Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - ’
(IJCESEN) T

Vol. 12-No.1 (2026) pp. 786-798
http://www.ijcesen.com

————

L
ISSN: 2149-9144

Research Article

Engineering-Driven Cloud Cost Optimization at Enterprise Scale:
An Applied Success Story with Measured Outcomes in a Large Healthcare

Enterprise

Jayasree Natarajan Swarnaras™

Independent Researcher, USA

* Corresponding Author Email: connectwithjayasree@gmail.com - ORCID: 0000-0002-5247-7660

Article Info:

DOI: 10.22399/ijcesen.4917
Received : 15 December 2025
Revised : 25 January 2026
Accepted : 02 February 2026

Keywords

Cloud Cost Optimization;
Finops,

Site Reliability Engineering,
Resource Rightsizing,
Autoscaling,

Healthcare IT

Abstract:

Enterprises continue to experience rising cloud infrastructure costs as application
portfolios expand and cloud-native architectures proliferate. This paper presents a
production-validated, engineering-driven cloud cost optimization framework
implemented at a large U.S. healthcare enterprise operating a multi-account,
multi-region platform with unpredictable demand, strict compliance requirements, and
high-availability expectations. The framework integrates utilization-based rightsizing,
demand-aware autoscaling, storage lifecycle management, commitment-based pricing,
and continuous governance through policy-as-code, explicit cost ownership, and cost—
performance observability, embedding cost optimization into routine operations via
automated enforcement and recurring review checkpoints. Over two fiscal years, the
initiative reduced annualized infrastructure cost by approximately 18% in year one and
an additional 5% in year two, despite continued growth in platform demand and overall
spend, while availability, latency, and error rates remained within established
service-level objectives. The results demonstrate that cloud cost efficiency can be
operationalized as a continuous engineering discipline — complementing site reliability
engineering practices — rather than treated as an episodic financial exercise, and provide
a repeatable, scalable model for enterprises seeking measurable and sustainable
optimization.

1. Introduction

Public cloud adoption has accelerated across
organizations
rapidly deployable

industries as
resilient, and

of cloud and serverless computing highlights that
while cloud platforms provide flexibility and
elasticity, certain workload patterns and
architectural choices can result in unexpectedly
high costs compared to traditional infrastructure

scalable,
application

pursue

platforms. However, the proliferation of cloud-
native architectures has introduced significant
complexity in managing operational costs, often
undermining the economic benefits originally
anticipated. Industry analyses, including the
Bessemer Venture Partners State of the Cloud
report, indicate that efficiency has become a critical
concern for cloud-native organizations, with
enterprises shifting focus from growth at scale to
sustainable, cost-efficient operations [1].

Existing academic and practitioner literature largely
emphasizes theoretical optimization models or
isolated tooling approaches, offering limited insight
into how cost optimization strategies can be
sustained at enterprise scale in production
environments. Prior work examining the economics

models [2]. These findings underscore the need for
cost optimization to be addressed as a systemic,
engineering-driven problem rather than a collection
of ad hoc interventions.

In regulated domains such as healthcare, cost
optimization is further constrained by strict
compliance requirements, high-availability
expectations, and patient-critical service-level
objectives (SLOs). This paper presents a
production-tested, end-to-end cloud cost
optimization framework implemented within a
multi-account, mission-critical healthcare platform
characterized by variable demand patterns. The
framework integrates workload-aware scaling,
infrastructure rightsizing, storage lifecycle policies,
commitment-based pricing, and continuous

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

governance mechanisms, including policy-as-code,
explicit cost ownership, and cost—performance
observability.
This paper makes three primary contributions:
1. An engineering-driven optimization
framework that combines technical controls
with organizational governance.

2. Measured, multi-year financial and
operational ~ outcomes demonstrating
sustained cost reduction without
performance degradation.

3. A repeatable model to prevent post-

optimization regression by embedding cost
accountability and enforcement into
standard operational workflows.

2. Problem Context and Research Motivation

The subject environment is a distributed, multi-
account, multi-account public cloud platform
supporting mission critical healthcare applications.
Demand exhibits pronounced diurnal, seasonal, and
event driven variability, with unpredictable spikes.
Rapid service growth, decentralized ownership
across numerous application teams, and uneven
cost accountability led to sustained infrastructure
cost escalation that threatened the economic
rationale for cloud adoption. The platform
comprises thousands of compute instances, dozens
of managed databases, and petabyte scale storage
distributed across geographic regions, creating a
broad and interdependent optimization space that
requires coordinated intervention.

Prior healthcare cloud studies focus primarily on
security and compliance, with limited longitudinal
analysis of cost efficiency outcomes. Conventional
cost cutting measures proved insufficient at scale.
Manual rightsizing and one-off cleanup campaigns
generated temporary relief but introduced
operational risk, required significant human effort,
and frequently regressed as teams evolved. Budget
caps and spending alerts provided limited guidance:
they obscured the distinction between mission
critical and non-critical consumption and did not
prevent inefficient resource patterns (e.g., over
provisioned compute to peak, idle premium storage,
unaligned commitments). Industry surveys
consistently report that optimizing existing cloud
use and managing cloud spend remain top priorities
and persistent challenges for enterprises,
highlighting the need for systemic solutions rather
than tactical fixes [3]. These observations indicate
that cost governance, not just isolated technical
remediation, is the dominant failure mode.

