A Hybrid Framework for Robust Anomaly Detection: Integrating Unsupervised and Supervised Learning with Advanced Feature Engineering
DOI:
https://doi.org/10.22399/ijcesen.1383Keywords:
Hybrid Anomaly Detection, Unsupervised learning, Supervised Learning, Feature Engineering, Outlier DetectionAbstract
Finding anomalous data is essential in various applications, from cyber security to healthcare to industrial monitoring. Traditional methods- unsupervised or supervised—are far from straightforward; unsupervised methods are notoriously plagued by high false favorable rates and unclear distinction boundaries, while supervised methods tend to rely on a great deal of labeled data, often in limited supply or highly imbalanced. Indeed, these problems call for a unified approach that takes advantage of the benefits of both paradigms for more robust anomaly detection. In this work, we develop a hybrid outlier detection framework combining several unsupervised anomaly scoring models (Isolation Forest, Local Outlier Factor, and One-Class SVM) and XGBoost and Logistic Regression as a supervised classifier. Instead, we combine the proposed algorithm with advanced feature engineering techniques (e.g., topological space optimization) to extract informative features for our data representation. Our empirical studies of diverse benchmark datasets (Arrhythmia, Cardio, Letter, Mammography, MNIST, Satellite, and Speech) indicate that the hybrid model consistently shows a significant improvement over any single method. Our framework consistently reduces false positives and false negatives and is more precise; recall, F1-score, and ROC-AUC are the highest scores for quantitative comparison. We demonstrate the usefulness of the proposed framework by enabling it to handle high-dimensional, imbalanced datasets while leading to meaningful detection results in real-world settings. Establishes a new state-of-the-art performance in anomaly detection while also supplying an approach that is scalable and versatile for complex data environments and forming a basis from which to build toward future integrated anomaly detection systems.
References
Nicholas Jeffrey, Qing Tan, and José R. Villar. (2024). A hybrid methodology for anomaly detection in Cyber–Physical Systems. Neurocomputing 568;1-7. https://doi.org/10.1016/j.neucom.2023.127068
ABDULMALIK SHEHU YARO, FILIP MALY, PAVEL PRAZAK, AND KAREL MALÝ. (2024). Outlier detection performance of a modified Z-score method in time-series RSS observation with hybrid scale estimators. IEEE. 12;12785 - 12796. http://DOI:10.1109/ACCESS.2024.3356731
Maha Shabbir, Sohail Chand, and Farhat Iqbal. (2024). Novel hybrid and weighted ensemble models to predict river discharge series with outliers. Kuwait Journal of Science 51(2);1-11. https://doi.org/10.1016/j.kjs.2024.100188
Zhichao Hu, Xiangzhan Yu, Likun Liu, Yu Zhang, and Haining Yu. (2024). ASOD: an adaptive stream outlier detection method using online strategy. Journal of Cloud Computing 13(120);1-20. https://doi.org/10.1186/s13677-024-00682-0
Franz Kevin Stehle, Wainer Vandelli, Giuseppe Avolio, Felix Zahn, and Holger Fröning. (2024). DeepHYDRA: A Hybrid Deep Learning and DBSCAN-Based Approach to Time-Series Anomaly Detection in Dynamically-Configured S. ACM, 272-285. https://doi.org/10.1145/3650200.3656637
Mutasem K. Alsmadi, Malek Alzaqebah, Sana Jawarneh, Ibrahim ALmarashdeh, Mohammed Azmi Al-Betar, Maram Alwohaibi, Noha A. Al-Mulla, Eman AE Ahmed, and Ahmad AL Smadi. (2024). Hybrid topic modeling method based on dirichlet multinomial mixture and fuzzy match algorithm for short text clustering. Journal of Big Data 11(68);1-21. https://doi.org/10.1186/s40537-024-00930-9
Maha Nssibi, Ghaith Manita, Amit Chhabra, Seyedali Mirjalili, andOuajdi Korbaa. (2024). Gene selection for high dimensional biological datasets using hybrid island binary artificial bee colony with chaos game optimization. Artif Intell Rev.57(51);1-74. https://doi.org/10.1007/s10462-023-10675-1
Gouranga Duari, and Rajeev Kumar. (2024). Attribute Subspace Partitioning with Neural Regression for Contextual Outlier Detection. Procedia Computer Science 235, pp.1892-1902. https://doi.org/10.1016/j.procs.2024.04.180
ZHICHAO XIE,and XUAN HUANG. (2024). A Credit Card Fraud Detection Method Based on Mahalanobis Distance Hybrid Sampling and Random Forest Algorithm. IEEE, 1-15. http://DOI:10.1109/ACCESS.2024.3421316
