

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.1 (2025) pp. 899-910
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Security of IoT Device and its Data Transmission on AWS Cloud by Using

Hybrid Cryptosystem of ECC and AES

Neha KASHYAP1*, Sapna SINHA2, Vineet KANSAL3

1Amity Institute of Information Technology, Noida, Uttar Pradesh, India

* Corresponding Author Email: kashyap9.neha@gmail.com - ORCID: 0000-0003-0368-1078

2Amity Institute of Information Technology, Noida, Uttar Pradesh, India
Email: ssinha4@amity.edu- ORCID: 0000-0002-2504-8030

3Institute of Engineering & Technology, AKTU, Lucknow, Uttar Pradesh, India

Email -vineet.kansal@yahoo.com - ORCID: 0000-0001-7918-2991

Article Info:

DOI: 10.22399/ijcesen.838

Received : 28 December 2024

Accepted : 06 February 2025

Keywords :

IoT,

AES,

ECC,

Raspberry Pi,

Cloud.

Abstract:

The expanding prevalence of the Internet of Things (IoT) and its devices presents

significant security challenges mostly a lack of multi-factor authentication, light

encryption, etc. This study uses Elliptical Curve Cryptography (ECC) and Advanced

Encryption Standards (AES) to create a hybrid method with multiple security features for

Raspberry Pi and data transmission on the cloud named Hybrid Cryptosystem ECC

+AES. Data gathered and transferred to the cloud offers a faster and safer encryption

mechanism on Raspberry Pi. This technique provides a notable gain in encryption

performance over other previous algorithms by utilizing the speed of AES and the secure

key exchange of ECC. The author developed a web application and implemented the

algorithm for generating sample data, encryption, decryption processes, and uploading

files to an Amazon Web Services (AWS) S3 bucket using Python programming which

will benefit other IoT devices with limited memory and computational power.

1. Introduction

IoT devices have less memory area, which

challenges implementing old encryption algorithms

on it. To avoid these problems, we need a highly

efficient algorithm to make our devices more secure.

Since IoT devices work on the Internet, store

sensitive data, and transfer this data to others, they

are at a high risk of cyber-attack [1]. An efficient

security algorithm can protect these devices and the

data they transmit from unauthorized access. With

the anticipated dramatic increase in the number of

IoT devices in the upcoming years, the demand for

secure communication and data protection will also

rise [2]. So, efficient protected algorithms

are required to meet this demand and ensure the

security of IoT devices that can be useful with their

growing numbers. IoT devices are used in different

real-time applications such as smart cities, smart

homes, transportation, healthcare, and

manufacturing. Many secure algorithms will save

these devices and the designed system from cyber-

attacks [3,4]. IoT devices tend to collect and process

huge amounts of data important for automation,

decision-making, and analysis. Protecting this data

is required to secure the privacy and sensitive

information. Data security is one of the biggest

challenges in the IoT environment, so a highly

secure algorithm is required to protect the data from

unauthorized access [5]. In summary, a highly secure

and trusty algorithm is required for the security of

IoT data and IoT devices that will be beneficial for

cost-effectiveness and provide security from cyber

threats. The cryptography method has various kinds

of keys that help secure symmetric and asymmetric

data. A symmetric key, also known as a private key,

uses a single key to encrypt and decrypt data in

cryptography [5]. Figure 1 represents the exchange

of keys for encryption and the usage of symmetric

and asymmetric cryptography between the sender

and the receiver. Many algorithms like Advanced

Encryption Standards (AES), Data Encryption

Standards (DES), and Blowfish are used in

symmetric cryptography that works in private keys.

While the encryption performed by asymmetric keys

needs two different keys for encryption and

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:kashyap9.neha@gmail.com
mailto:kashyap9.neha@gmail.com

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

900

decryption Elliptical Curve Cryptography (ECC)

and Rivest- Shamir-Adleman (RSA) use the public

key algorithms approaches. AES encryption

algorithm is developed for securing sensitive data

and government information across various areas. It

is designed to work with 128-bit input blocks to

improve the data security. ECC algorithms play an

important role in different techniques that work on

low-power smart devices of IoT, and it is good for

supporting asymmetric cryptography [4-6]. The

Raspberry Pi Foundation developed Raspberry Pi for

the implementation of innovation in computer

teaching, home robotics, and industrial automation.

The size of the Raspberry Pi is small, like a debit

card, but it can perform better than a regular

computer [7]. The Raspberry Pi operating system is

based on the Linux operating system and is useful

for both 32-bit and 64-bit processors. Raspberry Pi

can bring a web browser and a terminal [8-22]. In

our research, we used Raspberry Pi 4 Model B.

Our research combines AES and ECC to provide a

secure method for message encryption and

decryption. ECC provides key pair generation and

establishes a secure network communication

channel while AES is used for symmetric encryption

of the original message. This proposed system is

developed using the Python Programming Language

as a back end and HTML, and CSS to design the

front-end web page that allows users to input

plaintext messages, perform encryption and

decryption, and upload files to an S# bucket of

Amazon Web Services (AWS).