The healthcare context compounds these
challenges. Compliance obligations and the
protection of sensitive data impose strict controls,

787

while high availability (HA) expectations and
patient critical SLOs constrain the aggressiveness
of optimization strategies. Prior analyses of cloud
economics note that certain workload patterns and
architectural decisions can yield unexpectedly high
costs relative to traditional infrastructure, despite
cloud elasticity [2], and healthcare specific studies
emphasize that security, legal, and availability
requirements limit optimization flexibility while
elevating baseline costs [4]. Consequently, there is
a clear need for a holistic, engineering driven
framework that integrates technical levers with
explicit governance, including policy as code, cost
ownership, and cost—performance observability to
achieve repeatable and sustained outcomes without
compromising reliability.

3. Related Work and Background

Prior work and industry practice have explored
individual optimization mechanisms, including
utilization-based rightsizing, autoscaling, storage
lifecycle tiering, and commitment-based pricing,
often demonstrating benefits in constrained
settings. However, the literature tends to emphasize
theoretical models or tool-specific techniques with
limited evidence of long-term durability in
production at enterprise scale [1], [2].

Existing FinOps and cloud cost optimization
research can be categorized into three primary
streams, each with distinct limitations that this
work addresses:

3.1 Technical Optimization Studies:

Igbal et al. [4] and Roy et al. [5] present adaptive
resource provisioning and predictive autoscaling
models demonstrating efficiency gains in controlled
environments, while AWS and cloud provider
documentation [2] offers best-practice guidance on
rightsizing and commitment strategies. These
contributions focus predominantly on individual
optimization techniques, autoscaling, rightsizing, or
commitment planning—evaluated in isolation or
simulation. In contrast, this work implements a
coordinated multi-pillar framework in a production
healthcare environment, demonstrating how
simultaneous application of complementary
techniques yields compounding benefits and
prevents cost leakage across the optimization
surface. Moreover, prior studies report initial
efficiency improvements but provide limited
evidence of sustained outcomes beyond 6-12
months; this work presents two-year longitudinal
results with demonstrated regression prevention.

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

3.2 FinOps Governance and Organizational
Practice:

Industry reports from McKinsey [6], the FinOps
Foundation, and cloud maturity frameworks
emphasize governance mechanisms such as
showback/chargeback, tagging taxonomies, and
cross-functional collaboration to align engineering
and finance [1], [3], [7].- While these frameworks
establish valuable organizational principles, they
typically lack detailed technical implementation
specifications or empirical validation in production
systems. Published case studies often report
gualitative adoption challenges or cultural shifts
without quantifying sustained financial outcomes or
operational impact. This work bridges that gap by
presenting an operationalized governance
architecture—policy-as-code enforcement,
mandatory cost ownership via CI/CD gates, and
cost—-performance observability—integrated with
technical controls, and validates the approach with
measured multi-year cost reductions and
maintained SLOs.

3.3 SRE and Reliability-Cost Integration:

The Site Reliability Engineering literature and
Google's SRE practices emphasize error budgets,
observability, and resilience engineering but treat
cost efficiency as secondary to availability and
latency objectives [8]. Recent DevOps and SRE
surveys acknowledge growing interest in cost as a
reliability dimension [7], vyet few studies
operationalize cost optimization as a first-class SRE
discipline with the same rigor applied to availability
or performance. This work explicitly positions cost
efficiency as complementary to SRE practices,
embedding cost observability, automated
guardrails, and blameless post-optimization reviews
into standard reliability workflows, demonstrating
that cost and reliability objectives can be jointly
optimized rather than traded off.

3.4 Healthcare Cloud Studies:

Prior healthcare-focused cloud research emphasizes
security, compliance, and clinical data protection
[3], with limited analysis of cost efficiency
outcomes in production environments subject to
HIPAA, HA, and patient-critical SLOs. Existing
studies acknowledge that regulatory constraints
elevate baseline costs and narrow optimization
flexibility but provide minimal guidance on
achieving measurable cost reductions within these
constraints. This work directly addresses regulated
healthcare environments by presenting

production-validated techniques that respect

788

compliance boundaries while

double-digit cost reductions.

achieving

3.5 Positioning and Novelty:

While individual elements of the proposed
framework—rightsizing, autoscaling, lifecycle
policies, commitments, and governance practices—
exist in prior literature, empirical demonstrations
that (i) integrate these techniques into a unified,

policy-enforced system, (i) implement the
framework in a mission-critical regulated
environment, (iii) preserve reliability SLOs

throughout optimization, (iv) report sustained
multi-year cost reductions despite platform growth,
and (v) prevent regression through automated
governance remain comparatively rare in the public
domain. This work addresses that gap by
operationalizing cost efficiency as a continuous
engineering discipline aligned with SRE practices,
combining technical controls with policy-as-code
governance, and presenting longitudinal financial
and operational outcomes in a large healthcare
enterprise that simultaneously validate feasibility,
durability, and repeatability.

