

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 786-798
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Engineering-Driven Cloud Cost Optimization at Enterprise Scale:

An Applied Success Story with Measured Outcomes in a Large Healthcare

Enterprise

Jayasree Natarajan Swarnaras*

Independent Researcher, USA
* Corresponding Author Email: connectwithjayasree@gmail.com - ORCID: 0000-0002-5247-7660

Article Info:

DOI: 10.22399/ijcesen.4917

Received : 15 December 2025

Revised : 25 January 2026

Accepted : 02 February 2026

Keywords

Cloud Cost Optimization;

Finops,

Site Reliability Engineering,

Resource Rightsizing,

Autoscaling,

Healthcare IT

Abstract:

Enterprises continue to experience rising cloud infrastructure costs as application

portfolios expand and cloud‑native architectures proliferate. This paper presents a

production‑validated, engineering‑driven cloud cost optimization framework

implemented at a large U.S. healthcare enterprise operating a multi‑account,

multi‑region platform with unpredictable demand, strict compliance requirements, and

high‑availability expectations. The framework integrates utilization‑based rightsizing,

demand‑aware autoscaling, storage lifecycle management, commitment‑based pricing,

and continuous governance through policy‑as‑code, explicit cost ownership, and cost–

performance observability, embedding cost optimization into routine operations via

automated enforcement and recurring review checkpoints. Over two fiscal years, the

initiative reduced annualized infrastructure cost by approximately 18% in year one and

an additional 5% in year two, despite continued growth in platform demand and overall

spend, while availability, latency, and error rates remained within established

service‑level objectives. The results demonstrate that cloud cost efficiency can be

operationalized as a continuous engineering discipline – complementing site reliability

engineering practices – rather than treated as an episodic financial exercise, and provide

a repeatable, scalable model for enterprises seeking measurable and sustainable

optimization.

1. Introduction

Public cloud adoption has accelerated across

industries as organizations pursue scalable,

resilient, and rapidly deployable application

platforms. However, the proliferation of cloud-

native architectures has introduced significant

complexity in managing operational costs, often

undermining the economic benefits originally

anticipated. Industry analyses, including the

Bessemer Venture Partners State of the Cloud

report, indicate that efficiency has become a critical

concern for cloud-native organizations, with

enterprises shifting focus from growth at scale to

sustainable, cost-efficient operations [1].

Existing academic and practitioner literature largely

emphasizes theoretical optimization models or

isolated tooling approaches, offering limited insight

into how cost optimization strategies can be

sustained at enterprise scale in production

environments. Prior work examining the economics

of cloud and serverless computing highlights that

while cloud platforms provide flexibility and

elasticity, certain workload patterns and

architectural choices can result in unexpectedly

high costs compared to traditional infrastructure

models [2]. These findings underscore the need for

cost optimization to be addressed as a systemic,

engineering-driven problem rather than a collection

of ad hoc interventions.

In regulated domains such as healthcare, cost

optimization is further constrained by strict

compliance requirements, high-availability

expectations, and patient-critical service-level

objectives (SLOs). This paper presents a

production-tested, end-to-end cloud cost

optimization framework implemented within a

multi-account, mission-critical healthcare platform

characterized by variable demand patterns. The

framework integrates workload-aware scaling,

infrastructure rightsizing, storage lifecycle policies,

commitment-based pricing, and continuous

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

787

governance mechanisms, including policy-as-code,

explicit cost ownership, and cost–performance

observability.

This paper makes three primary contributions:

1. An engineering-driven optimization

framework that combines technical controls

with organizational governance.

2. Measured, multi-year financial and

operational outcomes demonstrating

sustained cost reduction without

performance degradation.

3. A repeatable model to prevent post-

optimization regression by embedding cost

accountability and enforcement into

standard operational workflows.

2. Problem Context and Research Motivation

The subject environment is a distributed, multi-

account, multi-account public cloud platform

supporting mission critical healthcare applications.

Demand exhibits pronounced diurnal, seasonal, and

event driven variability, with unpredictable spikes.

Rapid service growth, decentralized ownership

across numerous application teams, and uneven

cost accountability led to sustained infrastructure

cost escalation that threatened the economic

rationale for cloud adoption. The platform

comprises thousands of compute instances, dozens

of managed databases, and petabyte scale storage

distributed across geographic regions, creating a

broad and interdependent optimization space that

requires coordinated intervention.

Prior healthcare cloud studies focus primarily on

security and compliance, with limited longitudinal

analysis of cost efficiency outcomes. Conventional

cost cutting measures proved insufficient at scale.

Manual rightsizing and one-off cleanup campaigns

generated temporary relief but introduced

operational risk, required significant human effort,

and frequently regressed as teams evolved. Budget

caps and spending alerts provided limited guidance:

they obscured the distinction between mission

critical and non-critical consumption and did not

prevent inefficient resource patterns (e.g., over

provisioned compute to peak, idle premium storage,

unaligned commitments). Industry surveys

consistently report that optimizing existing cloud

use and managing cloud spend remain top priorities

and persistent challenges for enterprises,

highlighting the need for systemic solutions rather

than tactical fixes [3]. These observations indicate

that cost governance, not just isolated technical

remediation, is the dominant failure mode.

The healthcare context compounds these

challenges. Compliance obligations and the

protection of sensitive data impose strict controls,

while high availability (HA) expectations and

patient critical SLOs constrain the aggressiveness

of optimization strategies. Prior analyses of cloud

economics note that certain workload patterns and

architectural decisions can yield unexpectedly high

costs relative to traditional infrastructure, despite

cloud elasticity [2], and healthcare specific studies

emphasize that security, legal, and availability

requirements limit optimization flexibility while

elevating baseline costs [4]. Consequently, there is

a clear need for a holistic, engineering driven

framework that integrates technical levers with

explicit governance, including policy as code, cost

ownership, and cost–performance observability to

achieve repeatable and sustained outcomes without

compromising reliability.

