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Abstract:  
 

Enterprises continue to experience rising cloud infrastructure costs as application 

portfolios expand and cloud‑native architectures proliferate. This paper presents a 

production‑validated, engineering‑driven cloud cost optimization framework 

implemented at a large U.S. healthcare enterprise operating a multi‑account, 

multi‑region platform with unpredictable demand, strict compliance requirements, and 

high‑availability expectations. The framework integrates utilization‑based rightsizing, 

demand‑aware autoscaling, storage lifecycle management, commitment‑based pricing, 

and continuous governance through policy‑as‑code, explicit cost ownership, and cost–

performance observability, embedding cost optimization into routine operations via 

automated enforcement and recurring review checkpoints. Over two fiscal years, the 

initiative reduced annualized infrastructure cost by approximately 18% in year one and 

an additional 5% in year two, despite continued growth in platform demand and overall 

spend, while availability, latency, and error rates remained within established 

service‑level objectives. The results demonstrate that cloud cost efficiency can be 

operationalized as a continuous engineering discipline – complementing site reliability 

engineering practices – rather than treated as an episodic financial exercise, and provide 

a repeatable, scalable model for enterprises seeking measurable and sustainable 

optimization. 

 

1. Introduction 
 

Public cloud adoption has accelerated across 

industries as organizations pursue scalable, 

resilient, and rapidly deployable application 

platforms. However, the proliferation of cloud-

native architectures has introduced significant 

complexity in managing operational costs, often 

undermining the economic benefits originally 

anticipated. Industry analyses, including the 

Bessemer Venture Partners State of the Cloud 

report, indicate that efficiency has become a critical 

concern for cloud-native organizations, with 

enterprises shifting focus from growth at scale to 

sustainable, cost-efficient operations [1]. 

Existing academic and practitioner literature largely 

emphasizes theoretical optimization models or 

isolated tooling approaches, offering limited insight 

into how cost optimization strategies can be 

sustained at enterprise scale in production 

environments. Prior work examining the economics 

of cloud and serverless computing highlights that 

while cloud platforms provide flexibility and 

elasticity, certain workload patterns and 

architectural choices can result in unexpectedly 

high costs compared to traditional infrastructure 

models [2]. These findings underscore the need for 

cost optimization to be addressed as a systemic, 

engineering-driven problem rather than a collection 

of ad hoc interventions. 

In regulated domains such as healthcare, cost 

optimization is further constrained by strict 

compliance requirements, high-availability 

expectations, and patient-critical service-level 

objectives (SLOs). This paper presents a 

production-tested, end-to-end cloud cost 

optimization framework implemented within a 

multi-account, mission-critical healthcare platform 

characterized by variable demand patterns. The 

framework integrates workload-aware scaling, 

infrastructure rightsizing, storage lifecycle policies, 

commitment-based pricing, and continuous 
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governance mechanisms, including policy-as-code, 

explicit cost ownership, and cost–performance 

observability. 

This paper makes three primary contributions:  

1. An engineering-driven optimization 

framework that combines technical controls 

with organizational governance.  

2. Measured, multi-year financial and 

operational outcomes demonstrating 

sustained cost reduction without 

performance degradation.  

3. A repeatable model to prevent post-

optimization regression by embedding cost 

accountability and enforcement into 

standard operational workflows. 

 

2. Problem Context and Research Motivation 

 

The subject environment is a distributed, multi-

account, multi-account public cloud platform 

supporting mission critical healthcare applications. 

Demand exhibits pronounced diurnal, seasonal, and 

event driven variability, with unpredictable spikes. 

Rapid service growth, decentralized ownership 

across numerous application teams, and uneven 

cost accountability led to sustained infrastructure 

cost escalation that threatened the economic 

rationale for cloud adoption. The platform 

comprises thousands of compute instances, dozens 

of managed databases, and petabyte scale storage 

distributed across geographic regions, creating a 

broad and interdependent optimization space that 

requires coordinated intervention. 

Prior healthcare cloud studies focus primarily on 

security and compliance, with limited longitudinal 

analysis of cost efficiency outcomes. Conventional 

cost cutting measures proved insufficient at scale. 

Manual rightsizing and one-off cleanup campaigns 

generated temporary relief but introduced 

operational risk, required significant human effort, 

and frequently regressed as teams evolved. Budget 

caps and spending alerts provided limited guidance: 

they obscured the distinction between mission 

critical and non-critical consumption and did not 

prevent inefficient resource patterns (e.g., over 

provisioned compute to peak, idle premium storage, 

unaligned commitments). Industry surveys 

consistently report that optimizing existing cloud 

use and managing cloud spend remain top priorities 

and persistent challenges for enterprises, 

highlighting the need for systemic solutions rather 

than tactical fixes [3]. These observations indicate 

that cost governance, not just isolated technical 

remediation, is the dominant failure mode. 

The healthcare context compounds these 

challenges. Compliance obligations and the 

protection of sensitive data impose strict controls, 

while high availability (HA) expectations and 

patient critical SLOs constrain the aggressiveness 

of optimization strategies. Prior analyses of cloud 

economics note that certain workload patterns and 

architectural decisions can yield unexpectedly high 

costs relative to traditional infrastructure, despite 

cloud elasticity [2], and healthcare specific studies 

emphasize that security, legal, and availability 

requirements limit optimization flexibility while 

elevating baseline costs [4]. Consequently, there is 

a clear need for a holistic, engineering driven 

framework that integrates technical levers with 

explicit governance, including policy as code, cost 

ownership, and cost–performance observability to 

achieve repeatable and sustained outcomes without 

compromising reliability. 

 

3. Related Work and Background 

 

Prior work and industry practice have explored 

individual optimization mechanisms, including 

utilization‑based rightsizing, autoscaling, storage 

lifecycle tiering, and commitment‑based pricing, 

often demonstrating benefits in constrained 

settings. However, the literature tends to emphasize 

theoretical models or tool‑specific techniques with 

limited evidence of long‑term durability in 

production at enterprise scale [1], [2]. 