4. System and Environment
Platform Scope

The evaluated platform supports a portfolio of
patient-facing and clinical applications with
diurnal, seasonal, and event-driven load variability.
The estate spans multiple regions and
organizational accounts and includes thousands of
compute resources (VMs and containerized
workloads), dozens of managed database services,
and petabyte-scale object and block storage.
Services are owned by independent application
teams, with a central platform/SRE group providing
shared infrastructure, guardrails, and governance.

4.1 Baseline State and Anti-Patterns

Prior to the initiative, several cost-inefficient
patterns were prevalent: (1) static over-provisioning
to peak demand, (2) limited rightsizing discipline
and drift over time, (3) dormant or low-temperature
data retained on premium storage tiers, (4) under-
or mis-aligned commitments relative to workload
baselines, and (5) unclear cost ownership and
inconsistent tagging, which reduced the
effectiveness of spend analysis and accountability.
These conditions reflected a combination of
technical debt and organizational fragmentation.

4.2 Constraints

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

Optimization levers were bounded by regulatory
and compliance requirements, HA expectations,
and patient-critical SLOs. Changes to capacity,
deployment topology, or storage policy required
controlled experimentation, progressive rollout, and
observability to ensure no degradation in
availability, latency, or error rates.

4.3 Operational
Infrastructure

Context and Observability

The platform maintained unified observability and
cost telemetry infrastructure comprising multiple
integrated layers. Metrics collection leveraged a
Prometheus-compatible time-series database with
custom exporters capturing CPU, memory, network
I/0, disk utilization, and application-layer golden
signals (request rate, error rate, latency
distributions) at 15-second granularity across all
compute resources. Distributed tracing via
OpenTelemetry instrumentation enabled end-to-end
request flow analysis and service dependency
mapping. Log aggregation centralized application
and infrastructure logs with structured metadata for
filtering and correlation. Cost telemetry integrated
native cloud provider billing APIs and cost
allocation tags, correlating resource consumption
with financial spend at hourly granularity and
enabling drill-down to individual service, team,
environment, and workload dimensions.

This observability substrate was augmented by a
unified analytics layer that joined cost, utilization,
and performance data across services and time
windows. Custom dashboards and alerting rules
enabled real-time cost—performance correlation,
allowing engineers to identify optimization
opportunities (e.g., sustained low CPU utilization
indicating rightsizing candidates) and detect
anomalies (e.g., cost spikes decoupled from traffic
growth). Historical data retention of 18+ months
supported trend analysis, seasonality detection, and
validation of demand forecasting models used in
predictive autoscaling.

A central policy-as-code layer enforced guardrails

including instance class allowlists, mandatory
autoscaling configurations for production
workloads, storage lifecycle defaults, and

commitment hygiene rules, with automated drift
detection comparing deployed state against desired
policy. Recurring cost reviews and automated
validation checks were embedded into standard
operational workflows, including weekly team-
level spend reviews, monthly cross-team
optimization forums, and quarterly architecture
governance sessions requiring documented cost
impact assessments for significant infrastructure
changes. This environment provided the necessary

789

substrate—observability, governance tooling, and
operational discipline—to implement and validate a
continuous cost optimization program without
jeopardizing reliability.

5. Optimization Framework and Methodology
The proposed framework operationalizes cloud cost
optimization as a continuous, engineering-driven
process rather than a one-time corrective exercise.
Optimization actions are derived from
telemetry-guided analysis, validated against
service-level objectives (SLOs) through controlled
experimentation, and enforced via automated
pipelines and policy-as-code governance to ensure
durability. The framework integrates six
complementary technical pillars spanning the
infrastructure, platform, and governance layers.

5.1 Utilization-Based Rightsizing

Utilization telemetry across CPU, memory,
network, and storage, collected over extended
historical windows (30-90 days) and supplemented
by near-real-time signals, served as the basis for
rightsizing recommendations. Analysis workflows
combined Prometheus query results with custom
Python-based analytics scripts that identified
resources exhibiting sustained underutilization—
defined as CPU utilization consistently below 40%
or memory utilization below 50% during business-
hours peaks, with no significant variability across
daily or weekly cycles.

Resources meeting underutilization criteria were
mapped to more appropriate instance classes or
sizes using a decision matrix that considered
workload characteristics (CPU-bound, memory-
bound, network-intensive, or balanced) alongside
cost-performance ratios across available instance
families. Representative rightsizing actions
included:

API gateway tier: Transitioned from m5.2xlarge
(8 vCPU, 32 GiB) to m5.xlarge (4 vCPU, 16 GiB)
instances after observing sustained CPU utilization
of 25-30% and memory at 35-40%, achieving 42%
unit cost reduction while maintaining p95 latency <
100ms and 99.95% availability.