Figure 1. Symmetric and Asymmetric Key Cryptography

1.1. Motivation

The advanced use of IoT devices and their

applications has become widespread in our everyday

lives and data collection is sensitive and personal to

users. For this scenario, it is essential to address

security and privacy issues [1]. IoT network

environment involves various components, a set of

devices, various platforms, and implemented

systems.

1.2. Contribution

The major contributions of this paper are as follows:

 Designing a cryptographic hybrid algorithm

using a combination of ECC and AES for

securing IoT devices and their data from

unauthorized access and unwanted attacks.

 Generating the ECC private and public key and

AES encrypted public key for the proposed

hybrid ECC-AES cryptosystem scheme.

 Securing the Raspberry Pi and its collected data

from unauthorized access with various levels of

security.

 Examining the proposed method with various

security aspects, computational efficiency, and

time duration during data uploading on the cloud.

1.3. Outline of the Paper

This research paper structure is outlined as follows:

Segment 2 details the literature review. Segment 3

represents the background descriptions of different

aspects used in the proposed system. Segment 4

represents the details of key management of the

proposed algorithm. Segment 5 represents the

Architecture of the proposed work. Segment 6

presents proposed experimental setups. Segment 7

presents the proposed algorithm framework.

Segment 8 presents the result analysis and

discussion. Segment 9 shows the paper's conclusion

2. Literature Review

IoT devices' security and data security has become a

major research area in today's era. Many algorithms,

such as RSA, ECC, and AES are working for device

security. M. Krishnamoorthy et.al (2017) [15]

proposed that RSA is used for the initial setup and

authentication of the network protocols within the

slight changes. They suggested using ECC with RSA

to create protocols that are resistant to the problem

of factorization by employing quad prime numbers.

The results of their work demonstrate that the

proposed method offers high security with minimal

computational costs. In a separate study, M. S.

Albela (2018) [12] compared the Transport Layer

Security authentication algorithm. They attempted to

enhance IoT security by implementing wireless IoT

nodes using ESP32. They utilized the ECC curve

and RSA keys with varying lengths to secure the

communication of IoT nodes. They attempted to

enhance IoT security by implementing wireless IoT

nodes using ESP32. They utilized the ECC curve

and RSA keys with varying lengths to secure the

communication of IoT nodes. H. Garg et al. (2019)

[6] unequivocally demonstrate how connected

devices can be securely exposed to cloud-based apps

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

901

and users with the Representational State Transfer

(REST) API. In their proposed paradigm,

middleware is critical in providing device data using

REST, abstracting specifics, and acting as a user

interface for interacting with sensor data. The

proposed design incorporates non-IP networks to

connect IoT devices, with an intelligent gateway

connecting them to the Internet. Additionally, they

recommend a straightforward JavaScript function to

access a REST service at a given URL using jQuery's

$. ajax () method, with the successful reception of

JSON resulting in its assignment to the variable data.

In 2020, Hassan et al. [9] worked on a cryptography

algorithm, focusing on AES and ECC for encrypting

multimedia contents and keys generated by ECC

also shared between parties. They used Digital

Rights Manager technology for the process of

encrypting and storing the data in cloud

environments. In 2021, Sowjanya et al. [20],

proposed a process of key management for the CP-

ABE mechanism using ECC. They worked on a

revised method where the decryption process cannot

be worked using the identical key unless text cannot

be decrypted using the receiver having a different

private key. Abdulhameed et al. (2022) [10]

proposed a hybrid algorithm with the combination of

AES and ECC to enhance the security of encryption

and decryption process using Raspberry Pi Model 4.

They worked with AES for data encryption and ECC

for authentication. They also compare their proposed

algorithm with previous works on the parameters of

encryption time, decryption time, and throughput

times. Urooj et.al. (2023) [11], worked on key

management with the use of ECC and AES for

security of data on the Wireless Sensor network

(WSN).

3. Background

This segment describes the terms used in the

background for the hybrid cryptosystem ECC+AES

for security IoT data and devices.

3.1. Encryption

Encryption is the method used in cryptography to

secure data and protect communication from

unauthorized access [19]. The process of converting

readable data, or plaintext, into unreadable data, or

ciphertext, involves the use of a key and a specific

encryption method [10]. The primary goal of

encryption is to guarantee the confidentiality,

integrity, and sometimes authentication of the data

being transmitted or stored [4]. In our research, we

used encryption for the security aspects of IoT data.

The encryption method provides security for data

stored on a Raspberry Pi and transferred to the cloud

storage. Additionally, we encrypt the AES keys as

an added layer of security.

3.2. Decryption

In cryptography, decryption is the method that is

used to convert the encrypted data into its original

and readable format. Encryption secures confidential

and sensitive data by converting it into an

incomprehensible format. Decryption helps restore

the data to its original form and provide it to an

authorized third party [7]. In this research, we used

decryption of the ciphertext data and AES keys when

uploaded to the cloud.