Existing FinOps and cloud cost optimization 

research can be categorized into three primary 

streams, each with distinct limitations that this 

work addresses: 

 

3.1 Technical Optimization Studies:  
 

Iqbal et al. [4] and Roy et al. [5] present adaptive 

resource provisioning and predictive autoscaling 

models demonstrating efficiency gains in controlled 

environments, while AWS and cloud provider 

documentation [2] offers best‑practice guidance on 

rightsizing and commitment strategies. These 

contributions focus predominantly on individual 

optimization techniques, autoscaling, rightsizing, or 

commitment planning—evaluated in isolation or 

simulation. In contrast, this work implements a 

coordinated multi‑pillar framework in a production 

healthcare environment, demonstrating how 

simultaneous application of complementary 

techniques yields compounding benefits and 

prevents cost leakage across the optimization 

surface. Moreover, prior studies report initial 

efficiency improvements but provide limited 

evidence of sustained outcomes beyond 6–12 

months; this work presents two‑year longitudinal 

results with demonstrated regression prevention. 
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3.2 FinOps Governance and Organizational 

Practice:  
 

Industry reports from McKinsey [6], the FinOps 

Foundation, and cloud maturity frameworks 

emphasize governance mechanisms such as 

showback/chargeback, tagging taxonomies, and 

cross‑functional collaboration to align engineering 

and finance [1], [3], [7]. While these frameworks 

establish valuable organizational principles, they 

typically lack detailed technical implementation 

specifications or empirical validation in production 

systems. Published case studies often report 

qualitative adoption challenges or cultural shifts 

without quantifying sustained financial outcomes or 

operational impact. This work bridges that gap by 

presenting an operationalized governance 

architecture—policy‑as‑code enforcement, 

mandatory cost ownership via CI/CD gates, and 

cost–performance observability—integrated with 

technical controls, and validates the approach with 

measured multi‑year cost reductions and 

maintained SLOs. 

 

3.3 SRE and Reliability‑Cost Integration:  

 

The Site Reliability Engineering literature and 

Google's SRE practices emphasize error budgets, 

observability, and resilience engineering but treat 

cost efficiency as secondary to availability and 

latency objectives [8]. Recent DevOps and SRE 

surveys acknowledge growing interest in cost as a 

reliability dimension [7], yet few studies 

operationalize cost optimization as a first‑class SRE 

discipline with the same rigor applied to availability 

or performance. This work explicitly positions cost 

efficiency as complementary to SRE practices, 

embedding cost observability, automated 

guardrails, and blameless post‑optimization reviews 

into standard reliability workflows, demonstrating 

that cost and reliability objectives can be jointly 

optimized rather than traded off. 

 

3.4 Healthcare Cloud Studies:  
 

Prior healthcare‑focused cloud research emphasizes 

security, compliance, and clinical data protection 

[3], with limited analysis of cost efficiency 

outcomes in production environments subject to 

HIPAA, HA, and patient‑critical SLOs. Existing 

studies acknowledge that regulatory constraints 

elevate baseline costs and narrow optimization 

flexibility but provide minimal guidance on 

achieving measurable cost reductions within these 

constraints. This work directly addresses regulated 

healthcare environments by presenting 

production‑validated techniques that respect 

compliance boundaries while achieving 

double‑digit cost reductions. 

 

3.5 Positioning and Novelty:  

While individual elements of the proposed 

framework—rightsizing, autoscaling, lifecycle 

policies, commitments, and governance practices—

exist in prior literature, empirical demonstrations 

that (i) integrate these techniques into a unified, 

policy‑enforced system, (ii) implement the 

framework in a mission‑critical regulated 

environment, (iii) preserve reliability SLOs 

throughout optimization, (iv) report sustained 

multi‑year cost reductions despite platform growth, 

and (v) prevent regression through automated 

governance remain comparatively rare in the public 

domain. This work addresses that gap by 

operationalizing cost efficiency as a continuous 

engineering discipline aligned with SRE practices, 

combining technical controls with policy‑as‑code 

governance, and presenting longitudinal financial 

and operational outcomes in a large healthcare 

enterprise that simultaneously validate feasibility, 

durability, and repeatability. 

 

4. System and Environment 

Platform Scope 

 

The evaluated platform supports a portfolio of 

patient‑facing and clinical applications with 

diurnal, seasonal, and event‑driven load variability. 

The estate spans multiple regions and 

organizational accounts and includes thousands of 

compute resources (VMs and containerized 

workloads), dozens of managed database services, 

and petabyte‑scale object and block storage. 

Services are owned by independent application 

teams, with a central platform/SRE group providing 

shared infrastructure, guardrails, and governance. 

 

4.1 Baseline State and Anti‑Patterns 

 

Prior to the initiative, several cost‑inefficient 

patterns were prevalent: (1) static over‑provisioning 

to peak demand, (2) limited rightsizing discipline 

and drift over time, (3) dormant or low‑temperature 

data retained on premium storage tiers, (4) under‑ 

or mis‑aligned commitments relative to workload 

baselines, and (5) unclear cost ownership and 

inconsistent tagging, which reduced the 

effectiveness of spend analysis and accountability. 

These conditions reflected a combination of 

technical debt and organizational fragmentation. 

 

4.2 Constraints 
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Optimization levers were bounded by regulatory 

and compliance requirements, HA expectations, 

and patient‑critical SLOs. Changes to capacity, 

deployment topology, or storage policy required 

controlled experimentation, progressive rollout, and 

observability to ensure no degradation in 

availability, latency, or error rates. 