Background processing workloads: Migrated
from general-purpose mb.large to compute-
optimized c5.large instances for CPU-intensive
batch jobs, reducing per-instance cost by 8% while
improving job completion time by 12% due to
higher CPU performance.

Database read replicas: Downsized from
r5.4xlarge to r5.2xlarge (memory-optimized) after
sustained memory utilization remained below 45%,
yielding 50% cost savings with query latency
degradation < 5ms (within acceptable thresholds).

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

Recommendations were applied through canary
deployments: changes were first validated on 5% of
fleet capacity, monitored for 48-72 hours against
predefined golden KPIs (availability > 99.9%, p95
latency within £10% of baseline, error rate < 0.1%),
and progressively rolled out to 25%, 50%, and
100% of capacity upon successful validation at
each stage. Automated rollback triggered if any
KPI threshold was breached. This deterministic,
workload-aware provisioning replaced static
allocation models that historically led to chronic
over-provisioning in variable workloads. Prior
studies have demonstrated that utilization-driven
adjustments based on workload characteristics
significantly outperform static provisioning
strategies in both efficiency and stability [5].

5.2 Demand-Aware Autoscaling

To address inefficiencies introduced by fixed
capacity planning, the framework implemented
demand-aware autoscaling combining predictive,
scheduled, and reactive mechanisms. Historical
demand patterns (request volume, queue depth,
database connection counts) were analyzed using
time-series forecasting models (ARIMA and
exponential smoothing) trained on 90-day rolling
windows to inform predictive scaling models,
enabling capacity adjustments 15-30 minutes ahead
of anticipated load changes.

Specific autoscaling configurations implemented
included:

Scheduled scaling for patient portal
applications: Automatic scale-up from baseline 20
instances to 60 instances at 06:00 local time (ahead
of peak clinic appointment check-in hours), scale-
down to 25 instances at 20:00, and further reduction
to 15 instances overnight and weekends,
eliminating 40% of off-hours capacity waste while
maintaining sub-second response times during
traffic surges.

Predictive scaling for data processing pipelines:
Machine learning model predictions triggered
proactive scaling 20 minutes before batch job
submissions (detected via queue depth monitoring),
reducing scale-up latency from 8-10 minutes
(reactive threshold-based) to < 2 minutes and
eliminating 15% of job failures caused by
insufficient capacity during demand spikes.
Reactive autoscaling with bounded limits:
Horizontal pod autoscalers (HPA) in Kubernetes
clusters configured with target CPU utilization of
70%, minimum 3 replicas, maximum 50 replicas,
and 2-minute stabilization windows to prevent
oscillation. Scale-up velocity limited to +50% per
5-minute interval; scale-down limited to —25% per

790

10-minute interval to ensure safe warm-up and
graceful shutdown.

Where supported, vertical scaling (vertical pod
autoscaler in Kubernetes) complemented horizontal
instance scaling for stateful workloads, adjusting
CPU and memory requests/limits within bounds of
0.5-8 vCPU and 2-32 GiB based on observed
utilization, bounded by safety limits and warm-up
controls to prevent destabilizing memory-intensive
processes. Research indicates that proactive scaling
approaches improve cost efficiency and
performance consistency compared to purely
reactive threshold-based methods by reducing
scale-up latency and capacity shortfalls during
demand surges [6].

5.3 Storage Lifecycle Optimization

Storage optimization targeted the disproportionate
cost impact of retaining low-activity data on
premium tiers. Access-frequency analysis queried
cloud provider storage analytics APIs to identify
objects with zero access in trailing 30-day, 90-day,
and 180-day windows. Retention requirements and
recovery objectives (RTO/RPO) informed
automated lifecycle policies that transitioned data
across hot (standard SSD), warm (infrequent
access), cold (archival with hours retrieval), and
archival (deep archive with 12-hour retrieval) tiers.
Lifecycle transition rules included:

Medical imaging archives: Transition from hot to
warm storage after 90 days of zero access, warm to
cold after 180 days, and cold to deep archive after
365 days, subject to 7-year legal retention and 24-
hour RTO compliance requirements, achieving
65% storage cost reduction for datasets > 1 year
old.

Application logs: Transition to infrequent access
after 30 days, archive after 90 days, with automatic
deletion after 2 years (retention policy), reducing
log storage costs by 70% while maintaining audit
compliance.

Highly accessed datasets remained on premium
storage, while infrequently accessed or dormant
data was progressively tiered down after defined
inactivity periods. Exceptions were governed
through a centralized registry where teams
documented RTO/RPO requirements, compliance
obligations, and business justifications for retaining
data on higher-cost tiers, ensuring that lifecycle
transitions reduced unit storage cost at scale
without violating operational or regulatory
requirements.