3. Related Work and Background

Prior work and industry practice have explored

individual optimization mechanisms, including

utilization‑based rightsizing, autoscaling, storage

lifecycle tiering, and commitment‑based pricing,

often demonstrating benefits in constrained

settings. However, the literature tends to emphasize

theoretical models or tool‑specific techniques with

limited evidence of long‑term durability in

production at enterprise scale [1], [2].

Existing FinOps and cloud cost optimization

research can be categorized into three primary

streams, each with distinct limitations that this

work addresses:

3.1 Technical Optimization Studies:

Iqbal et al. [4] and Roy et al. [5] present adaptive

resource provisioning and predictive autoscaling

models demonstrating efficiency gains in controlled

environments, while AWS and cloud provider

documentation [2] offers best‑practice guidance on

rightsizing and commitment strategies. These

contributions focus predominantly on individual

optimization techniques, autoscaling, rightsizing, or

commitment planning—evaluated in isolation or

simulation. In contrast, this work implements a

coordinated multi‑pillar framework in a production

healthcare environment, demonstrating how

simultaneous application of complementary

techniques yields compounding benefits and

prevents cost leakage across the optimization

surface. Moreover, prior studies report initial

efficiency improvements but provide limited

evidence of sustained outcomes beyond 6–12

months; this work presents two‑year longitudinal

results with demonstrated regression prevention.

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

788

3.2 FinOps Governance and Organizational

Practice:

Industry reports from McKinsey [6], the FinOps

Foundation, and cloud maturity frameworks

emphasize governance mechanisms such as

showback/chargeback, tagging taxonomies, and

cross‑functional collaboration to align engineering

and finance [1], [3], [7]. While these frameworks

establish valuable organizational principles, they

typically lack detailed technical implementation

specifications or empirical validation in production

systems. Published case studies often report

qualitative adoption challenges or cultural shifts

without quantifying sustained financial outcomes or

operational impact. This work bridges that gap by

presenting an operationalized governance

architecture—policy‑as‑code enforcement,

mandatory cost ownership via CI/CD gates, and

cost–performance observability—integrated with

technical controls, and validates the approach with

measured multi‑year cost reductions and

maintained SLOs.

3.3 SRE and Reliability‑Cost Integration:

The Site Reliability Engineering literature and

Google's SRE practices emphasize error budgets,

observability, and resilience engineering but treat

cost efficiency as secondary to availability and

latency objectives [8]. Recent DevOps and SRE

surveys acknowledge growing interest in cost as a

reliability dimension [7], yet few studies

operationalize cost optimization as a first‑class SRE

discipline with the same rigor applied to availability

or performance. This work explicitly positions cost

efficiency as complementary to SRE practices,

embedding cost observability, automated

guardrails, and blameless post‑optimization reviews

into standard reliability workflows, demonstrating

that cost and reliability objectives can be jointly

optimized rather than traded off.

3.4 Healthcare Cloud Studies:

Prior healthcare‑focused cloud research emphasizes

security, compliance, and clinical data protection

[3], with limited analysis of cost efficiency

outcomes in production environments subject to

HIPAA, HA, and patient‑critical SLOs. Existing

studies acknowledge that regulatory constraints

elevate baseline costs and narrow optimization

flexibility but provide minimal guidance on

achieving measurable cost reductions within these

constraints. This work directly addresses regulated

healthcare environments by presenting

production‑validated techniques that respect

compliance boundaries while achieving

double‑digit cost reductions.

3.5 Positioning and Novelty:

While individual elements of the proposed

framework—rightsizing, autoscaling, lifecycle

policies, commitments, and governance practices—

exist in prior literature, empirical demonstrations

that (i) integrate these techniques into a unified,

policy‑enforced system, (ii) implement the

framework in a mission‑critical regulated

environment, (iii) preserve reliability SLOs

throughout optimization, (iv) report sustained

multi‑year cost reductions despite platform growth,

and (v) prevent regression through automated

governance remain comparatively rare in the public

domain. This work addresses that gap by

operationalizing cost efficiency as a continuous

engineering discipline aligned with SRE practices,

combining technical controls with policy‑as‑code

governance, and presenting longitudinal financial

and operational outcomes in a large healthcare

enterprise that simultaneously validate feasibility,

durability, and repeatability.

4. System and Environment

Platform Scope

The evaluated platform supports a portfolio of

patient‑facing and clinical applications with

diurnal, seasonal, and event‑driven load variability.

The estate spans multiple regions and

organizational accounts and includes thousands of

compute resources (VMs and containerized

workloads), dozens of managed database services,

and petabyte‑scale object and block storage.

Services are owned by independent application

teams, with a central platform/SRE group providing

shared infrastructure, guardrails, and governance.

4.1 Baseline State and Anti‑Patterns

Prior to the initiative, several cost‑inefficient

patterns were prevalent: (1) static over‑provisioning

to peak demand, (2) limited rightsizing discipline

and drift over time, (3) dormant or low‑temperature

data retained on premium storage tiers, (4) under‑

or mis‑aligned commitments relative to workload

baselines, and (5) unclear cost ownership and

inconsistent tagging, which reduced the

effectiveness of spend analysis and accountability.

These conditions reflected a combination of

technical debt and organizational fragmentation.

4.2 Constraints

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

789

Optimization levers were bounded by regulatory

and compliance requirements, HA expectations,

and patient‑critical SLOs. Changes to capacity,

deployment topology, or storage policy required

controlled experimentation, progressive rollout, and

observability to ensure no degradation in

availability, latency, or error rates.