3.3. Advanced Encryption Standard (AES)

AES is a symmetric key method, The same key is

used for both the encryption and decryption

processes, its goal is to achieve a secure and

effective design [10]. AES has three key sizes of

128, 192, and 256 bits are useful for providing

security from brute-force attacks [16]. It is mostly

used for the encryption of files, providing security to

sensitive data and secure network communication

[13]. In our research, we utilized AES for encryption

on the Raspberry Pi because of its fast performance

and resistance to hacking attempts due to its ability

to work with longer key sizes. Figure 2 shows the

AES design with a different key size.

Figure 2. AES Design with Different Key Sizes

3.4. Elliptical Curve Cryptography (ECC)

One of the encryption techniques is ECC used in

asymmetric public keys and utilizes the

mathematical properties of elliptic curves on a

limited field. It is getting used in secure web surfing,

digital signatures, secure messaging, and secure

communication offers high security despite its small

key size. ECC is now the best selection for the

network with less bandwidth [9]. In this research, we

used ECC during the process of key exchange to

encrypt the AES key to secure the data from

unwanted attacks during data transmission to the

cloud.

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

902

3.5. RealVNC Viewer Application

The company RealVNC offers remote access

software. VNC stands for Virtual Network

Computing. With the help of their VNC Connect

software, the viewer can remotely manage the

server’s screen by exchanging data with the server

via the Remote Frame Buffer (RFB) protocol. The

viewer comprises two applications: VNC Server and

VNC Viewer [23]. It was developed to provide

remote control of another computer, and it is a cross-

platform screen-sharing technology. This implies

that a remote user can utilize a secondary device to

operate a computer’s keyboard, mouse, and screen

from a secondary device as if they were seated in

front of the computer [24]. Figure 3 shows the

window screen of RealVNC. In this research, we use

a VNC viewer for remote access to the device and

work with generating data. Encryption, Decryption,

and Uploading of data on the cloud.

Figure 3. RealVNC Viewer Application

3.5. Raspberry Pi (RPi)

A small computer called Raspberry Pi is connected

to a monitor, mouse, and Keyboard. For storing

programs, it has different amounts of memory and a

1.5 GHz CPU for graphics processing [10].

Raspberry Pi uses ARM-based Embedded systems

with the Linux operating system. It can be used for

various tasks including IoT, programming, robotics,

and media streaming [17]. This small computer

allows users of all ages to learn and practice coding

in different programming languages and experiment

with programming [21]. It can do tasks like

accessing the internet, creating spreadsheets or

documents, and programming in popular languages

like Python, C/C++, and Ruby [18]. Figure 4 shows

the image of Raspberry Pi 4 Model B. Our research

utilizes the Raspberry Pi 4 Model B, as depicted in

Figure 3. Compared to the previous-generation RPi,

the Raspberry Pi 4 Model B offers significant data

storage, communication, multimedia capabilities,

and CPU usage enhancements.

Figure 4. Raspberry Pi 4 Model B

3.6. Amazon Web Services (AWS) Simple Storage

Service (S3) Bucket

AWS S3 is an object famous for storing data,

providing security and, achieving high

performance. It has features such as cost-

effective storage and easy-to-use facilities. Its

major uses are in the analysis of data, log files,

application data, video, and pictures, and also in

backup and recovery. Amazon S3 stores and

protects big amounts of data for IoT devices,

mobile applications, and big data analytics [25-

30]. In our research, we used an AWS S3 bucket

for the storage purpose of IoT data on the

Amazon cloud. For this firstly we create the

account on Amazon then create a bucket, given

the bucket name, and AWS region. We also

create an access key and download the access

key ID and secret access key through the

Identity and Access Management (IAM)

console of AWS. After that, we upload our data

to the bucket as an object in Amazon S3.

4. Key Management of Cryptosystem

ECC+AES

In this segment, we are explaining the proposed

schema management keys. Firstly, Using the AES

method the data to transmitted in encryption. With

the help of AES symmetric key encryption, which

uses a shared key to both encrypt and decrypt the

information. The encrypted data is then sent over a

communication channel to the intended recipient.

The recipient must have the secret key for encryption

to decrypt the data. The ECC algorithm facilitates

the secure exchange of this key between the sender

and recipient. To generate the private and public

keys, Elliptic curves are utilized in the ECC public-

key encryption process. After receiving the public

keys using randomly generated AES session keys,

the sender can encrypt the message, and the other

party receives the session key through the

transmission route for encryption. The recipient

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

903

decrypts the session key using their private key.

Once the recipient has the session key, they can

decrypt the AES-encrypted material. After

decrypting the data, the receiver can use it as

necessary. Figure 5 shows the key management of

the proposed scheme.

Figure 5. Key Management of the Proposed

Cryptosystem ECC+AES

4.1. Role of ECC in Proposed Key Management

In the proposed system the ECC plays an important

role in the encryption and decryption of IoT device-

stored data. ECC also encrypts the AES key which

has a long key length size. ECC is used in

asymmetric cryptography, it works on an elliptical

curve and provides a high level of security with its

small key sizes. ECC generates two random key

pairs: public key and private key. Figure 6 shows the

front end of the proposed system that is written in

Python Programming and deployed on Visual Studio

Code for the key generation, encryption, and

decryption of the data. The running scene of the

proposed system on Visual Studio code is

represented in Figure 7.