5.4 Commitment-Based Pricing Optimization

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

For workloads exhibiting stable baseline
consumption, commitment-based pricing
instruments (Reserved Instances, Savings Plans,
Committed Use Discounts) were applied to capture
provider discounts (20-40% off on-demand
pricing) while minimizing over-commitment risk.
Baseline utilization analysis examined 90-day
minimum sustained capacity ("floor" consumption)
across instance families and regions, excluding
burst traffic and temporary capacity. Growth
projections (historical trend analysis and business
planning inputs) informed coverage decisions,
targeting 70-80% of baseline capacity under
commitments to retain flexibility for variable
workloads and architectural changes.

Coverage decisions were reviewed monthly via
automated reports comparing actual vs. committed
utilization, triggering alerts when utilization fell
below 85% (under-utilization risk) or exceeded
95% (opportunity for additional coverage).
Commitments were adjusted quarterly in alignment
with architectural changes (e.g., containerization
reducing VM footprint) or sustained demand
growth. This disciplined approach enabled
sustained discount capture while retaining
flexibility for variable workloads, achieving 28%
effective cost reduction on committed capacity.

5.5 Idle Resource Remediation

Event-driven and scheduled detectors identified idle
or orphaned resources using tag-based ownership
validation and activity telemetry. Automated
detectors queried cloud provider APIs nightly to
identify:

e Unattached EBS volumes (storage not

mounted to any instance) idle > 7 days

e FElastic IP addresses not associated with
running instances > 3 days
e L oad balancers with zero traffic > 14 days
e Database instances with zero connections >
7 days
e Snapshots exceeding retention policies
Automated remediation workflows enforced

cleanup actions by default: resources flagged as idle
received notifications to owning teams (via cost
center tags) with 7-day grace periods, after which
automated deletion occurred unless teams explicitly
opted out via exception registry. Opt-out required
documented business justification and executive
approval for resources with monthly cost > $500.
This capability addressed chronic accumulation of
non-value-generating resources (representing 8—
12% of baseline spend) and served as a guardrail
against cost regression.

791

5.6. Governance and Orchestration

All optimization techniques were orchestrated
through policy-as-code controls implemented using
HashiCorp Sentinel (for Terraform infrastructure-
as-code validation), AWS Config Rules (for
runtime compliance), and Open Policy Agent
(OPA) for Kubernetes admission control and

integrated into continuous delivery pipelines.
Policies enforced configuration standards
including:

e Mandatory autoscaling for production

workloads (HPA or ASG required)

Storage lifecycle configuration for S3
buckets and persistent volumes

Instance class allowlists (blocking
oversized or previous-generation types)
Commitment hygiene (minimum utilization
thresholds, periodic review gates)
Exception management workflows
requiring documented approval chains
Automated validation checks in CI/CD pipelines
blocked non-compliant infrastructure deployments,
while runtime drift detection compared deployed
state against desired policy every 15 minutes,
triggering automated remediation or alerts for
human review. Recurring cost reviews (weekly
team-level, monthly cross-team forums, quarterly
architecture governance) and automated validation
checks embedded optimization into standard
operational workflows, enabling cost efficiency to
function as a continuous engineering discipline
aligned with site reliability engineering (SRE)
practices. Governance is treated as a first-class
optimization pillar, providing enforcement,
auditability, and regression prevention across all
technical techniques. Detailed implementation of
policy-as-code enforcement mechanisms, exception
workflows, and organizational enablement is
presented in Section 6.

6. Implementation Architecture and Governance

To ensure durability and prevent post-optimization
regression, the cost optimization framework was

operationalized through a governance-driven
implementation architecture that embedded
financial efficiency into standard engineering

workflows. The architecture integrates explicit cost
ownership, policy-as-code enforcement, cost—
performance observability, operational checkpoints,
and team enablement mechanisms, enabling cost
efficiency to function as a continuous control loop

rather than an episodic financial activity.
Implementation required initial investment in
tooling infrastructure, policy development,
observability integration, and organizational

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

enablement, with setup effort distributed across
platform engineering (6 engineer-months), policy
authoring and testing (3 engineer-months), training
development and delivery (2 engineer-months), and
tooling licenses/integrations (estimated annual cost
of $180K for policy engines, observability platform
extensions, and cost analytics tools). These
investments were amortized across the first fiscal
year and offset by cost savings realized within the
initial 4-5 months of operation.

6.1 Explicit Cost Ownership and Tagging

Cost accountability was decentralized to application
teams, replacing centralized infrastructure
ownership models. All provisioned resources were
required to carry mandatory metadata including

owning team, application, environment
(dev/staging/prod), and cost center, enforced
through CI/CD pipeline validation gates

implemented as pre-deployment hooks in GitLab
CI/CD and AWS CodePipeline. Tag validation
logic queried resource definitions in Terraform
plans and CloudFormation templates, blocking
deployments missing required tags or containing
non-compliant tag values (validated against
organizational registries of approved teams,
applications, and cost centers maintained in a
central configuration management
database).Non-compliant deployments were
blocked at provisioning time with actionable error
messages directing engineers to tagging
documentation and team registration workflows,
ensuring full attribution and enabling granular
spend analysis across organizational, application,
and environment dimensions. Tag compliance
monitoring via scheduled AWS Config rules and
custom scripts identified and flagged resources
deployed outside CI/CD pipelines (manual console
deployments), triggering automated notifications
and requiring retroactive tag application within 48
hours or resource termination. This approach aligns
with industry guidance emphasizing explicit
accountability and cost awareness as prerequisites
for sustainable cloud financial management [7].