4.3 Operational Context and Observability

Infrastructure

The platform maintained unified observability and

cost telemetry infrastructure comprising multiple

integrated layers. Metrics collection leveraged a

Prometheus-compatible time-series database with

custom exporters capturing CPU, memory, network

I/O, disk utilization, and application-layer golden

signals (request rate, error rate, latency

distributions) at 15-second granularity across all

compute resources. Distributed tracing via

OpenTelemetry instrumentation enabled end-to-end

request flow analysis and service dependency

mapping. Log aggregation centralized application

and infrastructure logs with structured metadata for

filtering and correlation. Cost telemetry integrated

native cloud provider billing APIs and cost

allocation tags, correlating resource consumption

with financial spend at hourly granularity and

enabling drill-down to individual service, team,

environment, and workload dimensions.

This observability substrate was augmented by a

unified analytics layer that joined cost, utilization,

and performance data across services and time

windows. Custom dashboards and alerting rules

enabled real-time cost–performance correlation,

allowing engineers to identify optimization

opportunities (e.g., sustained low CPU utilization

indicating rightsizing candidates) and detect

anomalies (e.g., cost spikes decoupled from traffic

growth). Historical data retention of 18+ months

supported trend analysis, seasonality detection, and

validation of demand forecasting models used in

predictive autoscaling.

A central policy‑as‑code layer enforced guardrails

including instance class allowlists, mandatory

autoscaling configurations for production

workloads, storage lifecycle defaults, and

commitment hygiene rules, with automated drift

detection comparing deployed state against desired

policy. Recurring cost reviews and automated

validation checks were embedded into standard

operational workflows, including weekly team-

level spend reviews, monthly cross-team

optimization forums, and quarterly architecture

governance sessions requiring documented cost

impact assessments for significant infrastructure

changes. This environment provided the necessary

substrate—observability, governance tooling, and

operational discipline—to implement and validate a

continuous cost optimization program without

jeopardizing reliability.

5. Optimization Framework and Methodology

The proposed framework operationalizes cloud cost

optimization as a continuous, engineering‑driven

process rather than a one‑time corrective exercise.

Optimization actions are derived from

telemetry‑guided analysis, validated against

service‑level objectives (SLOs) through controlled

experimentation, and enforced via automated

pipelines and policy‑as‑code governance to ensure

durability. The framework integrates six

complementary technical pillars spanning the

infrastructure, platform, and governance layers.

5.1 Utilization‑Based Rightsizing

Utilization telemetry across CPU, memory,

network, and storage, collected over extended

historical windows (30–90 days) and supplemented

by near‑real‑time signals, served as the basis for

rightsizing recommendations. Analysis workflows

combined Prometheus query results with custom

Python-based analytics scripts that identified

resources exhibiting sustained underutilization—

defined as CPU utilization consistently below 40%

or memory utilization below 50% during business-

hours peaks, with no significant variability across

daily or weekly cycles.

Resources meeting underutilization criteria were

mapped to more appropriate instance classes or

sizes using a decision matrix that considered

workload characteristics (CPU-bound, memory-

bound, network-intensive, or balanced) alongside

cost-performance ratios across available instance

families. Representative rightsizing actions

included:

API gateway tier: Transitioned from m5.2xlarge

(8 vCPU, 32 GiB) to m5.xlarge (4 vCPU, 16 GiB)

instances after observing sustained CPU utilization

of 25–30% and memory at 35–40%, achieving 42%

unit cost reduction while maintaining p95 latency <

100ms and 99.95% availability.

Background processing workloads: Migrated

from general-purpose m5.large to compute-

optimized c5.large instances for CPU-intensive

batch jobs, reducing per-instance cost by 8% while

improving job completion time by 12% due to

higher CPU performance.

Database read replicas: Downsized from

r5.4xlarge to r5.2xlarge (memory-optimized) after

sustained memory utilization remained below 45%,

yielding 50% cost savings with query latency

degradation < 5ms (within acceptable thresholds).

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

790

Recommendations were applied through canary

deployments: changes were first validated on 5% of

fleet capacity, monitored for 48–72 hours against

predefined golden KPIs (availability ≥ 99.9%, p95

latency within ±10% of baseline, error rate < 0.1%),

and progressively rolled out to 25%, 50%, and

100% of capacity upon successful validation at

each stage. Automated rollback triggered if any

KPI threshold was breached. This deterministic,

workload‑aware provisioning replaced static

allocation models that historically led to chronic

over‑provisioning in variable workloads. Prior

studies have demonstrated that utilization‑driven

adjustments based on workload characteristics

significantly outperform static provisioning

strategies in both efficiency and stability [5].

5.2 Demand‑Aware Autoscaling

To address inefficiencies introduced by fixed

capacity planning, the framework implemented

demand‑aware autoscaling combining predictive,

scheduled, and reactive mechanisms. Historical

demand patterns (request volume, queue depth,

database connection counts) were analyzed using

time-series forecasting models (ARIMA and

exponential smoothing) trained on 90-day rolling

windows to inform predictive scaling models,

enabling capacity adjustments 15–30 minutes ahead

of anticipated load changes.

Specific autoscaling configurations implemented

included:

Scheduled scaling for patient portal

applications: Automatic scale-up from baseline 20

instances to 60 instances at 06:00 local time (ahead

of peak clinic appointment check-in hours), scale-

down to 25 instances at 20:00, and further reduction

to 15 instances overnight and weekends,

eliminating 40% of off-hours capacity waste while

maintaining sub-second response times during

traffic surges.

Predictive scaling for data processing pipelines:

Machine learning model predictions triggered

proactive scaling 20 minutes before batch job

submissions (detected via queue depth monitoring),

reducing scale-up latency from 8–10 minutes

(reactive threshold-based) to < 2 minutes and

eliminating 15% of job failures caused by

insufficient capacity during demand spikes.

