The Effect of Blue Blocker Lenses on Contrast Sensitivity and Reading Speed: a Comparison Between Different Wavelengths

Authors

  • İsmail Bal İstanbul Okan Üniversitesi
  • Hatice Semrin Timlioğlu-İper İstanbul Okan University

DOI:

https://doi.org/10.22399/ijcesen.1340

Keywords:

blue light filters, contrast sensitivity, reading speed

Abstract

Although blue blocker lenses (BBLs) are specifically designed to reduce the harmful effects of blue light emitted by electronic devices, their effects on visual behavior and color perception have not been fully investigated. Commercially available BBLs selectively attenuate specific visible light wavelengths on the electromagnetic spectrum, thereby influencing the contrast sensitivity of individuals. Blue light is defined as the wavelength range in the electromagnetic spectrum (380-495 nm) and can be classified into two subgroups, blue-violet (380-450 nm) and blue-turquoise (450-495 nm), and has different effects on human physiology. The aim of our study was to investigate the effects of two different BBLs (460 nm and 500 nm) on contrast sensitivity and reading speed, as well as to assess their impact on visual acuity. The results showed that the use of BBLs increased the number of words read per minute, but the reading speed slowed down with increasing age. This may be attributed to the decline in visual acuity with age. Additionally, the use of BBLs was found to increase contrast sensitivity; however, contrast sensitivity decreased in people aged 41 years and older despite the use of BBLs. The results demonstrate that the use of BBLs affects reading speed and contrast sensitivity, and they may be useful information for ophthalmologists and a criteria for prescribing.

References

[1] F. W. Campbell and J. G. Robson, (1968) Application of fourier analysis to the visibility of gratings, J Physiol, 197(3);551, doi: 10.1113/JPHYSIOL.1968.SP008574.

[2] C. Owsley and M. E. Sloane, (1987). Contrast sensitivity, acuity, and the perception of ‘real-world’ targets., British Journal of Ophthalmology, 71(10);791–796, doi: 10.1136/BJO.71.10.791.

[3] M. C. Silva-Viguera, M. C. García-Romera, I. López-Izquierdo, C. De-Hita-Cantalejo, M. C. Sánchez-González, and M. J. Bautista-Llamas, (2023). Contrast Sensitivity Assessment in Early Diagnosis of Diabetic Retinopathy: A Systematic Review, Semin Ophthalmol, 38(4);319–332, doi: 10.1080/08820538.2022.2116289

[4] M. W. Roark and J. M. Stringham, (2019) Visual Performance in the ‘Real World’: Contrast Sensitivity, Visual Acuity, and Effects of Macular Carotenoids, Mol Nutr Food Res, 63(5);1801053, doi: 10.1002/MNFR.201801053.

[5] P. P. Bither and J. D. Hurt, (1988) CPF-550 vs. C-Lite: a comparison study.,” J Am Optom Assoc, 59(8);623–628, Accessed: Feb. 09, 2025. [Online]. Available: https://europepmc.org/article/med/3171066

[6] G. Rieger, (2025) Improvement of contrast sensitivity with yellow filter glasses., Can J Ophthalmol, 27(3);137–138,

[7] S. Van Der Lely et al., (2015) Blue Blocker Glasses as a Countermeasure for Alerting Effects of Evening Light-Emitting Diode Screen Exposure in Male Teenagers, Journal of Adolescent Health, 56(1);113–119,doi: 10.1016/J.JADOHEALTH.2014.08.002.

[8] M. A. Mainster, (2005) Intraocular Lenses Should Block UV Radiation and Violet but Not Blue Light, Archives of Ophthalmology, 123(4);550–555, doi: 10.1001/ARCHOPHT.123.4.550.

[9] A. Vagge, L. Ferro Desideri, C. Del Noce, I. Di Mola, D. Sindaco, and C. E. Traverso, (2021) Blue light filtering ophthalmic lenses: A systematic review, Semin Ophthalmol, 36(7);541–548, doi: 10.1080/08820538.2021.1900283.

[10] M. C. Sánchez-González et al., (2021) Effect of Blue Light Filters on Tear and Contrast Sensitivity in Individuals Using Electronic Devices, Eye Contact Lens, 47(12);642–646, doi: 10.1097/ICL.0000000000000843.