6.2 Policy-as-Code Controls
Organizational cost optimization standards were

encoded as executable policies and evaluated
continuously at deployment and runtime using a

multi-layer enforcement architecture:
Infrastructure-as-Code Validation (Pre-
Deployment): HashiCorp Sentinel policies

integrated into Terraform Enterprise workflows
evaluated infrastructure definitions before
provisioning, enforcing rules such as:

792

e Instance type allowlists blocking previous-
generation (t2, m4) or oversized instance
classes (> 16 vCPU) without architectural
review approval
Mandatory autoscaling group or horizontal
pod autoscaler configuration for production
workloads (identified via environment tags)
Required lifecycle policies on S3 buckets
and persistent volume claims
Commitment coverage targets requiring
Reserved Instance or Savings Plan
attribution for baseline-stable workload
tiers
Runtime Compliance Monitoring: AWS Config
Rules, Azure Policy, and custom Lambda functions
evaluated deployed resource configurations every
15 minutes, detecting drift from desired state
including:

e Autoscaling configurations disabled or

improperly bounded (min/max instance
count violations)
e Storage lifecycle policies removed or

modified to retain data on premium tiers
beyond approved durations

Uncommitted compute instances exceeding
30-day runtime without approved exception
Resource tag modifications or deletions
violating ownership accountability
Kubernetes Admission Control: Open Policy
Agent (OPA) deployed as a validating admission
webhook intercepted pod creation requests,
enforcing policies such as:

e Resource requests/limits within approved
bounds (CPU: 0.1-8 vCPU, memory: 256
MiB-32 GiB)

e Required horizontal pod autoscaler

definitions for production namespaces

Pod disruption budgets ensuring safe scale-
down operations

Mandatory cost-allocation labels (team,
application, environment)

Exception Management Workflow: Teams
requiring policy deviations submitted exception
requests via a self-service portal (ServiceNow
integration), documenting business justification,
expected duration, and estimated cost impact.
Exception requests triggered an approval workflow
routing to:

e Engineering manager approval for
exceptions < $1K/month estimated impact
and < 90 days duration
Director-level approval for exceptions
$1K-$10K/month or 90-180 days
VP-level and architecture review board
approval for exceptions > $10K/month or >
180 days

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

Approved exceptions were encoded as policy
overrides (resource-specific ~ exemptions or
temporary policy disablement) with automated
expiration, requiring renewal upon expiration or
automatic policy re-enforcement. Exception
telemetry (request volume, approval rates, cost
impact, expiration compliance) was reviewed
guarterly to identify systemic policy gaps or
emerging architectural patterns requiring policy
refinement. Automated drift detection identified
deviations from desired states, triggering
remediation or blocking unsafe changes. Consistent
with prior industry findings, automated governance
proved essential to sustaining cost efficiency
without incurring ongoing manual oversight [8].

6.3 Cost—Performance Observability

Unified observability correlated cost telemetry with
operational performance metrics, including
availability, latency, throughput, and error rates,
using integrated dashboards built on Grafana and
custom analytics applications. Shared dashboards
presented per-service and per-team views
combining:

e Hourly infrastructure cost trends (compute,
storage, data transfer) with 7-day and 30-
day moving averages
Key reliability metrics: availability (uptime
percentage), p50/p95/p99 latency
distributions, error rates, request volume
Cost efficiency indicators: cost per request,
cost per GB processed, cost per active user
Optimization opportunity signals:
underutilized resources flagged by
rightsizing analyzers, autoscaling
effectiveness scores, commitment coverage
percentages
Engineers accessed real-time and historical views
enabling cost-performance trade-off evaluation and
quick identification of unintended regressions
following optimization actions. Anomaly detection
algorithms (statistical process control, seasonal
decomposition) alerted on cost spikes decoupled
from traffic growth or performance degradations
coinciding with infrastructure changes, enabling
rapid root cause analysis. When deviations were
detected, teams conducted blameless
post-optimization reviews following SRE incident
review processes to refine policies and thresholds,
document lessons learned, and adjust automation
parameters, reinforcing reliability while
maintaining cost controls.