 

4.3 Operational Context and Observability 

Infrastructure 

 

The platform maintained unified observability and 

cost telemetry infrastructure comprising multiple 

integrated layers. Metrics collection leveraged a 

Prometheus-compatible time-series database with 

custom exporters capturing CPU, memory, network 

I/O, disk utilization, and application-layer golden 

signals (request rate, error rate, latency 

distributions) at 15-second granularity across all 

compute resources. Distributed tracing via 

OpenTelemetry instrumentation enabled end-to-end 

request flow analysis and service dependency 

mapping. Log aggregation centralized application 

and infrastructure logs with structured metadata for 

filtering and correlation. Cost telemetry integrated 

native cloud provider billing APIs and cost 

allocation tags, correlating resource consumption 

with financial spend at hourly granularity and 

enabling drill-down to individual service, team, 

environment, and workload dimensions. 

This observability substrate was augmented by a 

unified analytics layer that joined cost, utilization, 

and performance data across services and time 

windows. Custom dashboards and alerting rules 

enabled real-time cost–performance correlation, 

allowing engineers to identify optimization 

opportunities (e.g., sustained low CPU utilization 

indicating rightsizing candidates) and detect 

anomalies (e.g., cost spikes decoupled from traffic 

growth). Historical data retention of 18+ months 

supported trend analysis, seasonality detection, and 

validation of demand forecasting models used in 

predictive autoscaling. 

A central policy‑as‑code layer enforced guardrails 

including instance class allowlists, mandatory 

autoscaling configurations for production 

workloads, storage lifecycle defaults, and 

commitment hygiene rules, with automated drift 

detection comparing deployed state against desired 

policy. Recurring cost reviews and automated 

validation checks were embedded into standard 

operational workflows, including weekly team-

level spend reviews, monthly cross-team 

optimization forums, and quarterly architecture 

governance sessions requiring documented cost 

impact assessments for significant infrastructure 

changes. This environment provided the necessary 

substrate—observability, governance tooling, and 

operational discipline—to implement and validate a 

continuous cost optimization program without 

jeopardizing reliability. 

 

5. Optimization Framework and Methodology 

The proposed framework operationalizes cloud cost 

optimization as a continuous, engineering‑driven 

process rather than a one‑time corrective exercise. 

Optimization actions are derived from 

telemetry‑guided analysis, validated against 

service‑level objectives (SLOs) through controlled 

experimentation, and enforced via automated 

pipelines and policy‑as‑code governance to ensure 

durability. The framework integrates six 

complementary technical pillars spanning the 

infrastructure, platform, and governance layers. 

 

5.1 Utilization‑Based Rightsizing 

 

Utilization telemetry across CPU, memory, 

network, and storage, collected over extended 

historical windows (30–90 days) and supplemented 

by near‑real‑time signals, served as the basis for 

rightsizing recommendations. Analysis workflows 

combined Prometheus query results with custom 

Python-based analytics scripts that identified 

resources exhibiting sustained underutilization—

defined as CPU utilization consistently below 40% 

or memory utilization below 50% during business-

hours peaks, with no significant variability across 

daily or weekly cycles. 

Resources meeting underutilization criteria were 

mapped to more appropriate instance classes or 

sizes using a decision matrix that considered 

workload characteristics (CPU-bound, memory-

bound, network-intensive, or balanced) alongside 

cost-performance ratios across available instance 

families. Representative rightsizing actions 

included: 

API gateway tier: Transitioned from m5.2xlarge 

(8 vCPU, 32 GiB) to m5.xlarge (4 vCPU, 16 GiB) 

instances after observing sustained CPU utilization 

of 25–30% and memory at 35–40%, achieving 42% 

unit cost reduction while maintaining p95 latency < 

100ms and 99.95% availability. 

Background processing workloads: Migrated 

from general-purpose m5.large to compute-

optimized c5.large instances for CPU-intensive 

batch jobs, reducing per-instance cost by 8% while 

improving job completion time by 12% due to 

higher CPU performance. 

Database read replicas: Downsized from 

r5.4xlarge to r5.2xlarge (memory-optimized) after 

sustained memory utilization remained below 45%, 

yielding 50% cost savings with query latency 

degradation < 5ms (within acceptable thresholds). 



Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798 

 

790 

 

Recommendations were applied through canary 

deployments: changes were first validated on 5% of 

fleet capacity, monitored for 48–72 hours against 

predefined golden KPIs (availability ≥ 99.9%, p95 

latency within ±10% of baseline, error rate < 0.1%), 

and progressively rolled out to 25%, 50%, and 

100% of capacity upon successful validation at 

each stage. Automated rollback triggered if any 

KPI threshold was breached. This deterministic, 

workload‑aware provisioning replaced static 

allocation models that historically led to chronic 

over‑provisioning in variable workloads. Prior 

studies have demonstrated that utilization‑driven 

adjustments based on workload characteristics 

significantly outperform static provisioning 

strategies in both efficiency and stability [5]. 

 

5.2 Demand‑Aware Autoscaling 

 

To address inefficiencies introduced by fixed 

capacity planning, the framework implemented 

demand‑aware autoscaling combining predictive, 

scheduled, and reactive mechanisms. Historical 

demand patterns (request volume, queue depth, 

database connection counts) were analyzed using 

time-series forecasting models (ARIMA and 

exponential smoothing) trained on 90-day rolling 

windows to inform predictive scaling models, 

enabling capacity adjustments 15–30 minutes ahead 

of anticipated load changes. 

Specific autoscaling configurations implemented 

included: 

Scheduled scaling for patient portal 

applications: Automatic scale-up from baseline 20 

instances to 60 instances at 06:00 local time (ahead 

of peak clinic appointment check-in hours), scale-

down to 25 instances at 20:00, and further reduction 

to 15 instances overnight and weekends, 

eliminating 40% of off-hours capacity waste while 

maintaining sub-second response times during 

traffic surges. 

Predictive scaling for data processing pipelines: 

Machine learning model predictions triggered 

proactive scaling 20 minutes before batch job 

submissions (detected via queue depth monitoring), 

reducing scale-up latency from 8–10 minutes 

(reactive threshold-based) to < 2 minutes and 

eliminating 15% of job failures caused by 

insufficient capacity during demand spikes. 