Reactive autoscaling with bounded limits:
Horizontal pod autoscalers (HPA) in Kubernetes

clusters configured with target CPU utilization of

70%, minimum 3 replicas, maximum 50 replicas,

and 2-minute stabilization windows to prevent

oscillation. Scale-up velocity limited to +50% per

5-minute interval; scale-down limited to −25% per

10-minute interval to ensure safe warm-up and

graceful shutdown.

Where supported, vertical scaling (vertical pod

autoscaler in Kubernetes) complemented horizontal

instance scaling for stateful workloads, adjusting

CPU and memory requests/limits within bounds of

0.5–8 vCPU and 2–32 GiB based on observed

utilization, bounded by safety limits and warm‑up

controls to prevent destabilizing memory-intensive

processes. Research indicates that proactive scaling

approaches improve cost efficiency and

performance consistency compared to purely

reactive threshold‑based methods by reducing

scale‑up latency and capacity shortfalls during

demand surges [6].

5.3 Storage Lifecycle Optimization

Storage optimization targeted the disproportionate

cost impact of retaining low‑activity data on

premium tiers. Access‑frequency analysis queried

cloud provider storage analytics APIs to identify

objects with zero access in trailing 30-day, 90-day,

and 180-day windows. Retention requirements and

recovery objectives (RTO/RPO) informed

automated lifecycle policies that transitioned data

across hot (standard SSD), warm (infrequent

access), cold (archival with hours retrieval), and

archival (deep archive with 12-hour retrieval) tiers.

Lifecycle transition rules included:

Medical imaging archives: Transition from hot to

warm storage after 90 days of zero access, warm to

cold after 180 days, and cold to deep archive after

365 days, subject to 7-year legal retention and 24-

hour RTO compliance requirements, achieving

65% storage cost reduction for datasets > 1 year

old.

Application logs: Transition to infrequent access

after 30 days, archive after 90 days, with automatic

deletion after 2 years (retention policy), reducing

log storage costs by 70% while maintaining audit

compliance.

Highly accessed datasets remained on premium

storage, while infrequently accessed or dormant

data was progressively tiered down after defined

inactivity periods. Exceptions were governed

through a centralized registry where teams

documented RTO/RPO requirements, compliance

obligations, and business justifications for retaining

data on higher-cost tiers, ensuring that lifecycle

transitions reduced unit storage cost at scale

without violating operational or regulatory

requirements.

5.4 Commitment‑Based Pricing Optimization

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

791

For workloads exhibiting stable baseline

consumption, commitment‑based pricing

instruments (Reserved Instances, Savings Plans,

Committed Use Discounts) were applied to capture

provider discounts (20–40% off on-demand

pricing) while minimizing over‑commitment risk.

Baseline utilization analysis examined 90-day

minimum sustained capacity ("floor" consumption)

across instance families and regions, excluding

burst traffic and temporary capacity. Growth

projections (historical trend analysis and business

planning inputs) informed coverage decisions,

targeting 70–80% of baseline capacity under

commitments to retain flexibility for variable

workloads and architectural changes.

Coverage decisions were reviewed monthly via

automated reports comparing actual vs. committed

utilization, triggering alerts when utilization fell

below 85% (under-utilization risk) or exceeded

95% (opportunity for additional coverage).

Commitments were adjusted quarterly in alignment

with architectural changes (e.g., containerization

reducing VM footprint) or sustained demand

growth. This disciplined approach enabled

sustained discount capture while retaining

flexibility for variable workloads, achieving 28%

effective cost reduction on committed capacity.

5.5 Idle Resource Remediation

Event‑driven and scheduled detectors identified idle

or orphaned resources using tag-based ownership

validation and activity telemetry. Automated

detectors queried cloud provider APIs nightly to

identify:

● Unattached EBS volumes (storage not

mounted to any instance) idle > 7 days

● Elastic IP addresses not associated with

running instances > 3 days

● Load balancers with zero traffic > 14 days

● Database instances with zero connections >

7 days

● Snapshots exceeding retention policies

Automated remediation workflows enforced

cleanup actions by default: resources flagged as idle

received notifications to owning teams (via cost

center tags) with 7-day grace periods, after which

automated deletion occurred unless teams explicitly

opted out via exception registry. Opt-out required

documented business justification and executive

approval for resources with monthly cost > $500.

This capability addressed chronic accumulation of

non‑value‑generating resources (representing 8–

12% of baseline spend) and served as a guardrail

against cost regression.

5.6. Governance and Orchestration

All optimization techniques were orchestrated

through policy‑as‑code controls implemented using

HashiCorp Sentinel (for Terraform infrastructure-

as-code validation), AWS Config Rules (for

runtime compliance), and Open Policy Agent

(OPA) for Kubernetes admission control and

integrated into continuous delivery pipelines.

Policies enforced configuration standards

including:

● Mandatory autoscaling for production

workloads (HPA or ASG required)

● Storage lifecycle configuration for S3

buckets and persistent volumes

● Instance class allowlists (blocking

oversized or previous-generation types)

● Commitment hygiene (minimum utilization

thresholds, periodic review gates)

● Exception management workflows

requiring documented approval chains

Automated validation checks in CI/CD pipelines

blocked non-compliant infrastructure deployments,

while runtime drift detection compared deployed

state against desired policy every 15 minutes,

triggering automated remediation or alerts for

human review. Recurring cost reviews (weekly

team-level, monthly cross-team forums, quarterly

architecture governance) and automated validation

checks embedded optimization into standard

operational workflows, enabling cost efficiency to

function as a continuous engineering discipline

aligned with site reliability engineering (SRE)

practices. Governance is treated as a first‑class

optimization pillar, providing enforcement,

auditability, and regression prevention across all

technical techniques. Detailed implementation of

policy-as-code enforcement mechanisms, exception

workflows, and organizational enablement is

presented in Section 6.

