Tannery Wastewater by Electro Coagulation Method.
F. Kamar, K. Esgair, B. Abod, A. Nechifor (2018), Removal of Hexavalent Chromium Ions from the Simulated Wastewater Using Electrocoagulation Process, , pp. 111–118. DOI: https://doi.org/10.21698/simi.2018.fp14
R. Singh, S. Naranji, R. Husk, (2019)Recycling of Agricultural Waste for Wastewater Treatment, Elsevier Ltd. DOI: https://doi.org/10.1016/B978-0-12-803581-8.11444-4
A. Muhmood, J. Lu, R. Dong, S. Wu, (2019) Formation of struvite from agricultural wastewaters and its reuse on farmlands : status and hindrances to closing the nutrient loop, J. Environ. Manag. 230; 1–13. DOI: https://doi.org/10.1016/j.jenvman.2018.09.030
D. Syam Babu, T.S. Anantha Singh, P.V. Nidheesh, M. Suresh Kumar, (2019) Industrial wastewater treatment by EC process, Separ. Sci. Technol. 1–33.
Alfatlawi, T. J. M., & Alsultani, R. A. A. (2019). Characterization of chloride penetration in hydraulic concrete structures exposed to different heads of seawater: Using hydraulic pressure tank. Engineering Science and Technology, an International Journal, 22(3), 939-946. DOI: https://doi.org/10.1016/j.jestch.2019.02.001
Mohammed, S., Shamkhi. (2022). Assessment of Manning coefficient for Dujila Canal, Wasit/-Iraq. Open Engineering, 13(1) doi: 10.1515/eng-2022-0388. DOI: https://doi.org/10.1515/eng-2022-0388
Al‐Jalili, S. K., Zwain, H. M., & Hayder, A. (2024). Generating Rainfall IDF Curves Using IMD Reduction Formula and Choosing the Best Distribution for Babylon City, Iraq. Engineering Reports. https://doi.org/10.1002/eng2.13053
Al‐Jalili, S. K., Zwain, H. M., & Hayder, A. (2024). Generating Rainfall IDF Curves Using IMD Reduction Formula and Choosing the Best Distribution for Babylon City, Iraq. Engineering Reports. https://doi.org/10.1002/eng2.13053 DOI: https://doi.org/10.1002/eng2.13053
Al-Khalaf, S. K., Naje, A. S., Al-Ridah, Z. A., & Zwain, H. M. (2022). Environmental Modelling of Ionic Mass Transfer Coefficient in a Unique Electrocoagulation Reactor. Nature Environment and Pollution Technology, 21(4), 1587–1597. https://doi.org/10.46488/nept.2022.v21i04.011 DOI: https://doi.org/10.46488/NEPT.2022.v21i04.011
P. Rathika, S. Yamunadevi, P. Ponni, V. Parthipan, & P. Anju. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.782 DOI: https://doi.org/10.22399/ijcesen.782
Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.18 DOI: https://doi.org/10.22399/ijasrar.18
Nuthakki, praveena, & Pavankumar T. (2024). Comparative Assessment of Machine Learning Algorithms for Effective Diabetes Prediction and Care. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.606 DOI: https://doi.org/10.22399/ijcesen.606
Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.19 DOI: https://doi.org/10.22399/ijasrar.19
Duvvur, V. (2025). Modernizing Government IT Systems: A Case Study on Enhancing Operational Efficiency and Data Integrity. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1193 DOI: https://doi.org/10.22399/ijcesen.1193
J. Prakash, R. Swathiramya, G. Balambigai, R. Menaha, & J.S. Abhirami. (2024). AI-Driven Real-Time Feedback System for Enhanced Student Support: Leveraging Sentiment Analysis and Machine Learning Algorithms. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.780 DOI: https://doi.org/10.22399/ijcesen.780
Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.20 DOI: https://doi.org/10.22399/ijasrar.20
V. Saravanan, Tripathi, K., K. N. S. K. Santhosh, Naveenkumar P., P. Vidyasri, & Bharathi Ramesh Kumar. (2025). AI-Driven Cybersecurity: Enhancing Threat Detection and Mitigation with Deep Learning. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1358 DOI: https://doi.org/10.22399/ijcesen.1358
García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.22 DOI: https://doi.org/10.22399/ijasrar.22
G. Prabaharan, S. Vidhya, T. Chithrakumar, K. Sika, & M.Balakrishnan. (2025). AI-Driven Computational Frameworks: Advancing Edge Intelligence and Smart Systems. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1165 DOI: https://doi.org/10.22399/ijcesen.1165
Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.21 DOI: https://doi.org/10.22399/ijasrar.21
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.