Reactive autoscaling with bounded limits: 
Horizontal pod autoscalers (HPA) in Kubernetes 

clusters configured with target CPU utilization of 

70%, minimum 3 replicas, maximum 50 replicas, 

and 2-minute stabilization windows to prevent 

oscillation. Scale-up velocity limited to +50% per 

5-minute interval; scale-down limited to −25% per 

10-minute interval to ensure safe warm-up and 

graceful shutdown. 

Where supported, vertical scaling (vertical pod 

autoscaler in Kubernetes) complemented horizontal 

instance scaling for stateful workloads, adjusting 

CPU and memory requests/limits within bounds of 

0.5–8 vCPU and 2–32 GiB based on observed 

utilization, bounded by safety limits and warm‑up 

controls to prevent destabilizing memory-intensive 

processes. Research indicates that proactive scaling 

approaches improve cost efficiency and 

performance consistency compared to purely 

reactive threshold‑based methods by reducing 

scale‑up latency and capacity shortfalls during 

demand surges [6]. 

 

5.3 Storage Lifecycle Optimization 

 

Storage optimization targeted the disproportionate 

cost impact of retaining low‑activity data on 

premium tiers. Access‑frequency analysis queried 

cloud provider storage analytics APIs to identify 

objects with zero access in trailing 30-day, 90-day, 

and 180-day windows. Retention requirements and 

recovery objectives (RTO/RPO) informed 

automated lifecycle policies that transitioned data 

across hot (standard SSD), warm (infrequent 

access), cold (archival with hours retrieval), and 

archival (deep archive with 12-hour retrieval) tiers. 

Lifecycle transition rules included: 

Medical imaging archives: Transition from hot to 

warm storage after 90 days of zero access, warm to 

cold after 180 days, and cold to deep archive after 

365 days, subject to 7-year legal retention and 24-

hour RTO compliance requirements, achieving 

65% storage cost reduction for datasets > 1 year 

old. 

Application logs: Transition to infrequent access 

after 30 days, archive after 90 days, with automatic 

deletion after 2 years (retention policy), reducing 

log storage costs by 70% while maintaining audit 

compliance. 

Highly accessed datasets remained on premium 

storage, while infrequently accessed or dormant 

data was progressively tiered down after defined 

inactivity periods. Exceptions were governed 

through a centralized registry where teams 

documented RTO/RPO requirements, compliance 

obligations, and business justifications for retaining 

data on higher-cost tiers, ensuring that lifecycle 

transitions reduced unit storage cost at scale 

without violating operational or regulatory 

requirements. 

 

5.4 Commitment‑Based Pricing Optimization 
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For workloads exhibiting stable baseline 

consumption, commitment‑based pricing 

instruments (Reserved Instances, Savings Plans, 

Committed Use Discounts) were applied to capture 

provider discounts (20–40% off on-demand 

pricing) while minimizing over‑commitment risk. 

Baseline utilization analysis examined 90-day 

minimum sustained capacity ("floor" consumption) 

across instance families and regions, excluding 

burst traffic and temporary capacity. Growth 

projections (historical trend analysis and business 

planning inputs) informed coverage decisions, 

targeting 70–80% of baseline capacity under 

commitments to retain flexibility for variable 

workloads and architectural changes. 

Coverage decisions were reviewed monthly via 

automated reports comparing actual vs. committed 

utilization, triggering alerts when utilization fell 

below 85% (under-utilization risk) or exceeded 

95% (opportunity for additional coverage). 

Commitments were adjusted quarterly in alignment 

with architectural changes (e.g., containerization 

reducing VM footprint) or sustained demand 

growth. This disciplined approach enabled 

sustained discount capture while retaining 

flexibility for variable workloads, achieving 28% 

effective cost reduction on committed capacity. 

 

5.5 Idle Resource Remediation 

 

Event‑driven and scheduled detectors identified idle 

or orphaned resources using tag-based ownership 

validation and activity telemetry. Automated 

detectors queried cloud provider APIs nightly to 

identify: 

● Unattached EBS volumes (storage not 

mounted to any instance) idle > 7 days 

● Elastic IP addresses not associated with 

running instances > 3 days 

● Load balancers with zero traffic > 14 days 

● Database instances with zero connections > 

7 days 

● Snapshots exceeding retention policies 

 

Automated remediation workflows enforced 

cleanup actions by default: resources flagged as idle 

received notifications to owning teams (via cost 

center tags) with 7-day grace periods, after which 

automated deletion occurred unless teams explicitly 

opted out via exception registry. Opt-out required 

documented business justification and executive 

approval for resources with monthly cost > $500. 

This capability addressed chronic accumulation of 

non‑value‑generating resources (representing 8–

12% of baseline spend) and served as a guardrail 

against cost regression. 

 

5.6. Governance and Orchestration 

 

All optimization techniques were orchestrated 

through policy‑as‑code controls implemented using 

HashiCorp Sentinel (for Terraform infrastructure-

as-code validation), AWS Config Rules (for 

runtime compliance), and Open Policy Agent 

(OPA) for Kubernetes admission control and 

integrated into continuous delivery pipelines. 

Policies enforced configuration standards 

including: 

● Mandatory autoscaling for production 

workloads (HPA or ASG required) 

● Storage lifecycle configuration for S3 

buckets and persistent volumes 

● Instance class allowlists (blocking 

oversized or previous-generation types) 

● Commitment hygiene (minimum utilization 

thresholds, periodic review gates) 

● Exception management workflows 

requiring documented approval chains 

Automated validation checks in CI/CD pipelines 

blocked non-compliant infrastructure deployments, 

while runtime drift detection compared deployed 

state against desired policy every 15 minutes, 

triggering automated remediation or alerts for 

human review. Recurring cost reviews (weekly 

team-level, monthly cross-team forums, quarterly 

architecture governance) and automated validation 

checks embedded optimization into standard 

operational workflows, enabling cost efficiency to 

function as a continuous engineering discipline 

aligned with site reliability engineering (SRE) 

practices. Governance is treated as a first‑class 

optimization pillar, providing enforcement, 

auditability, and regression prevention across all 

technical techniques. Detailed implementation of 

policy-as-code enforcement mechanisms, exception 

workflows, and organizational enablement is 

presented in Section 6. 