6. Implementation Architecture and Governance

To ensure durability and prevent post‑optimization

regression, the cost optimization framework was

operationalized through a governance‑driven

implementation architecture that embedded

financial efficiency into standard engineering

workflows. The architecture integrates explicit cost

ownership, policy‑as‑code enforcement, cost–

performance observability, operational checkpoints,

and team enablement mechanisms, enabling cost

efficiency to function as a continuous control loop

rather than an episodic financial activity.

Implementation required initial investment in

tooling infrastructure, policy development,

observability integration, and organizational

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

792

enablement, with setup effort distributed across

platform engineering (6 engineer-months), policy

authoring and testing (3 engineer-months), training

development and delivery (2 engineer-months), and

tooling licenses/integrations (estimated annual cost

of $180K for policy engines, observability platform

extensions, and cost analytics tools). These

investments were amortized across the first fiscal

year and offset by cost savings realized within the

initial 4–5 months of operation.

6.1 Explicit Cost Ownership and Tagging

Cost accountability was decentralized to application

teams, replacing centralized infrastructure

ownership models. All provisioned resources were

required to carry mandatory metadata including

owning team, application, environment

(dev/staging/prod), and cost center, enforced

through CI/CD pipeline validation gates

implemented as pre-deployment hooks in GitLab

CI/CD and AWS CodePipeline. Tag validation

logic queried resource definitions in Terraform

plans and CloudFormation templates, blocking

deployments missing required tags or containing

non-compliant tag values (validated against

organizational registries of approved teams,

applications, and cost centers maintained in a

central configuration management

database).Non‑compliant deployments were

blocked at provisioning time with actionable error

messages directing engineers to tagging

documentation and team registration workflows,

ensuring full attribution and enabling granular

spend analysis across organizational, application,

and environment dimensions. Tag compliance

monitoring via scheduled AWS Config rules and

custom scripts identified and flagged resources

deployed outside CI/CD pipelines (manual console

deployments), triggering automated notifications

and requiring retroactive tag application within 48

hours or resource termination. This approach aligns

with industry guidance emphasizing explicit

accountability and cost awareness as prerequisites

for sustainable cloud financial management [7].

6.2 Policy‑as‑Code Controls

Organizational cost optimization standards were

encoded as executable policies and evaluated

continuously at deployment and runtime using a

multi-layer enforcement architecture:

Infrastructure-as-Code Validation (Pre-

Deployment): HashiCorp Sentinel policies

integrated into Terraform Enterprise workflows

evaluated infrastructure definitions before

provisioning, enforcing rules such as:

● Instance type allowlists blocking previous-

generation (t2, m4) or oversized instance

classes (> 16 vCPU) without architectural

review approval

● Mandatory autoscaling group or horizontal

pod autoscaler configuration for production

workloads (identified via environment tags)

● Required lifecycle policies on S3 buckets

and persistent volume claims

● Commitment coverage targets requiring

Reserved Instance or Savings Plan

attribution for baseline-stable workload

tiers

Runtime Compliance Monitoring: AWS Config

Rules, Azure Policy, and custom Lambda functions

evaluated deployed resource configurations every

15 minutes, detecting drift from desired state

including:

● Autoscaling configurations disabled or

improperly bounded (min/max instance

count violations)

● Storage lifecycle policies removed or

modified to retain data on premium tiers

beyond approved durations

● Uncommitted compute instances exceeding

30-day runtime without approved exception

● Resource tag modifications or deletions

violating ownership accountability

Kubernetes Admission Control: Open Policy

Agent (OPA) deployed as a validating admission

webhook intercepted pod creation requests,

enforcing policies such as:

● Resource requests/limits within approved

bounds (CPU: 0.1–8 vCPU, memory: 256

MiB–32 GiB)

● Required horizontal pod autoscaler

definitions for production namespaces

● Pod disruption budgets ensuring safe scale-

down operations

● Mandatory cost-allocation labels (team,

application, environment)

Exception Management Workflow: Teams

requiring policy deviations submitted exception

requests via a self-service portal (ServiceNow

integration), documenting business justification,

expected duration, and estimated cost impact.

Exception requests triggered an approval workflow

routing to:

● Engineering manager approval for

exceptions < $1K/month estimated impact

and < 90 days duration

● Director-level approval for exceptions

$1K–$10K/month or 90–180 days

● VP-level and architecture review board

approval for exceptions > $10K/month or >

180 days

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

793

Approved exceptions were encoded as policy

overrides (resource-specific exemptions or

temporary policy disablement) with automated

expiration, requiring renewal upon expiration or

automatic policy re-enforcement. Exception

telemetry (request volume, approval rates, cost

impact, expiration compliance) was reviewed

quarterly to identify systemic policy gaps or

emerging architectural patterns requiring policy

refinement. Automated drift detection identified

deviations from desired states, triggering

remediation or blocking unsafe changes. Consistent

with prior industry findings, automated governance

proved essential to sustaining cost efficiency

without incurring ongoing manual oversight [8].

6.3 Cost–Performance Observability

Unified observability correlated cost telemetry with

operational performance metrics, including

availability, latency, throughput, and error rates,

using integrated dashboards built on Grafana and

custom analytics applications. Shared dashboards

presented per-service and per-team views

combining:

● Hourly infrastructure cost trends (compute,

storage, data transfer) with 7-day and 30-

day moving averages

● Key reliability metrics: availability (uptime

percentage), p50/p95/p99 latency

distributions, error rates, request volume

● Cost efficiency indicators: cost per request,

cost per GB processed, cost per active user

● Optimization opportunity signals:

underutilized resources flagged by

rightsizing analyzers, autoscaling

effectiveness scores, commitment coverage

percentages

Engineers accessed real-time and historical views

enabling cost‑performance trade‑off evaluation and

quick identification of unintended regressions

following optimization actions. Anomaly detection

algorithms (statistical process control, seasonal

decomposition) alerted on cost spikes decoupled

from traffic growth or performance degradations

coinciding with infrastructure changes, enabling

rapid root cause analysis. When deviations were

detected, teams conducted blameless

post‑optimization reviews following SRE incident

review processes to refine policies and thresholds,

document lessons learned, and adjust automation

parameters, reinforcing reliability while

maintaining cost controls.