[11] S. A. Giannos, E. R. Kraft, L. J. Lyons, and P. K. Gupta, (2019) Spectral Evaluation of Eyeglass Blocking Efficiency of Ultraviolet/High-energy Visible Blue Light for Ocular Protection, Optometry and Vision Science, 96(7);513–522, doi: 10.1097/OPX.0000000000001393.

[12] N. Charoenpipatsin, P. Yothachai, N. Nuntawisuttiwong, O. Wongpraparut, P. Choosri, and N. Silpa-Archa, (2025) Dosimetry Assessment of Potential Hazard from Visible Light, Especially Blue Light, Emitted by Screen of Devices in Daily Use,” Clinical, Cosmetic and Investigational Dermatology , 18;169–176, doi: 10.2147/CCID.S490977;WGROUP:STRING:PUBLICATION.

[13] A. K. Kiser, E. K. Deschler, and G. Dagnelie, (2008) Visual function and performance with blue-light blocking filters in age-related macular degeneration, Clin Exp Ophthalmol, 36(6);514–520, doi: 10.1111/J.1442-9071.2008.01824.X.

[14] W. Seiple, O. Overbury, B. Rosenthal, T. Arango, J. V. Odom, and A. R. Morse, (2018) Effects of Lighting on Reading Speed as a Function of Letter Size, The American Journal of Occupational Therapy, 72(2); 7202345020p1-7202345020p7, doi: 10.5014/AJOT.2018.021873.

[15] A. S. Patel and D. M. Dacey, (2009) Relative effectiveness of a blue light–filtering intraocular lens for photoentrainment of the circadian rhythm, J Cataract Refract Surg, 35(3);529–539, doi: 10.1016/J.JCRS.2008.11.040.

[16] J. A. Landers, D. Tamblyn, and D. Perriam, (2009) “Effect of a blue-light-blocking intraocular lens on the quality of sleep, J Cataract Refract Surg, 35(1);83–88, doi: 10.1016/J.JCRS.2008.10.015.

[17] T. W. Leung, R. W. H. Li, and C. S. Kee, (2017) “Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances,” PLoS One, 12(1);e0169114, doi: 10.1371/JOURNAL.PONE.0169114.

[18] L. E. Leguire and S. Suh, (1993) Effect of light filters on contrast sensitivity function in normal and retinal degeneration subjects, Ophthalmic and Physiological Optics, 13(2);124–128, doi: 10.1111/J.1475-1313.1993.TB00440.X.

[19] E. Pateras, “Blue Light Blocking Ophthalmic Lenses and Their Benefits–A Review,” Jun. 2020.

[20] H. S. Alzahran, M. Roy, V. Honson, and S. K. Khuu, (2021) Effect of blue-blocking lenses on colour contrast sensitivity, Clin Exp Optom, 104(2);207–214, doi: 10.1111/CXO.13135.

[21] S. Tavazzi et al., (2020) Improvement or worsening of human contrast sensitivity due to blue light attenuation at 450 nm, Clin Optom (Auckl), 12,57–66, doi: 10.2147/OPTO.S242818.

[22] F. Cozza et al., (2020) The effects of two longpass filters on visual performance, J Optom, 13(2);102–112, doi: 10.1016/J.OPTOM.2019.07.001.

[23] A. J. Augustin, (2008) “The physiology of scotopic vision, contrast vision, color vision, and circadian rhythmicity can these parameters be influenced by blue-light-filter lenses., Retina, 28(9);1179–1187, doi: 10.1097/IAE.0B013E3181835885.

[24] D. ALTINBAY and A. M. İDİL, (2019) Az Görme Rehabilitasyonunda Işık ve Filtre Kullanımı, Turkiye Klinikleri Journal of Ophthalmology, 28(2);117–122, doi: 10.5336/OPHTHAL.2018-61499.

[25] A. Ş. İdil, D. Çalışkan, and B. N. İdil, (2019) MNREAD okuma kartlarının Türkçe versiyonunun geliştirilmesi ve validasyonu, 39(2);84–90.

Downloads

Published

2025-06-10

How to Cite

İsmail Bal, & Hatice Semrin Timlioğlu-İper. (2025). The Effect of Blue Blocker Lenses on Contrast Sensitivity and Reading Speed: a Comparison Between Different Wavelengths. International Journal of Computational and Experimental Science and Engineering, 11(3). https://doi.org/10.22399/ijcesen.1340

Issue

Section

Research Article