 

6. Implementation Architecture and Governance 

 

To ensure durability and prevent post‑optimization 

regression, the cost optimization framework was 

operationalized through a governance‑driven 

implementation architecture that embedded 

financial efficiency into standard engineering 

workflows. The architecture integrates explicit cost 

ownership, policy‑as‑code enforcement, cost–

performance observability, operational checkpoints, 

and team enablement mechanisms, enabling cost 

efficiency to function as a continuous control loop 

rather than an episodic financial activity. 

Implementation required initial investment in 

tooling infrastructure, policy development, 

observability integration, and organizational 
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enablement, with setup effort distributed across 

platform engineering (6 engineer-months), policy 

authoring and testing (3 engineer-months), training 

development and delivery (2 engineer-months), and 

tooling licenses/integrations (estimated annual cost 

of $180K for policy engines, observability platform 

extensions, and cost analytics tools). These 

investments were amortized across the first fiscal 

year and offset by cost savings realized within the 

initial 4–5 months of operation. 

 

6.1 Explicit Cost Ownership and Tagging 

 

Cost accountability was decentralized to application 

teams, replacing centralized infrastructure 

ownership models. All provisioned resources were 

required to carry mandatory metadata including 

owning team, application, environment 

(dev/staging/prod), and cost center, enforced 

through CI/CD pipeline validation gates 

implemented as pre-deployment hooks in GitLab 

CI/CD and AWS CodePipeline. Tag validation 

logic queried resource definitions in Terraform 

plans and CloudFormation templates, blocking 

deployments missing required tags or containing 

non-compliant tag values (validated against 

organizational registries of approved teams, 

applications, and cost centers maintained in a 

central configuration management 

database).Non‑compliant deployments were 

blocked at provisioning time with actionable error 

messages directing engineers to tagging 

documentation and team registration workflows, 

ensuring full attribution and enabling granular 

spend analysis across organizational, application, 

and environment dimensions. Tag compliance 

monitoring via scheduled AWS Config rules and 

custom scripts identified and flagged resources 

deployed outside CI/CD pipelines (manual console 

deployments), triggering automated notifications 

and requiring retroactive tag application within 48 

hours or resource termination. This approach aligns 

with industry guidance emphasizing explicit 

accountability and cost awareness as prerequisites 

for sustainable cloud financial management [7]. 

 

6.2 Policy‑as‑Code Controls 

 

Organizational cost optimization standards were 

encoded as executable policies and evaluated 

continuously at deployment and runtime using a 

multi-layer enforcement architecture: 

Infrastructure-as-Code Validation (Pre-

Deployment): HashiCorp Sentinel policies 

integrated into Terraform Enterprise workflows 

evaluated infrastructure definitions before 

provisioning, enforcing rules such as: 

● Instance type allowlists blocking previous-

generation (t2, m4) or oversized instance 

classes (> 16 vCPU) without architectural 

review approval 

● Mandatory autoscaling group or horizontal 

pod autoscaler configuration for production 

workloads (identified via environment tags) 

● Required lifecycle policies on S3 buckets 

and persistent volume claims 

● Commitment coverage targets requiring 

Reserved Instance or Savings Plan 

attribution for baseline-stable workload 

tiers 

Runtime Compliance Monitoring: AWS Config 

Rules, Azure Policy, and custom Lambda functions 

evaluated deployed resource configurations every 

15 minutes, detecting drift from desired state 

including: 

● Autoscaling configurations disabled or 

improperly bounded (min/max instance 

count violations) 

● Storage lifecycle policies removed or 

modified to retain data on premium tiers 

beyond approved durations 

● Uncommitted compute instances exceeding 

30-day runtime without approved exception 

● Resource tag modifications or deletions 

violating ownership accountability 

Kubernetes Admission Control: Open Policy 

Agent (OPA) deployed as a validating admission 

webhook intercepted pod creation requests, 

enforcing policies such as: 

● Resource requests/limits within approved 

bounds (CPU: 0.1–8 vCPU, memory: 256 

MiB–32 GiB) 

● Required horizontal pod autoscaler 

definitions for production namespaces 

● Pod disruption budgets ensuring safe scale-

down operations 

● Mandatory cost-allocation labels (team, 

application, environment) 

Exception Management Workflow: Teams 

requiring policy deviations submitted exception 

requests via a self-service portal (ServiceNow 

integration), documenting business justification, 

expected duration, and estimated cost impact. 

Exception requests triggered an approval workflow 

routing to: 

● Engineering manager approval for 

exceptions < $1K/month estimated impact 

and < 90 days duration 

● Director-level approval for exceptions 

$1K–$10K/month or 90–180 days 

● VP-level and architecture review board 

approval for exceptions > $10K/month or > 

180 days 
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Approved exceptions were encoded as policy 

overrides (resource-specific exemptions or 

temporary policy disablement) with automated 

expiration, requiring renewal upon expiration or 

automatic policy re-enforcement. Exception 

telemetry (request volume, approval rates, cost 

impact, expiration compliance) was reviewed 

quarterly to identify systemic policy gaps or 

emerging architectural patterns requiring policy 

refinement. Automated drift detection identified 

deviations from desired states, triggering 

remediation or blocking unsafe changes. Consistent 

with prior industry findings, automated governance 

proved essential to sustaining cost efficiency 

without incurring ongoing manual oversight [8]. 