6.4 Embedded Operational Checkpoints

793

Cost awareness was embedded into existing
operational processes through standing checkpoints
in team-level spend reviews and architecture
governance forums:

Weekly Team-Level Spend Reviews: Engineering
teams reviewed cost dashboards in weekly
operational meetings, comparing actual spend
against forecasts, investigating anomalies, and
tracking progress on optimization initiatives.
Reviews followed standardized agendas covering
top cost-driving services, week-over-week variance
analysis, and upcoming changes with cost impact.
Monthly ~ Cross-Team Optimization Forums:
Central platform/SRE group facilitated monthly
forums presenting aggregate cost trends, sharing
optimization patterns across teams, recognizing
high-performing teams (cost efficiency awards),
and coordinating platform-wide initiatives (e.g.,

commitment purchase negotiations, policy
updates).
Quarterly Architecture Governance Reviews:

Significant capacity or architectural changes (new
service launches, major refactoring, region
expansions) required documented cost impact
assessments submitted to an architecture review
board, including projected infrastructure spend,
optimization strategies to be applied (rightsizing,
autoscaling, lifecycle policies, commitment
coverage), and comparison against alternative
architectural approaches. Proposals lacking cost
analysis or demonstrating inefficient resource
patterns were returned for revision before approval.
Integrating cost reviews into established workflows
ensured that optimization remained an ongoing
engineering concern rather than a periodic
remediation effort, making efficiency an explicit
consideration alongside performance and reliability.

6.5 Team Enablement and Adoption

Successful operationalization of the cost
optimization framework required coordinated team
enablement addressing knowledge gaps, skill
development, and behavioral incentives:

Training and Onboarding: A multi-tier training
program was developed and delivered across the
engineering organization:

Foundational training (2-hour self-paced
modules): Cloud cost fundamentals, cost visibility
tools, tagging requirements, and policy compliance
expectations, required for all engineers
provisioning infrastructure (completion tracked via
LMS, 95% completion within 90 days of hire or
role change)

Practitioner workshops (half-day instructor-led
sessions): Hands-on exercises in rightsizing
analysis, autoscaling configuration, storage

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

lifecycle policy authoring, and cost-performance
trade-off evaluation using production datasets,
targeting infrastructure and platform engineers (18
sessions delivered, 240 engineers trained in first

year)

Advanced optimization training (full-day
sessions): Deep dives into commitment-based
pricing strategies, predictive scaling model
development, policy-as-code authoring, and
exception workflow design, targeting senior

engineers and architects (quarterly offerings, 60
engineers trained in first year)

Training materials included recorded videos,
interactive labs in sandboxed cloud environments,
decision trees for optimization technique selection,
and runbooks for common scenarios. Office hours
(biweekly) provided ongoing support for teams
encountering policy exceptions or optimization
challenges.

Incentive Alignment: Cost efficiency was
integrated into team and individual performance
evaluation frameworks:

e Team-level cost efficiency targets (cost per
request, cost per active user, or absolute
spend budgets) incorporated into quarterly
objectives and key results (OKRs),
weighted at 15-20% of overall team goals
Engineering managers included cost
awareness and optimization contributions
in individual performance reviews,
recognizing engineers demonstrating
sustained cost discipline or driving
significant savings initiatives
Quarterly "cost efficiency awards"
recognized top-performing teams (greatest
percentage reduction, most innovative
optimization technique, best cross-team
collaboration), providing visibility and
informal recognition
Champions Network: A volunteer network of 25—
30 "cost optimization champions" embedded across
engineering teams served as local advocates,
participated in policy refinement working groups,
piloted new techniques before broad rollout, and
provided peer mentoring. Champions received
advanced training, monthly coordination meetings
with the central platform team, and prioritized
support for optimization experiments.

Cultural Reinforcement: Leadership
communication (engineering all-hands
presentations, internal blog posts, team newsletters)
consistently reinforced cost efficiency as a core
engineering value aligned with reliability and
performance, celebrating wins and transparently
sharing aggregate progress toward organizational
cost targets. Blameless post-mortems for cost
overruns (similar to incident reviews) normalized

794

cost discussions and continuous
without punitive framing.

These enablement mechanisms reduced resistance
to policy adoption, accelerated competency
development, and sustained engagement with cost
optimization as an ongoing engineering discipline
rather than a transient compliance exercise.

improvement

6.6. Initial Investment and Setup Effort

Operationalizing the framework required upfront
investment across multiple dimensions:

Tooling and Platform Infrastructure (estimated
$180K annual recurring cost):

e Policy-as-code engine licensing (Terraform
Enterprise with Sentinel: ~$50K)
Observability platform extensions (Grafana
Enterprise, custom analytics tools: ~$60K)
Cost management and analytics platforms
(cloud provider native tools augmented
with third-party FinOps SaaS: ~$40K)
CI/CD pipeline enhancements
integration development (~$30K
contractor support)

Engineering Effort (one-time setup, 11 engineer-
months total):

and
in

e Platform engineering: Policy engine
deployment, CI/CD integration, automation
framework development (6 engineer-
months)

e Policy development: Authoring, testing,
and validating Sentinel/OPA/Config
policies across use cases (3 engineer-
months)

e Training development: Curriculum design,

materials creation, lab environment setup
(2 engineer-months)
Organizational Change Management:

e Executive sponsorship and communication

(included in leadership time allocation, not
separately costed)
Training delivery
distributed across teams,
engineer-months aggregate)
Champion network coordination (volunteer
time, minimal incremental cost)
These investments were amortized across the first
fiscal year and offset by cost savings realized
within 4-5 months of operation, with payback
period significantly shorter than typical
infrastructure projects. Ongoing operational
overhead (policy maintenance, training updates,
governance facilitation) required approximately 1.5
FTE sustained effort absorbed by the central
platform/SRE team, representing < 2% of total
engineering capacity while supporting enterprise-
wide cost discipline.