ECC Working Process for the Proposed System

Step 1: A second random ECC private key

(‘ciphertextPrivKey’) is generated.

Step 2: This private key is used to compute the

shared ECC key by multiplying it with the

recipient’s public key (‘pubKey’). This shared

key is an ECC point.

Step 4: The ECC point (x and y coordinates) is

hashed using SHA-256 to derive the AES key.

Step 5: The ‘ecc_point_to_256_bit_key’ function

takes this ECC point and derives a 256-bit key,

which will be used as the AES secret key.

Step 6: The above-derived AES secret key is then

used in AES-GCM mode to encrypt the message.

Step 7: The ‘encrypt_AES_GCM’ function

encrypts the message(‘msg’) with an AES key and

then it will return the data which is encrypted

(ciphertext), a nonce, and an authentication

tag(‘authTag’).

4.2. Role of AES in the Proposed Key

Management

In the proposed system, the role of AES is to encrypt

the data that are stored on the IoT devices and also

to securely transfer it into the cloud environment.

The AES key is not generated directly but is derived

from the ECC shared key and used to encrypt the

message with AES-GCM (Galois Counter Mode).

The recipient can decrypt the message by deriving

the same AES key from the shared ECC point.

AES Private Key Derivation and Encryption for the

Proposed System

Step 1: The ECC private key (CiphertextPrivKey)

is used to estimate the shared ECC key with the

help of the receiver public key.

Step 2: The receiver's public key(pubKey) is used

in conjunction with the receiver's private key to

compute the shared ECC key.

Step 3: An elliptical point derived from the

multiplication of the sender’s private key and the

receiver’s public key. After that, it will be hashed

to generate the AES key.

Step 4: The 256-bit key is then derived from the

ECC shared point when used for AES-GCM

(Galois/Counter Mode) encryption of the

message.

5. Proposed Hybrid Cryptosystem

ECC+AES Architecture

The suggested system includes the security

framework for the IoT device application. ECC and

AES are used for key generation and encryption of

the stored data. This proposed system is written in

Python and tested in Microsoft Visual Studio Code.

The implemented system aims to secure the IoT

device and store its encrypted data on the cloud. This

goal is achieved by applying the algorithm that

combines ECC and AES to provide a secure way of

encrypting and decrypting messages and provide

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

904

Figure 6. Key Generation, Encryption, and Decryption

of Proposed Cryptosystem ECC+AES

Figure 7. Running Screen of Proposed Key Management

of ECC and AES

Figure 8. Architecture of Proposed System

security from brute-force attacks as AES has long

keys. ECC generates key pairs of public and private.

It sets up a secure communication channel, on the

other hand, AES works on symmetric encryption of

the original message. This web-based application

allows users to input plaintext, messages, perform

encryption and decryption, and save or upload files

to an Amazon S3 bucket the entire working

architecture of the proposed system is represented in

Figure 8.

6. Experimental Setup

6.1. Set Up of Raspberry Pi

 It is a low-cost computer plugged into a TV or

monitor for display and uses a wired keyboard and

mouse. We install the Raspberry Pi OS when we

give power to Raspberry Pi, and all the peripherals

boot into the freshly flashed Raspberry Pi OS (earlier

known as Raspbian). There is no need for a CPU

because Raspberry Pi itself is a microprocessor. To

enhance the security of Raspberry Pi we use a two-

factor authentication system that consists of device

authentication and remote access authentication.

Device authentication requires the security of

Raspberry Pi with the combination of username and

password. Remote access authentication is provided

by RealVNC by creating a user account on the

RealVNC website. The setup is shown in Figure 9.

Figure 9. Setup of Raspberry Pi with TV, Keyboard, and

Mouse

Figure 10. Set Up RealVNC with Raspberry Pi

6.2. Set Up of RealVNC Viewer Software

RealVNC is a famous remote desktop software that

provides access and control of Raspberry Pi with the

help of other computers or mobile devices This

software is used in our research for remote access of

Raspberry Pi and shows the front end and back end

of the system by uploading the entire proposed

system project on Raspberry Pi. RealVNC has its

authentication system for remote access, it allows

the Raspberry Pi to securely connect over the

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

905

network. When we access Raspberry Pi remotely

using the RealVNC Viewer, we have to give our

RealVNC account credentials. Figure 10 is the set

Up RealVNC with Raspberry Pi.

6.3. Set Up of the Proposed System of Hybrid

Cryptography ECC+AES

The proposed system provides remote access to

Raspberry Pi with the use of RealVNC. We installed

the entire system written in Python programming

and implemented the Visual Studio Code on the

Raspberry Pi. When all the setups are ready and the

authentication credentials are correct then the main

design page will open with the options of

“Generating Data”, “Choose File”, “Encrypt”, and

“Upload” as shown in Figure 11. Usage of the

options used in the proposed system hybrid

cryptosystem ECC+AES are as follows:

Generate Data

In the “Generate Data” tab, we created a sample CSV

or text file with specified rows, columns, and tokens.

It creates a random dataset. The maximum number

of rows and columns we created through this tab is

1000 rows and 1000 columns, as shown in Figure

11(a).