 

6.3 Cost–Performance Observability 

 

Unified observability correlated cost telemetry with 

operational performance metrics, including 

availability, latency, throughput, and error rates, 

using integrated dashboards built on Grafana and 

custom analytics applications. Shared dashboards 

presented per-service and per-team views 

combining: 

● Hourly infrastructure cost trends (compute, 

storage, data transfer) with 7-day and 30-

day moving averages 

● Key reliability metrics: availability (uptime 

percentage), p50/p95/p99 latency 

distributions, error rates, request volume 

● Cost efficiency indicators: cost per request, 

cost per GB processed, cost per active user 

● Optimization opportunity signals: 

underutilized resources flagged by 

rightsizing analyzers, autoscaling 

effectiveness scores, commitment coverage 

percentages 

Engineers accessed real-time and historical views 

enabling cost‑performance trade‑off evaluation and 

quick identification of unintended regressions 

following optimization actions. Anomaly detection 

algorithms (statistical process control, seasonal 

decomposition) alerted on cost spikes decoupled 

from traffic growth or performance degradations 

coinciding with infrastructure changes, enabling 

rapid root cause analysis. When deviations were 

detected, teams conducted blameless 

post‑optimization reviews following SRE incident 

review processes to refine policies and thresholds, 

document lessons learned, and adjust automation 

parameters, reinforcing reliability while 

maintaining cost controls. 

 

6.4 Embedded Operational Checkpoints 

 

Cost awareness was embedded into existing 

operational processes through standing checkpoints 

in team‑level spend reviews and architecture 

governance forums: 

Weekly Team-Level Spend Reviews: Engineering 

teams reviewed cost dashboards in weekly 

operational meetings, comparing actual spend 

against forecasts, investigating anomalies, and 

tracking progress on optimization initiatives. 

Reviews followed standardized agendas covering 

top cost-driving services, week-over-week variance 

analysis, and upcoming changes with cost impact. 

Monthly Cross-Team Optimization Forums: 

Central platform/SRE group facilitated monthly 

forums presenting aggregate cost trends, sharing 

optimization patterns across teams, recognizing 

high-performing teams (cost efficiency awards), 

and coordinating platform-wide initiatives (e.g., 

commitment purchase negotiations, policy 

updates). 

Quarterly Architecture Governance Reviews: 

Significant capacity or architectural changes (new 

service launches, major refactoring, region 

expansions) required documented cost impact 

assessments submitted to an architecture review 

board, including projected infrastructure spend, 

optimization strategies to be applied (rightsizing, 

autoscaling, lifecycle policies, commitment 

coverage), and comparison against alternative 

architectural approaches. Proposals lacking cost 

analysis or demonstrating inefficient resource 

patterns were returned for revision before approval. 

Integrating cost reviews into established workflows 

ensured that optimization remained an ongoing 

engineering concern rather than a periodic 

remediation effort, making efficiency an explicit 

consideration alongside performance and reliability. 

 

6.5 Team Enablement and Adoption 

 

Successful operationalization of the cost 

optimization framework required coordinated team 

enablement addressing knowledge gaps, skill 

development, and behavioral incentives: 

Training and Onboarding: A multi-tier training 

program was developed and delivered across the 

engineering organization: 

Foundational training (2-hour self-paced 

modules): Cloud cost fundamentals, cost visibility 

tools, tagging requirements, and policy compliance 

expectations, required for all engineers 

provisioning infrastructure (completion tracked via 

LMS, 95% completion within 90 days of hire or 

role change) 

Practitioner workshops (half-day instructor-led 

sessions): Hands-on exercises in rightsizing 

analysis, autoscaling configuration, storage 
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lifecycle policy authoring, and cost-performance 

trade-off evaluation using production datasets, 

targeting infrastructure and platform engineers (18 

sessions delivered, 240 engineers trained in first 

year) 

Advanced optimization training (full-day 

sessions): Deep dives into commitment-based 

pricing strategies, predictive scaling model 

development, policy-as-code authoring, and 

exception workflow design, targeting senior 

engineers and architects (quarterly offerings, 60 

engineers trained in first year) 

Training materials included recorded videos, 

interactive labs in sandboxed cloud environments, 

decision trees for optimization technique selection, 

and runbooks for common scenarios. Office hours 

(biweekly) provided ongoing support for teams 

encountering policy exceptions or optimization 

challenges. 

Incentive Alignment: Cost efficiency was 

integrated into team and individual performance 

evaluation frameworks: 

● Team-level cost efficiency targets (cost per 

request, cost per active user, or absolute 

spend budgets) incorporated into quarterly 

objectives and key results (OKRs), 

weighted at 15–20% of overall team goals 

● Engineering managers included cost 

awareness and optimization contributions 

in individual performance reviews, 

recognizing engineers demonstrating 

sustained cost discipline or driving 

significant savings initiatives 

● Quarterly "cost efficiency awards" 

recognized top-performing teams (greatest 

percentage reduction, most innovative 

optimization technique, best cross-team 

collaboration), providing visibility and 

informal recognition 

Champions Network: A volunteer network of 25–

30 "cost optimization champions" embedded across 

engineering teams served as local advocates, 

participated in policy refinement working groups, 

piloted new techniques before broad rollout, and 

provided peer mentoring. Champions received 

advanced training, monthly coordination meetings 

with the central platform team, and prioritized 

support for optimization experiments. 

Cultural Reinforcement: Leadership 

communication (engineering all-hands 

presentations, internal blog posts, team newsletters) 

consistently reinforced cost efficiency as a core 

engineering value aligned with reliability and 

performance, celebrating wins and transparently 

sharing aggregate progress toward organizational 

cost targets. Blameless post-mortems for cost 

overruns (similar to incident reviews) normalized 

cost discussions and continuous improvement 

without punitive framing. 

These enablement mechanisms reduced resistance 

to policy adoption, accelerated competency 

development, and sustained engagement with cost 

optimization as an ongoing engineering discipline 

rather than a transient compliance exercise. 