Dexun Jiang, Hao Zhu, Jie Liu, Xiaoxiao Feng, Fangjingxin Ma, and Jing Wang. (2024). Dynamic surface river pollution identification by a hybrid multivariate-based anomaly detection algorithm. Journal of Cleaner Production. 467;1-9. https://doi.org/10.1016/j.jclepro.2024.142923
Gábor Princz, Masoud Shaloo, and Selim Erol. (2024). Anomaly Detection in Binary Time Series Data: An unsupervised Machine Learning Approach for Condition Monitoring. Procedia Computer Science 232;1065-1078. https://doi.org/10.1016/j.procs.2024.01.105
Omar alghushairy, raed alsini, zakhriya alhassan, abdulrahman a. alshdadi, ameen banjar, ayman yafoz, and xiaogang ma. (2024). An Efficient Support Vector Machine Algorithm based Network Outlier Detection System. IEEE. 12;24428 - 24441. http://DOI:10.1109/ACCESS.2024.3364400
Hugo M. Ferreira, David R. Carneiro, Miguel A. Guimar ˆ aes, and Filipe V. Oliveira. (2024). Supervised and unsupervised techniques in textile quality inspections. Procedia Computer Science 232;426-435. https://doi.org/10.1016/j.procs.2024.01.042
Paul D. Rosero-Montalvo, Zsolt István, Pınar Tözün, and Wilmar Hernandez. (2024). Hybrid anomaly detection model on trusted IoT devices. IEEE. 10(12);10959-10969. http://DOI:10.1109/JIOT.2023.3243037
Muhammad Ali, Peimin Zhu, Ma Huolin, Heping Pan, Khizar Abbas, Umar Ashraf, Jar Ullah, Ren Jiang, and Hao Zhang. (2024). A novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization. Nat Resour Res 32, 1047–1066. https://doi.org/10.1007/s11053-023-10184-6
Henrique O. Marques, Lorne Swersky, Jörg Sander, Ricardo J. G. B. Campello, and Arthur Zimek. (2023). On the evaluation of outlier detection and one-class classification: a comparative study of algorithms, model selection. Data Min Knowl Disc. 37;1473–1517. https://doi.org/10.1007/s10618-023-00931-x
Yajie cui, zhaoxiang liu, and shiguo lian. (2024). A survey on unsupervised anomaly detection algorithms for industrial images. IEEE. 11;55297 - 55315. http://DOI:10.1109/ACCESS.2023.3282993
Md Amirul Islam, Md Ashraf Uddin, Sunil Aryal, and Giovanni Stea. (2024). An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes. Journal of Information Security and Applications 78;1-21. https://doi.org/10.1016/j.jisa.2023.103618
K. Samunnisa, G. Sunil Vijaya Kumar, and K. Madhavi. (2023). Intrusion detection system in distributed cloud computing: Hybrid clustering and classification methods. Measurement: Sensors 25;1-12. https://doi.org/10.1016/j.measen.2022.100612
Robert K. L. Kennedy, Zahra Salekshahrezaee, Flavio Villanustre, and Taghi M. Khoshgoftaar. (2023). Iterative cleaning and learning of big highly-imbalanced fraud data using unsupervised learning. J Big Data 10(106);1-20. https://doi.org/10.1186/s40537-023-00750-3
Ch. Sanjeev Kumar Dash, Ajit Kumar Behera, Satchidananda Dehuri, Ashish Ghosh. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal 6;1-8. https://doi.org/10.1016/j.dajour.2023.100164
Rasha ramadan z. koko, inas a. yassine, manal abdel wahed, june k. madete, and muhammad a. rushdi. (2023). Dynamic construction of outlier detector ensembles with bisecting k-means clustering. IEEE. 11;24431-24447. http://DOI:10.1109/ACCESS.2023.3252004
Ahsnaul Haque, Md Naseef-Ur-Rahman Chowdhury, Hamdy Soliman, Mohammad Sahinur Hossen, Tanjim Fatima, and Imtiaz Ahmed. (2023). Wireless sensor networks anomaly detection using machine learning: a survey. Springer, pp.1-21.
Kyung sung lee , seong beom kim, and hee-woong kim. (2023). Enhanced Anomaly Detection in Manufacturing Processes through Hybrid Deep Learning Techniques. IEEE. 11;93368 - 93380. http://DOI:10.1109/ACCESS.2023.3308698
Miloˇs Savi´c, Jasna Atanasijevi´c, Duˇsan Jakoveti´c, and Nataˇsa Kreji´c. (2021). Tax evasion risk management using a Hybrid Unsupervised Outlier Detection method. Expert Systems with Applications 193;1-35. https://doi.org/10.1016/j.eswa.2021.116409
David velásquez, enrique pérez, xabier oregui, arkaitz artetxe, jorge manteca, jordi escayola mansilla, mauricio toro, mikel maiza, and basilio sierra. (2022). A hybrid machine-learning ensemble for anomaly detection in real-time industry 4.0 systems. IEEE. 10,72024 - 72036. http://DOI:10.1109/ACCESS.2022.3188102
Jian Zheng, Jingyi Li, Cong Liu, Jianfeng Wang, Jiang Li, and Hongling Liu. (2022). Anomaly detection for high-dimensional space using deep hypersphere fused with probability approach. Complex Intell. Syst. 8,4205–4220. https://doi.org/10.1007/s40747-022-00695-9
Alona Sakhnenko, Corey O’Meara, Kumar J. B. Ghosh, Christian B. Mendl, Giorgio Cortiana, and Juan Bernab´e-Moreno. (2021). Hybrid classical-quantum autoencoder for anomaly detection. Springer, pp.1-17.