Choose File

In the “Choose File” Tab, we uploaded a file in CSV

or text format and entered plain text for encryption.

Encrypt

Through this tab, encryption is performed by using

ECC and AES algorithms. The generated keys and

encrypted message are displayed on the screen.

Under this tab, the “Decrypt” button also shows the

decryption of the ciphertext. Encryption and

decryption time are also visible on the top of the page

as shown in Figures 11(b) and 11 (c).

Upload

This tab uploads the encrypted file to the AWS S3

bucket cloud. We can view existing files and delete

files from the bucket as shown in Figure 11(d).

7. Proposed Algorithm Of Hybrid

Cryptosystem ECC+AES

The proposed algorithm shows the method of

encryption and decryption of data for secure

communication between sender and receiver. This

proposed algorithm combines Asymmetric ECC and

Symmetric AES to ensure the security of IoT data on

Raspberry Pi and secure the data during transmission

on the AWS cloud. Data is uploaded to the AWS

cloud using the S3 bucket. Our algorithm has been

compared to other algorithms and is more secure.

Additionally, it is worth noting that Raspberry Pi is

not commonly used for data generation. The

algorithm of Data Encryption, Encryption of key,

and Data Decryption methods are as follows:

7.2. Proposed Encryption Method

In this system, the encryption method is used for

encrypting the generated data on Raspberry Pi and it

also encrypts the AES key.

Algorithm 1: The Proposed Encryption

Method

Input:

plaintext: the data to be encrypted

ecc_public_key: the public key for ECC

encryption

aes_key: the key for AES encryption

Output: Encrypted Data

Step 1: Generate random AES initialization

vector (IV)

Step 2: Encrypt plaintext using AES with

generated IV and key

Step 3: Encrypt AES key using ECC with public

key

Step 4: Concatenate encrypted AES key and

ciphertext, separated by the IV

Step 5: Output encrypted data

7.3. Proposed Decryption Algorithm

In this proposed system, the decryption algorithm is

used to decrypt the ciphertext into its original text

with the help of the AES symmetric key.

8. Performance Analysis and Discussion of

Hybrid Cryptosystem ECC+AES

The proposed algorithm was implemented in the

Python programming language and tested in the

Visual Studio Code environment. The complete

system was successfully deployed and

operationalized on a Raspberry Pi showing its

efficiency and practicality. The Suggested algorithm

is compared with Hassan et.al. [9], who proposed

two robust cryptosystems AES and ECC for the

encryption and decryption of multimedia content

that is implemented on cloud platforms. Their

cryptographic method was implemented on a cloud

platform and tested the adaptability and scalability

of their proposed work. Abdulhameed et. al [10]

proposed a hybrid algorithm for the encryption and

decryption of data on Raspberry Pi and compared the

time to encrypt and decrypt from previous related

work of different authors.

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

906

Figure 11. Working on Various Tabs Used in the Proposed System

Algorithm 2: Decryption Method

Inputs:

encrypted_data: the data to be decrypted

ecc_private_key: the private key for ECC decryption

Output: decrypted plaintext

Step 1: The first key_length bytes of encrypted_data

are extracted as the encrypted AES key, and the next

iv_length bytes are extracted as the initialization

vector iv.

Step 2: The remaining bytes of encrypted_data are

extracted as the ciphertext encrypted using AES.

Step 3: The AES key encryption encrypted_aes_key is

decrypted using ECC decryption with the

ecc_private_key. The resulting AES key is stored in

aes_key.

Step 4: The encrypted ciphertext is decrypted using

AES decryption with the aes_key and iv extracted in

step 1. The resulting plaintext data is stored in

plaintext.

Step 5: Finally, the plaintext is returned as the output

of the decryption process.

Abdul Hammed et. al. used a Raspberry Pi device for

encryption and decryption, but data was not

uploaded to any cloud environment. Our innovative

algorithm not only encrypts the public and private

keys of Elliptic Curve Cryptography (ECC) but also

secures the keys of Advanced Encryption Standard

(AES). Our algorithm boasts faster encryption and

decryption times compared to two other algorithms

developed by different authors. Table 1 and Figure 5

provide a detailed comparison of the encryption

times of our proposed algorithm with those of

Hassan et al. [9] and Abdul Hammed et. al. [10].

Both author's groups did not use any AES key

encryption to enhance the security of the device and

data. Hassen et. al. does not use any IoT devices to

implement their algorithms. Our proposed algorithm

also encrypts the public and private keys of ECC as

well as it encrypts the keys of AES. The proposed

algorithm shows less encryption and decryption

timing than the other two compared algorithms.

Table 1 and Figure 12 shows the time taken by the

proposed hybrid cryptosystem ECC+AES algorithm

to encrypt data,

a). Generate Data Tab

b). Choose File Tab

c). Encrypt Tab

d). Cloud Tab

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

907

Table 1. Comparison of Encryption, Decryption, and Uploading Time of Generated Data on RPi

Figure 12. Comparison of Encryption, Decryption, and Uploading Time

Table 2. Comparison of Encryption Time of Plaintext between the Previous and Proposed Presented Algorithms.