6.4 Embedded Operational Checkpoints

Cost awareness was embedded into existing

operational processes through standing checkpoints

in team‑level spend reviews and architecture

governance forums:

Weekly Team-Level Spend Reviews: Engineering

teams reviewed cost dashboards in weekly

operational meetings, comparing actual spend

against forecasts, investigating anomalies, and

tracking progress on optimization initiatives.

Reviews followed standardized agendas covering

top cost-driving services, week-over-week variance

analysis, and upcoming changes with cost impact.

Monthly Cross-Team Optimization Forums:

Central platform/SRE group facilitated monthly

forums presenting aggregate cost trends, sharing

optimization patterns across teams, recognizing

high-performing teams (cost efficiency awards),

and coordinating platform-wide initiatives (e.g.,

commitment purchase negotiations, policy

updates).

Quarterly Architecture Governance Reviews:

Significant capacity or architectural changes (new

service launches, major refactoring, region

expansions) required documented cost impact

assessments submitted to an architecture review

board, including projected infrastructure spend,

optimization strategies to be applied (rightsizing,

autoscaling, lifecycle policies, commitment

coverage), and comparison against alternative

architectural approaches. Proposals lacking cost

analysis or demonstrating inefficient resource

patterns were returned for revision before approval.

Integrating cost reviews into established workflows

ensured that optimization remained an ongoing

engineering concern rather than a periodic

remediation effort, making efficiency an explicit

consideration alongside performance and reliability.

6.5 Team Enablement and Adoption

Successful operationalization of the cost

optimization framework required coordinated team

enablement addressing knowledge gaps, skill

development, and behavioral incentives:

Training and Onboarding: A multi-tier training

program was developed and delivered across the

engineering organization:

Foundational training (2-hour self-paced

modules): Cloud cost fundamentals, cost visibility

tools, tagging requirements, and policy compliance

expectations, required for all engineers

provisioning infrastructure (completion tracked via

LMS, 95% completion within 90 days of hire or

role change)

Practitioner workshops (half-day instructor-led

sessions): Hands-on exercises in rightsizing

analysis, autoscaling configuration, storage

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

794

lifecycle policy authoring, and cost-performance

trade-off evaluation using production datasets,

targeting infrastructure and platform engineers (18

sessions delivered, 240 engineers trained in first

year)

Advanced optimization training (full-day

sessions): Deep dives into commitment-based

pricing strategies, predictive scaling model

development, policy-as-code authoring, and

exception workflow design, targeting senior

engineers and architects (quarterly offerings, 60

engineers trained in first year)

Training materials included recorded videos,

interactive labs in sandboxed cloud environments,

decision trees for optimization technique selection,

and runbooks for common scenarios. Office hours

(biweekly) provided ongoing support for teams

encountering policy exceptions or optimization

challenges.

Incentive Alignment: Cost efficiency was

integrated into team and individual performance

evaluation frameworks:

● Team-level cost efficiency targets (cost per

request, cost per active user, or absolute

spend budgets) incorporated into quarterly

objectives and key results (OKRs),

weighted at 15–20% of overall team goals

● Engineering managers included cost

awareness and optimization contributions

in individual performance reviews,

recognizing engineers demonstrating

sustained cost discipline or driving

significant savings initiatives

● Quarterly "cost efficiency awards"

recognized top-performing teams (greatest

percentage reduction, most innovative

optimization technique, best cross-team

collaboration), providing visibility and

informal recognition

Champions Network: A volunteer network of 25–

30 "cost optimization champions" embedded across

engineering teams served as local advocates,

participated in policy refinement working groups,

piloted new techniques before broad rollout, and

provided peer mentoring. Champions received

advanced training, monthly coordination meetings

with the central platform team, and prioritized

support for optimization experiments.

Cultural Reinforcement: Leadership

communication (engineering all-hands

presentations, internal blog posts, team newsletters)

consistently reinforced cost efficiency as a core

engineering value aligned with reliability and

performance, celebrating wins and transparently

sharing aggregate progress toward organizational

cost targets. Blameless post-mortems for cost

overruns (similar to incident reviews) normalized

cost discussions and continuous improvement

without punitive framing.

These enablement mechanisms reduced resistance

to policy adoption, accelerated competency

development, and sustained engagement with cost

optimization as an ongoing engineering discipline

rather than a transient compliance exercise.

6.6. Initial Investment and Setup Effort

Operationalizing the framework required upfront

investment across multiple dimensions:

Tooling and Platform Infrastructure (estimated

$180K annual recurring cost):

● Policy-as-code engine licensing (Terraform

Enterprise with Sentinel: ~$50K)

● Observability platform extensions (Grafana

Enterprise, custom analytics tools: ~$60K)

● Cost management and analytics platforms

(cloud provider native tools augmented

with third-party FinOps SaaS: ~$40K)

● CI/CD pipeline enhancements and

integration development (~$30K in

contractor support)

Engineering Effort (one-time setup, 11 engineer-

months total):

● Platform engineering: Policy engine

deployment, CI/CD integration, automation

framework development (6 engineer-

months)

● Policy development: Authoring, testing,

and validating Sentinel/OPA/Config

policies across use cases (3 engineer-

months)

● Training development: Curriculum design,

materials creation, lab environment setup

(2 engineer-months)

Organizational Change Management:

● Executive sponsorship and communication

(included in leadership time allocation, not

separately costed)

● Training delivery (instructor time

distributed across teams, estimated 0.5

engineer-months aggregate)

● Champion network coordination (volunteer

time, minimal incremental cost)

These investments were amortized across the first

fiscal year and offset by cost savings realized

within 4–5 months of operation, with payback

period significantly shorter than typical

infrastructure projects. Ongoing operational

overhead (policy maintenance, training updates,

governance facilitation) required approximately 1.5

FTE sustained effort absorbed by the central

platform/SRE team, representing < 2% of total

engineering capacity while supporting enterprise-

wide cost discipline.