 

6.6. Initial Investment and Setup Effort 

 

Operationalizing the framework required upfront 

investment across multiple dimensions: 

Tooling and Platform Infrastructure (estimated 

$180K annual recurring cost): 

● Policy-as-code engine licensing (Terraform 

Enterprise with Sentinel: ~$50K) 

● Observability platform extensions (Grafana 

Enterprise, custom analytics tools: ~$60K) 

● Cost management and analytics platforms 

(cloud provider native tools augmented 

with third-party FinOps SaaS: ~$40K) 

● CI/CD pipeline enhancements and 

integration development (~$30K in 

contractor support) 

Engineering Effort (one-time setup, 11 engineer-

months total): 

● Platform engineering: Policy engine 

deployment, CI/CD integration, automation 

framework development (6 engineer-

months) 

● Policy development: Authoring, testing, 

and validating Sentinel/OPA/Config 

policies across use cases (3 engineer-

months) 

● Training development: Curriculum design, 

materials creation, lab environment setup 

(2 engineer-months) 

Organizational Change Management: 

● Executive sponsorship and communication 

(included in leadership time allocation, not 

separately costed) 

● Training delivery (instructor time 

distributed across teams, estimated 0.5 

engineer-months aggregate) 

● Champion network coordination (volunteer 

time, minimal incremental cost) 

These investments were amortized across the first 

fiscal year and offset by cost savings realized 

within 4–5 months of operation, with payback 

period significantly shorter than typical 

infrastructure projects. Ongoing operational 

overhead (policy maintenance, training updates, 

governance facilitation) required approximately 1.5 

FTE sustained effort absorbed by the central 

platform/SRE team, representing < 2% of total 

engineering capacity while supporting enterprise-

wide cost discipline. 
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7. Measurement and Evaluation Design 

To assess the effectiveness and durability of the 

proposed optimization framework, a structured 

measurement and evaluation methodology was 

applied, emphasizing comparability, attribution 

accuracy, and protection of operational integrity. 

 

7.1 Baselines and Evaluation Windows 

 

Pre-implementation baselines were established 

using multi-month rolling averages to smooth 

seasonal and short-term variability. Post-

implementation evaluation windows were aligned 

with fiscal periods to reflect business-relevant 

outcomes. 

To isolate efficiency gains from organic platform 

growth, results were normalized using workload 

demand proxies (e.g., request volume, data 

processed, and storage footprint). Proxy selection 

and validation methodology: Candidate demand 

indicators were evaluated for correlation strength 

with infrastructure cost using 18-month historical 

data. Pearson correlation analysis identified request 

volume (r = 0.87), data processed (r = 0.91), and 

storage footprint (r = 0.84) as high-correlation 

proxies. A composite demand index was 

constructed as a weighted average of these three 

proxies (45%, 35%, 20% respectively, weighted by 

cost driver distribution), achieving overall 

correlation r = 0.93 with total infrastructure cost. 

The composite index was validated against a 3-

month holdout period via regression analysis (R² = 

0.86), confirming it explained 86% of cost variance 

and demonstrating robust normalization capability. 

This approach enabled comparison on a like-for-

like basis despite increasing usage. 

 

7.2 Attribution, Counterfactuals, and Scope 

 

Cost savings were measured relative to a 

counterfactual run rate, adjusted for pricing 

commitments and growth trends that would have 

applied absent optimization. The evaluation scope 

was limited to infrastructure spend, excluding 

personnel, tooling, and licensing costs to avoid 

confounding factors and ensure attribution to 

technical and governance interventions. 

 

7.3 Reliability and Safety Guardrails 

 

System reliability was treated as a non-negotiable 

constraint throughout optimization. Availability, 

latency, and error rates were monitored 

continuously, with canary deployments and 

automated rollback mechanisms serving as 

safeguards. Any observed performance regression 

resulted in immediate rollback or pause of the 

associated optimization action for tuning, ensuring 

that cost improvements did not compromise service 

level objectives (SLOs). 

 

8. Results 

 

8.1. Financial Impact 

 

In the first fiscal year following implementation, 

the program achieved an approximately 18% 

reduction in annualized infrastructure cost relative 

to the pre-implementation run-rate, while overall 

platform demand continued to grow. In the second 

year, on a larger demand and spend baseline, an 

additional ≈5% reduction was realized. This 

outcome indicates not only initial efficiency gains 

but also sustained prevention of cost regression in a 

maturing environment. 

Qualitative attribution analysis showed that savings 

were distributed across multiple optimization 

categories, with utilization-based rightsizing 

contributing the largest share, followed by 

autoscaling efficiency, storage lifecycle 

optimization, commitment-based pricing, and 

remediation of idle resources. The distribution 

reinforces the value of a holistic, multi-pillar 

approach rather than reliance on a single 

optimization technique. 

 

8.2 Operational Integrity 

 

Throughout the optimization period, no material or 

sustained degradation was observed in application 

availability or latency relative to established 

baselines. No high-severity incidents were 

attributed to the optimization program. Incremental 

rollout, continuous monitoring, and automated 

rollback mechanisms collectively enabled cost 

efficiency improvements while preserving 

operational excellence. 

 

8.3 Predictability and Forecast Accuracy 

 

A secondary but operationally meaningful outcome 

was improved cost predictability. Post-

implementation, variance between forecasted and 

actual infrastructure spend decreased materially, 

reducing budget volatility and friction between 

engineering and finance functions. Increased 

commitment coverage, standardized deployment 

patterns, and the elimination of runaway or idle 

resources contributed to more reliable annual 

planning and eliminated the need for mid-year 

budget corrections. 
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9. Discussion 
 

An engineering-driven portfolio of techniques, 

reinforced by governance, produced material and 

durable cost outcomes without sacrificing 

operational excellence. Rightsizing and autoscaling 

addressed baseline waste; lifecycle policies 

corrected storage drift; commitment discipline 

monetized predictability; and policy-as-code 

deterred regression. The approach maps naturally to 

SRE practices: measure, change safely, verify, and 

enforce. 