Figure 13. Size of File vs Encryption Time

0

0,05

0,1

0,15

0,2

17 26 64 641 6500

T
im

e
in

 S
ec

o
n

d

File Size in Bytes

Comparision of Encryption Time

Hassan et.al [9] Abdulhameed et. al [10] Proposed Algorithm

Size of File

(CSV File in

bytes)

No. of Rows &

Columns

Encryption Time

(in seconds)

Decryption Time

(in seconds)

Uploading Time on

the Cloud

(in seconds)

6 1*1 0.169803 0.090174 0.153470

224 5*5 0.172257 0.132702 0.179805

793 10*10 0.191661 0.160461 0.183807

70100 100*100 0.274244 0.201486 0.344131

6900000 1000*1000 0.476506 0.362142 0.708058

Plaintext Size (Txt file in

Bytes)

No. of

Tokens

Hassan et.al [9] Abdulhameed et. al

[10]

Proposed

Algorithm

17 3 0.120301 0.122636 0.114751

26 5 0.121542 0.129159 0.118202

64 10 0.138482 0.142619 0.133809

641 100 0.165732 0.168281 0.156681

6500 1000 0.174831 0.178308 0.171398

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

1*1 5*5 10*10 100*100 1000*1000

(CSV File in

bytes)

6 224 793 70100 6900000

T
im

e
in

 S
ec

o
n

d
s

Number of Rows and Colums of Files in Bytes

Comparision of Encyption, Decryption and Uploading Time

Encryption Time (in seconds) Decryption Time (in seconds) Uploading Time on AWS Cloud (in seconds)

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

908

Table 3. Comparison of Decryption Time of plaintext between the Previous and Proposed Presented Algorithms.

Figure 14. Size of File vs Decryption Time

decrypt data and upload data on Raspberry Pi. Table

2 and Figure 13 show the comparison of the

encryption time of the proposed algorithm with

Hassan et.al [9], and Abdulhameed et. al [10]. Table

3 and Figure 14 shows the comparison of the

decryption time of the proposed algorithm with

Hassan et.al [9], and Abdulhameed et. al [10].

9. Conclusions

In this research, we use the cryptographic algorithm

of ECC+AES that helps to enhance the Security of

IoT data on the Raspberry Pi and the cloud

environment. Authors system encrypt the data or file

and decrypt it. Files or data can be easily uploaded

on the AWS S3 bucket. The Proposed algorithm is

very secure on Raspberry Pi 4 Model B and easily

encrypts, decrypts, and uploads files in very little

time. After the result analysis and comparison with

the previously designed AES-ECC-based algorithm

it is found that our proposed algorithm is secure and

user-friendly with various IoT devices as compared

to others as shown in the comparison table and

figure. In this system, the authorized user can only

remotely access the Raspberry Pi after creating an

account on Raspberry Pi and those who create their

account on the S3 bucket of AWS can only upload

the encrypted and decrypted data on this bucket.

Finally, the main part of the system is that it secures

IoT devices and generates data either in the form of

text or in CSV. This system generates 1000 rows and

1000 columns of data and easily encrypts, decrypts,

and uploads it.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

0

0,05

0,1

0,15

0,2

17 26 64 641 6500

T
im

e
in

 S
ec

o
n

d
s

File Size in Bytes

Comparision of Decryption Time

Hassan et.al [9] Abdulhameed et. al [10] Proposed Algorithm

Plaintext Size

(Txt file & bytes)

No. of

Tokens

Hassan et.al [9] Abdulhameed et. al [10] Proposed

Algorithm

17 3 0.118786 0.119649 0.105815

26 5 0.119659 0.121617 0.091441

64 10 0.134936 0.139392 0.096203

641 100 0.163571 0.163857 0.083261

6500 1000 0.171363 0.174753 0.083620

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

909

are not publicly available due to privacy or

ethical restrictions.

References

[1] N. Kashyap, A. Rana, V. Kansal and H. Walia (2021),

"Improve Cloud Based IoT Architecture Layer

Security - A Literature Review," 2021 International

Conference on Computing, Communication, and

Intelligent Systems (ICCCIS), Greater Noida, India,

pp. 772-777, doi:

10.1109/ICCCIS51004.2021.9397146.

[2] Kapito, B., Nyirenda, M., & Kim, H. (2021). Privacy-

preserving Machine Authenticated Key Agreement

for the Internet of Things. International Journal of

Computer Networks and Communications, 13(2), 99-

120.

[3] Na, Y., Joo, Y., Lee, H., Zhao, X., Sajan, K. K.,

Ramachandran, G., & Krishnamachari, B. (2020,

May). Enhancing the reliability of IoT data

marketplaces through security validation of IoT

devices. In 2020 16th International Conference on

distributed computing in Sensor Systems

(DCOSS) (pp. 265-272). IEEE, DOI

10.1109/DCOSS49796.2020.00050

[4] Kashyap, N., Rana, A., Kansal, V., & Walia, H. (2021,

September). Enhanced Data Security and

Authentication Techniques for IoT Devices on Cloud.