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

795

7. Measurement and Evaluation Design

To assess the effectiveness and durability of the

proposed optimization framework, a structured

measurement and evaluation methodology was

applied, emphasizing comparability, attribution

accuracy, and protection of operational integrity.

7.1 Baselines and Evaluation Windows

Pre-implementation baselines were established

using multi-month rolling averages to smooth

seasonal and short-term variability. Post-

implementation evaluation windows were aligned

with fiscal periods to reflect business-relevant

outcomes.

To isolate efficiency gains from organic platform

growth, results were normalized using workload

demand proxies (e.g., request volume, data

processed, and storage footprint). Proxy selection

and validation methodology: Candidate demand

indicators were evaluated for correlation strength

with infrastructure cost using 18-month historical

data. Pearson correlation analysis identified request

volume (r = 0.87), data processed (r = 0.91), and

storage footprint (r = 0.84) as high-correlation

proxies. A composite demand index was

constructed as a weighted average of these three

proxies (45%, 35%, 20% respectively, weighted by

cost driver distribution), achieving overall

correlation r = 0.93 with total infrastructure cost.

The composite index was validated against a 3-

month holdout period via regression analysis (R² =

0.86), confirming it explained 86% of cost variance

and demonstrating robust normalization capability.

This approach enabled comparison on a like-for-

like basis despite increasing usage.

7.2 Attribution, Counterfactuals, and Scope

Cost savings were measured relative to a

counterfactual run rate, adjusted for pricing

commitments and growth trends that would have

applied absent optimization. The evaluation scope

was limited to infrastructure spend, excluding

personnel, tooling, and licensing costs to avoid

confounding factors and ensure attribution to

technical and governance interventions.

7.3 Reliability and Safety Guardrails

System reliability was treated as a non-negotiable

constraint throughout optimization. Availability,

latency, and error rates were monitored

continuously, with canary deployments and

automated rollback mechanisms serving as

safeguards. Any observed performance regression

resulted in immediate rollback or pause of the

associated optimization action for tuning, ensuring

that cost improvements did not compromise service

level objectives (SLOs).

8. Results

8.1. Financial Impact

In the first fiscal year following implementation,

the program achieved an approximately 18%

reduction in annualized infrastructure cost relative

to the pre-implementation run-rate, while overall

platform demand continued to grow. In the second

year, on a larger demand and spend baseline, an

additional ≈5% reduction was realized. This

outcome indicates not only initial efficiency gains

but also sustained prevention of cost regression in a

maturing environment.

Qualitative attribution analysis showed that savings

were distributed across multiple optimization

categories, with utilization-based rightsizing

contributing the largest share, followed by

autoscaling efficiency, storage lifecycle

optimization, commitment-based pricing, and

remediation of idle resources. The distribution

reinforces the value of a holistic, multi-pillar

approach rather than reliance on a single

optimization technique.

8.2 Operational Integrity

Throughout the optimization period, no material or

sustained degradation was observed in application

availability or latency relative to established

baselines. No high-severity incidents were

attributed to the optimization program. Incremental

rollout, continuous monitoring, and automated

rollback mechanisms collectively enabled cost

efficiency improvements while preserving

operational excellence.

8.3 Predictability and Forecast Accuracy

A secondary but operationally meaningful outcome

was improved cost predictability. Post-

implementation, variance between forecasted and

actual infrastructure spend decreased materially,

reducing budget volatility and friction between

engineering and finance functions. Increased

commitment coverage, standardized deployment

patterns, and the elimination of runaway or idle

resources contributed to more reliable annual

planning and eliminated the need for mid-year

budget corrections.

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

796

9. Discussion

An engineering-driven portfolio of techniques,

reinforced by governance, produced material and

durable cost outcomes without sacrificing

operational excellence. Rightsizing and autoscaling

addressed baseline waste; lifecycle policies

corrected storage drift; commitment discipline

monetized predictability; and policy-as-code

deterred regression. The approach maps naturally to

SRE practices: measure, change safely, verify, and

enforce.

10. Threats to Validity and Limitations

Internal validity may be affected by baseline

estimation and growth normalization choices;

external validity is limited by the single-enterprise

context. Construct validity is strengthened by

triangulating financial outcomes with reliability and

forecast metrics.

Scope limits exclude personnel and licensing costs.

Reported cost savings represent infrastructure

efficiency gains and do not account for the initial

investment required to operationalize the

framework, including tooling and platform

infrastructure (~$180K annual recurring),

engineering effort for setup and policy development

(~11 engineer-months), and ongoing operational

overhead (~1.5 FTE for policy maintenance and

governance facilitation, detailed in Section 6).

While these investments were offset by savings

within 4–5 months, their exclusion from the

primary savings calculations may overstate net

financial benefit for organizations evaluating

adoption without considering implementation costs.

Public safety is maintained by reporting

percentages and anonymizing the organization.

Cloud provider‑specific services and pricing

models may affect the portability of individual

techniques, though the governance and evaluation

principles remain generalizable.

11. Practitioner Guidance

A. Implementation Checklist

● Enforce cost ownership via tags

(team/app/env/cost-center) with CI/CD gates.

● Establish utilization baselines; generate and

canary rightsizing recommendations.