 

10. Threats to Validity and Limitations 
 

Internal validity may be affected by baseline 

estimation and growth normalization choices; 

external validity is limited by the single-enterprise 

context. Construct validity is strengthened by 

triangulating financial outcomes with reliability and 

forecast metrics. 

Scope limits exclude personnel and licensing costs. 

Reported cost savings represent infrastructure 

efficiency gains and do not account for the initial 

investment required to operationalize the 

framework, including tooling and platform 

infrastructure (~$180K annual recurring), 

engineering effort for setup and policy development 

(~11 engineer-months), and ongoing operational 

overhead (~1.5 FTE for policy maintenance and 

governance facilitation, detailed in Section 6). 

While these investments were offset by savings 

within 4–5 months, their exclusion from the 

primary savings calculations may overstate net 

financial benefit for organizations evaluating 

adoption without considering implementation costs. 

Public safety is maintained by reporting 

percentages and anonymizing the organization. 

Cloud provider‑specific services and pricing 

models may affect the portability of individual 

techniques, though the governance and evaluation 

principles remain generalizable. 

 

11. Practitioner Guidance 
 

A. Implementation Checklist 

● Enforce cost ownership via tags 

(team/app/env/cost-center) with CI/CD gates. 

● Establish utilization baselines; generate and 

canary rightsizing recommendations. 

● Combine predictive and scheduled autoscaling 

with safe bounds and warm-ups. 

● Define storage tiering policies 

(hot/warm/cold/archive) with exceptions 

registry. 

● Size commitment coverage to steady-state; 

review monthly to avoid over-commit. 

● Encode standards as policy-as-code; enable 

continuous compliance and drift detection. 

● Build cost–performance dashboards; alert on 

anomalous cost/perf drift. 

● Add cost checkpoints to change and 

architecture reviews; track forecast variance. 

 

 
 

Table 1 summarizes the primary challenge categories, underlying issues, and their operational impact within the 

evaluated environment. 

Challenge Category Key Issues Impact 

Infrastructure Complexity Multi-account, multi-region; 

heterogeneous services; 

distributed data 

Large optimization search space; 

coordination overhead 

Organizational Gaps Decentralized ownership; weak 

cost accountability; inconsistent 

tagging 

Persistent spend growth; low 

attribution fidelity 

Traditional Approaches Manual cleanup; budget caps; ad 

hoc reviews 

Operational risk; poor 

sustainability 

Healthcare Constraints Compliance; HA; auditability; 

PHI/PII protections 

Narrow optimization envelope; 

strict guardrails 

Root Causes 
Poor utilization visibility, no 

automated remediation 
Systemic inefficiencies 

 

Table 2 outlines inputs, actions, and expected outcomes by technique. 

Technique Inputs Action Expected Outcome 

Utilization-Based 

Rightsizing 

Historical & real-time 

telemetry; SLOs 

Adjust instance 

class/size via canary 

rollout 

Higher utilization without 

SLO violations 

Demand-Aware 

Autoscaling 

Demand history; 

calendars; metrics 

Predictive, scheduled, 

bounded scaling 

Reduced off-peak waste; 

stable performance 

Storage Lifecycle 

Optimization 

Access patterns; 

retention; RTO/RPO 

Automated tier 

transitions with 

Lower unit storage cost at 

scale 
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exceptions 

Commitment-Based 

Pricing 

Baseline stability; 

growth forecasts 

Apply and periodically 

adjust commitments 

Sustained pricing discounts 

with guardrails 

Idle Resource 

Remediation 

Activity telemetry; 

tagging metadata 

Detect and remove 

idle/orphaned assets 

Budget recovery; 

regression prevention 

Governance & 

Orchestration 

Policies, cost & 

reliability signals, 

exceptions 

Enforce guardrails via 

policy-as-code and 

pipelines 

Durable optimization, 

auditability, regression 

prevention 

 

Table 3 summarizes the primary governance components, their implementation mechanisms, and enforcement methods. 

Section 
Governance 

Mechanism 
Implementation Detail Enforcement / Outcome 

Cost Ownership 

& Tagging 

Mandatory 

resource 

metadata 

Required tags (team, 

application, environment, cost 

center) validated in CI/CD 

Non-compliant provisioning 

blocked; full cost attribution 

and drill-down analytics 

Policy-as-Code 

Controls 

Executable 

optimization 

standards 

Autoscaling requirements, 

storage lifecycle policies, 

instance size bounds evaluated 

at deploy and runtime 

Automated deny/remediate 

actions; drift detection 

prevents regressions 

Cost Performance 

Observability 

Correlated 

telemetry 

dashboards 

Cost signals linked with 

availability, latency, throughput, 

and error rates 

Early detection of adverse 

trade-offs; blameless post-

optimization reviews 

Operational 

Checkpoints 

Embedded cost 

review gates 

Standing checkpoints in team 

spend reviews and architecture 

governance; required cost 

impact notes 

Efficiency treated as first-

class concern in change 

management decisions 

 

Table 4 summarizes the public-safe, aggregate outcomes 

Metric Year 1 Year 2 

Annualized infrastructure cost 

reduction 
≈18% 

An additional 

≈5% 

Availability/latency adherence Met SLOs Met SLOs 

Forecast variance vs. budget Improved Improved 

 

12. Conclusions 

 
Engineering-first cloud cost optimization, anchored 

in rightsizing, autoscaling, storage lifecycle 

management, commitment discipline, and policy-

as-code can yield double-digit percentage savings 

initially and continued improvements thereafter, 

even as demand and total spend increase. By 

embedding cost checkpoints, observability, and 

ownership into routine operations, enterprises can 

sustain efficiency as a core reliability practice 

rather than a periodic financial intervention. 
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