In 2021 9th International Conference on Reliability,

Infocom Technologies and Optimization (Trends and

Future Directions)(ICRITO) (pp. 1-6). IEEE, doi:

10.1109/ICRITO51393.2021.9596232

[5] Kashyap, N., Sinhaa, S., & Kansal, V. (2024). A

Hybrid Lightweight Method of ABE with SHA1

Algorithm for Securing the IoT Data on

Cloud. International Journal of Performability

Engineering, 20(3).

doi: 10.23940/ijpe.24.03.p1.131138

[6] Ashraf, Z., Sohail, A., & Yousaf, M. (2023). Robust

and lightweight symmetric key exchange algorithm

for next-generation IoE. Internet of Things, 22,

100703, https://doi.org/10.1016/j.iot.2023.100703

[7] Rzepka, K., Szary, P., Cabaj, K., & Mazurczyk, W.

(2024). Performance evaluation of Raspberry Pi 4 and

STM32 Nucleo boards for security-related operations

in IoT environments. Computer Networks, 242,

110252,

https://doi.org/10.1016/j.comnet.2024.110252

[8] Rajan, D. A. J., & Naganathan, E. R. (2022). Trust

based anonymous intrusion detection for cloud

assisted WSN-IOT. Global Transitions

Proceedings, 3(1), 104-108.,

https://doi.org/10.1016/j.gltp.2022.04.022

[9] Hassan, H. E. R., Tahoun, M., & ElTaweel, G. S.

(2020). A robust computational DRM framework for

protecting multimedia contents using AES and

ECC. Alexandria Engineering Journal, 59(3), 1275-

1286., https://doi.org/10.1016/j.aej.2020.02.020

[10] Abdulhameed, H. A., Abdalmaaen, H. F.,

Mohammed, A. T., Mosleh, M. F., & Abdulhameed,

A. A. (2022, March). A lightweight hybrid

cryptographic algorithm for WSNs tested by the

diehard tests and the raspberry Pi. In 2022

International Conference on Computer Science and

Software Engineering (CSASE) (pp. 271-276).

IEEE., DOI: 10.1109/CSASE51777.2022.9759589

[11] Urooj, S., Lata, S., Ahmad, S., Mehfuz, S., &

Kalathil, S. (2023). Cryptographic data security for

reliable wireless sensor network. Alexandria

Engineering Journal, 72, 37-50.,

https://doi.org/10.1016/j.aej.2023.03.061

[12] Suárez-Albela, M., Fernández-Caramés, T. M.,

Fraga-Lamas, P., & Castedo, L. (2018, June). A

practical performance comparison of ECC and RSA

for resource-constrained IoT devices. In 2018 Global

Internet of Things Summit (GIoTS) (pp. 1-6). IEEE.,

DOI: 10.1109/GIOTS.2018.8534575

[13] Zodpe, H., & Sapkal, A. (2020). An efficient AES

implementation using FPGA with enhanced security

features. Journal of King Saud University-

Engineering Sciences, 32(2), 115-122,

https://doi.org/10.1016/j.jksues.2018.07.002

[14] Challa, S., Das, A. K., Odelu, V., Kumar, N.,

Kumari, S., Khan, M. K., & Vasilakos, A. V. (2018).

An efficient ECC-based provably secure three-factor

user authentication and key agreement protocol for

wireless healthcare sensor networks. Computers &

Electrical Engineering, 69, 534-554,

http://dx.doi.org/10.1016/j.compeleceng.2017.08.00

3

[15] Krishnamoorthy, M., & Perumal, V. (2017). Secure

and efficient hand-over authentication in WLAN

using elliptic curve RSA. Computers & Electrical

Engineering, 64, 552-566,

http://dx.doi.org/10.1016/j.compeleceng.2017.06.00

2

[16] Williams, P., Dutta, I. K., Daoud, H., & Bayoumi, M.

(2022). A survey on security in internet of things with

a focus on the impact of emerging

technologies. Internet of Things, 19, 100564,

https://doi.org/10.1016/j.iot.2022.100564

[17] Arreaga, N. X., Enriquez, G. M., Blanc, S., &

Estrada, R. (2023). Security Vulnerability Analysis

for IoT Devices Raspberry Pi using

PENTEST. Procedia Computer Science, 224, 223-

230. https://creativecommons.org/licenses/by-nc-

nd/4.0)

[18] Abas, S. U., Duran, F., & Tekerek, A. (2023). A

Raspberry Pi based blockchain application on IoT

security. Expert Systems with Applications, 229,

120486. https://doi.org/10.1016/j.eswa.2023.120486

[19] Kumar, K., Ramkumar, K. R., & Kaur, A. (2022). A

lightweight AES algorithm implementation for

encrypting voice messages using field programmable

gate arrays. Journal of King Saud University-

Computer and Information Sciences, 34(6), 3878-

3885. https://doi.org/10.1016/j.jksuci.2020.08.005

[20] Sowjanya, K., Dasgupta, M., & Ray, S. (2021). A

lightweight key management scheme for key-escrow-

free ECC-based CP-ABE for IoT healthcare

systems. Journal of Systems Architecture, 117,

102108.