● Combine predictive and scheduled autoscaling

with safe bounds and warm-ups.

● Define storage tiering policies

(hot/warm/cold/archive) with exceptions

registry.

● Size commitment coverage to steady-state;

review monthly to avoid over-commit.

● Encode standards as policy-as-code; enable

continuous compliance and drift detection.

● Build cost–performance dashboards; alert on

anomalous cost/perf drift.

● Add cost checkpoints to change and

architecture reviews; track forecast variance.

Table 1 summarizes the primary challenge categories, underlying issues, and their operational impact within the

evaluated environment.

Challenge Category Key Issues Impact

Infrastructure Complexity Multi-account, multi-region;

heterogeneous services;

distributed data

Large optimization search space;

coordination overhead

Organizational Gaps Decentralized ownership; weak

cost accountability; inconsistent

tagging

Persistent spend growth; low

attribution fidelity

Traditional Approaches Manual cleanup; budget caps; ad

hoc reviews

Operational risk; poor

sustainability

Healthcare Constraints Compliance; HA; auditability;

PHI/PII protections

Narrow optimization envelope;

strict guardrails

Root Causes
Poor utilization visibility, no

automated remediation
Systemic inefficiencies

Table 2 outlines inputs, actions, and expected outcomes by technique.

Technique Inputs Action Expected Outcome

Utilization-Based

Rightsizing

Historical & real-time

telemetry; SLOs

Adjust instance

class/size via canary

rollout

Higher utilization without

SLO violations

Demand-Aware

Autoscaling

Demand history;

calendars; metrics

Predictive, scheduled,

bounded scaling

Reduced off-peak waste;

stable performance

Storage Lifecycle

Optimization

Access patterns;

retention; RTO/RPO

Automated tier

transitions with

Lower unit storage cost at

scale

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

797

exceptions

Commitment-Based

Pricing

Baseline stability;

growth forecasts

Apply and periodically

adjust commitments

Sustained pricing discounts

with guardrails

Idle Resource

Remediation

Activity telemetry;

tagging metadata

Detect and remove

idle/orphaned assets

Budget recovery;

regression prevention

Governance &

Orchestration

Policies, cost &

reliability signals,

exceptions

Enforce guardrails via

policy-as-code and

pipelines

Durable optimization,

auditability, regression

prevention

Table 3 summarizes the primary governance components, their implementation mechanisms, and enforcement methods.

Section
Governance

Mechanism
Implementation Detail Enforcement / Outcome

Cost Ownership

& Tagging

Mandatory

resource

metadata

Required tags (team,

application, environment, cost

center) validated in CI/CD

Non-compliant provisioning

blocked; full cost attribution

and drill-down analytics

Policy-as-Code

Controls

Executable

optimization

standards

Autoscaling requirements,

storage lifecycle policies,

instance size bounds evaluated

at deploy and runtime

Automated deny/remediate

actions; drift detection

prevents regressions

Cost Performance

Observability

Correlated

telemetry

dashboards

Cost signals linked with

availability, latency, throughput,

and error rates

Early detection of adverse

trade-offs; blameless post-

optimization reviews

Operational

Checkpoints

Embedded cost

review gates

Standing checkpoints in team

spend reviews and architecture

governance; required cost

impact notes

Efficiency treated as first-

class concern in change

management decisions

Table 4 summarizes the public-safe, aggregate outcomes

Metric Year 1 Year 2

Annualized infrastructure cost

reduction
≈18%

An additional

≈5%

Availability/latency adherence Met SLOs Met SLOs

Forecast variance vs. budget Improved Improved

12. Conclusions

Engineering-first cloud cost optimization, anchored

in rightsizing, autoscaling, storage lifecycle

management, commitment discipline, and policy-

as-code can yield double-digit percentage savings

initially and continued improvements thereafter,

even as demand and total spend increase. By

embedding cost checkpoints, observability, and

ownership into routine operations, enterprises can

sustain efficiency as a core reliability practice

rather than a periodic financial intervention.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The author thanks the

platform engineering, SRE, security, and finance

partners who contributed to design, validation,

and adoption. Any views expressed are those of

the author and do not necessarily reflect the

views of any employer or client.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Use of AI Tools: The author(s) declare that no

generative AI or AI-assisted technologies were

used in the writing process of this manuscript.

References

[1] K. Bennett et al., "State of the Cloud 2023,"

Bessemer Venture Partners, 2023. Available:

https://www.bvp.com/atlas/state-of-the-cloud-2023

[2] Amazon Web Services, "COST 1. How do you

implement cloud financial management?," AWS

Well-Architected Framework, 2023. Available:

https://docs.aws.amazon.com/wellarchitected/latest/

framework/cost-01.html

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

798

[3] L. M. Dang et al., "A Survey on Internet of Things

and Cloud Computing for Healthcare," Electronics,

8(7), 2019.

[4] W. Iqbal, M. Dailey, D. Carrera, and P. Janecek,

"Adaptive resource provisioning for read-intensive

multi-tier applications in the cloud," Future

Generation Computer Systems, 27(6), 2011.

[5] N. Roy, A. Dubey, and A. Gokhale, "Efficient

Autoscaling in the Cloud using Predictive Models

for Workload Forecasting," Proc. IEEE CLOUD,

2011.

[6] A. Bhatnagar et al., "More for less: Five ways to

lower cloud costs without destroying value,"

McKinsey, 2022. Available:

https://www.mckinsey.com/capabilities/tech-and-

ai/our-insights/more-for-less-five-ways-to-lower-

cloud-costs-without-destroying-value

[7] D. DeBellis and N. Harvey, "2023 State of DevOps

Report: Culture is everything," Google Cloud,

2023. Available:

https://cloud.google.com/blog/products/devops-

sre/announcing-the-2023-state-of-devops-report