Andrey Kharitonov, Abdulrahman Nahhas, Matthias Pohl, and Klaus Turowski. (2022). Comparative analysis of machine learning models for anomaly detection in manufacturing. Procedia Computer Science. 200(0);1288-1297. https://doi.org/10.1016/j.procs.2022.01.330
Lejla Begic Fazlic, Ahmed Halawa, Anke Schmeink, Robert Lipp, Lukas Martin, Arne Peine, Marlies Morgen, Thomas Vollmer, Stefan Winter, and Guido Dartmann. (2022). A Novel Hybrid Methodology for Anomaly Detection in Time Series. Int J Comput Intell Syst. 15(50);1-16. https://doi.org/10.1007/s44196-022-00100-w
Bhanu Chander, and G. Kumaravelan. (2022). Outlier detection strategies for WSNs: A survey. Journal of King Saud University - Computer and Information Sciences 34(8);5684-5707. https://doi.org/10.1016/j.jksuci.2021.02.012
LIWEN ZHOU, QINGKUI ZENG, AND BO LI. (2022). Hybrid anomaly detection via multihead dynamic graph attention networks for multivariate time series. IEEE. 10,40967 - 40978. http://DOI:10.1109/ACCESS.2022.3167640
Thudumu, Srikanth; Branch, Philip; Jin, Jiong; Singh, Jugdutt (Jack). (2020). A comprehensive survey of anomaly detection techniques for high dimensional big data. Journal of Big Data, 7(1),1-30. http://doi:10.1186/s40537-020-00320-x
Wang, Biao; and Mao, Zhizhong . (2019). Detecting outliers in industrial systems using a hybrid ensemble scheme. Neural Computing and Applications, pp.1-17. http://doi:10.1007/s00521-019-04307-5
Kurt, Mehmet Necip; Yilmaz, Yasin; and Wang, Xiaodong. (2020). Real-Time Nonparametric Anomaly Detection in High-Dimensional Settings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7);2463 - 2479. http://doi:10.1109/TPAMI.2020.2970410
Xian-Fang Song; Yong Zhang; Dun-Wei Gong; and Xiao-Zhi Gao;. (2021). A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data. IEEE Transactions on Cybernetics, 52(9);9573 -9586. http://doi:10.1109/tcyb.2021.3061152
Mohammed Qaraad; Souad Amjad; Ibrahim I. M. Manhrawy; Hanaa Fathi; Bayoumi Ali Hassan; and Passent El Kafrawy;. (2021). A Hybrid Feature Selection Optimization Model for High Dimension Data Classification. IEEE Access, 9;42884 - 42895. http://doi:10.1109/access.2021.3065341
Yuan, Zhong; Chen, Hongmei; Li, Tianrui; Liu, Jia; and Wang, Shu . (2020). Fuzzy information entropy-based adaptive approach for hybrid feature outlier detection. Fuzzy Sets and Systems, 421;1-28. http://doi:10.1016/j.fss.2020.10.017
Chen, Gang; Du, Linlin; and An, Baoran . (2020). [IEEE 2020 Chinese Control And Decision Conference (CCDC) - Hefei, China (2020.8.22-2020.8.24)] 2020 Chinese Control And Decision Conference (CCDC) - Ordinal Outlier Algorithm for Anomaly Detection of High-Dimensional Data Sets. Pp.5356–5361. http://doi:10.1109/CCDC49329.2020.9164610
Yan Qiao; Kui Wu; and Peng Jin;. (2021). Efficient Anomaly Detection for High-Dimensional Sensing Data with One-Class Support Vector Machine. IEEE Transactions on Knowledge and Data Engineering, 35(1), pp. 404 - 417. http://doi:10.1109/tkde.2021.3077046
C, A., K, S., N, N. S., & S, P. (2024). Secured Cyber-Internet Security in Intrusion Detection with Machine Learning Techniques. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.491
K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936
Mekala, B., Neelamadhab Padhy, & Kiran Kumar Reddy Penubaka. (2025). Brain Tumor Segmentation and Detection Utilizing Deep Learning Convolutional Neural Networks: Enhanced Medical Image for Precise Tumor Localization and Classification. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1051
S. Ranjana, & A. Meenakshi. (2025). Breast Cancer Detection using Convolutional Autoencoder with Hybrid Deep Learning Model. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1225
Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.20
Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.19
Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.18
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Computational and Experimental Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.