https://doi.org/10.1016/j.sysarc.2021.102108

[21] Martínez-Fuentes, O., Díaz-Muñoz, J. D., Muñoz-

Vázquez, A. J., Tlelo-Cuautle, E., Fernández-Anaya,

https://doi.org/10.23940/ijpe.24.03.p1.131138
https://doi.org/10.1016/j.iot.2023.100703
https://doi.org/10.1016/j.comnet.2024.110252
https://doi.org/10.1016/j.gltp.2022.04.022
https://doi.org/10.1016/j.aej.2020.02.020
https://doi.org/10.1109/CSASE51777.2022.9759589
https://doi.org/10.1016/j.aej.2023.03.061
https://doi.org/10.1109/GIOTS.2018.8534575
https://doi.org/10.1016/j.jksues.2018.07.002
http://dx.doi.org/10.1016/j.compeleceng.2017.08.003
http://dx.doi.org/10.1016/j.compeleceng.2017.08.003
http://dx.doi.org/10.1016/j.compeleceng.2017.06.002
http://dx.doi.org/10.1016/j.compeleceng.2017.06.002
https://doi.org/10.1016/j.iot.2022.100564
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1016/j.eswa.2023.120486
https://doi.org/10.1016/j.jksuci.2020.08.005
https://doi.org/10.1016/j.sysarc.2021.102108

Neha KASHYAP, Sapna SINHA, Vineet KANSAL/ IJCESEN 11-1(2025)899-910

910

G., & Cruz-Vega, I. (2024). Family of controllers for

predefined-time synchronization of Lorenz-type

systems and the Raspberry Pi-based

implementation. Chaos, Solitons & Fractals, 179,

114462.

https://doi.org/10.1016/j.chaos.2024.114462

[22] McBride, W. J., & Courter, J. R. (2019). Using

Raspberry Pi microcomputers to remotely monitor

birds and collect environmental data. Ecological

Informatics, 54, 101016.

https://doi.org/10.1016/j.ecoinf.2019.101016

[23] Kisoon, R., Gumede, K., Fernandes, J., & Stopforth,

R. (2024). Design of a remotely accessible satellite

tracking system. In MATEC Web of

Conferences (Vol. 406, p. 04012). EDP Sciences.

[24] Poorana Senthilkumar, S., Wilfred Blessing, N. R.,

Rajesh Kanna, R., & Karthik, S. (2024), Performance

Evaluation of Predicting IoT Malicious Nodes Using

Machine Learning Classification Algorithms.

International Journal of Computational and

Experimental Science and Engineering, 10(3), 341-

349. DOI: https://doi.org/10.22399/ijcesen.395

[25] Olariu, F., Alboaie, L., & Grămescu, R. (2024).

Beyond Cloud Boundaries: An Analytical Case

Study on the Migration of a Modular Monolith to

Azure, AWS, and Google Cloud Platform. Procedia

Computer Science, 246, 2782-2791.

https://doi.org/10.1016/j.procs.2024.09.393

[26] N. Vidhya, & C. Meenakshi. (2025). Blockchain-

Enabled Secure Data Aggregation Routing (BSDAR)

Protocol for IoT-Integrated Next-Generation Sensor

Networks for Enhanced Security. International

Journal of Computational and Experimental Science

and Engineering, 11(1).

https://doi.org/10.22399/ijcesen.722

[27] Amjan Shaik, Bhuvan Unhelkar, & Prasun

Chakrabarti. (2025). Exploring Artificial Intelligence

and Data Science-Based Security and its Scope in IoT

Use Cases. International Journal of Computational

and Experimental Science and Engineering, 11(1).

https://doi.org/10.22399/ijcesen.869

[28] Alkhatib, A., Albdor , L., Fayyad, S., & Ali, H.

(2024). Blockchain-Enhanced Multi-Factor

Authentication for Securing IoT Children’s Toys:

Securing IoT Children’s Toys. International Journal

of Computational and Experimental Science and

Engineering, 10(4).

https://doi.org/10.22399/ijcesen.417

[29] P. Jagdish Kumar, & S. Neduncheliyan. (2024). A

novel optimized deep learning based intrusion

detection framework for an IoT networks.

International Journal of Computational and

Experimental Science and Engineering, 10(4).

https://doi.org/10.22399/ijcesen.597

[30] Vutukuru, S. R., & Srinivasa Chakravarthi Lade.

(2025). CoralMatrix: A Scalable and Robust Secure

Framework for Enhancing IoT Cybersecurity.

International Journal of Computational and

Experimental Science and Engineering, 11(1).

https://doi.org/10.22399/ijcesen.825

https://doi.org/10.1016/j.chaos.2024.114462
https://doi.org/10.1016/j.ecoinf.2019.101016
https://doi.org/10.22399/ijcesen.395
https://doi.org/10.1016/j.procs.2024.09.393
https://doi.org/10.22399/ijcesen.722
https://doi.org/10.22399/ijcesen.869
https://doi.org/10.22399/ijcesen.417
https://doi.org/10.22399/ijcesen.597