(instructor time
estimated 0.5

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

7. Measurement and Evaluation Design

To assess the effectiveness and durability of the
proposed optimization framework, a structured
measurement and evaluation methodology was
applied, emphasizing comparability, attribution
accuracy, and protection of operational integrity.

7.1 Baselines and Evaluation Windows

Pre-implementation baselines were established
using multi-month rolling averages to smooth
seasonal and short-term variability. Post-
implementation evaluation windows were aligned
with fiscal periods to reflect business-relevant
outcomes.

To isolate efficiency gains from organic platform
growth, results were normalized using workload
demand proxies (e.g., request volume, data
processed, and storage footprint). Proxy selection
and validation methodology: Candidate demand
indicators were evaluated for correlation strength
with infrastructure cost using 18-month historical
data. Pearson correlation analysis identified request
volume (r = 0.87), data processed (r = 0.91), and
storage footprint (r 0.84) as high-correlation
proxies. A composite demand index was
constructed as a weighted average of these three
proxies (45%, 35%, 20% respectively, weighted by
cost driver distribution), achieving overall
correlation r = 0.93 with total infrastructure cost.
The composite index was validated against a 3-
month holdout period via regression analysis (R? =
0.86), confirming it explained 86% of cost variance
and demonstrating robust normalization capability.
This approach enabled comparison on a like-for-
like basis despite increasing usage.

7.2 Attribution, Counterfactuals, and Scope

Cost savings were measured relative to a
counterfactual run rate, adjusted for pricing
commitments and growth trends that would have
applied absent optimization. The evaluation scope
was limited to infrastructure spend, excluding
personnel, tooling, and licensing costs to avoid
confounding factors and ensure attribution to
technical and governance interventions.

7.3 Reliability and Safety Guardrails

System reliability was treated as a non-negotiable
constraint throughout optimization. Awvailability,

latency, and error rates were monitored
continuously, with canary deployments and
automated rollback mechanisms serving as

safeguards. Any observed performance regression

795

resulted in immediate rollback or pause of the
associated optimization action for tuning, ensuring
that cost improvements did not compromise service
level objectives (SLOs).

8. Results
8.1. Financial Impact

In the first fiscal year following implementation,
the program achieved an approximately 18%
reduction in annualized infrastructure cost relative
to the pre-implementation run-rate, while overall
platform demand continued to grow. In the second
year, on a larger demand and spend baseline, an
additional =5% reduction was realized. This
outcome indicates not only initial efficiency gains
but also sustained prevention of cost regression in a
maturing environment.

Qualitative attribution analysis showed that savings
were distributed across multiple optimization
categories, with utilization-based rightsizing
contributing the largest share, followed by
autoscaling efficiency, storage lifecycle
optimization, commitment-based pricing, and
remediation of idle resources. The distribution
reinforces the value of a holistic, multi-pillar
approach rather than reliance on a single
optimization technique.

8.2 Operational Integrity

Throughout the optimization period, no material or
sustained degradation was observed in application
availability or latency relative to established
baselines. No high-severity incidents were
attributed to the optimization program. Incremental
rollout, continuous monitoring, and automated
rollback mechanisms collectively enabled cost
efficiency improvements while preserving
operational excellence.

8.3 Predictability and Forecast Accuracy

A secondary but operationally meaningful outcome
was improved cost predictability. Post-
implementation, variance between forecasted and
actual infrastructure spend decreased materially,
reducing budget volatility and friction between
engineering and finance functions. Increased
commitment coverage, standardized deployment
patterns, and the elimination of runaway or idle
resources contributed to more reliable annual
planning and eliminated the need for mid-year
budget corrections.

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

9. Discussion

An engineering-driven portfolio of techniques,
reinforced by governance, produced material and
durable cost outcomes without sacrificing
operational excellence. Rightsizing and autoscaling
addressed baseline waste; lifecycle policies
corrected storage drift; commitment discipline
monetized predictability; and policy-as-code
deterred regression. The approach maps naturally to
SRE practices: measure, change safely, verify, and
enforce.

10. Threats to Validity and Limitations

Internal validity may be affected by baseline
estimation and growth normalization choices;
external validity is limited by the single-enterprise
context. Construct validity is strengthened by
triangulating financial outcomes with reliability and
forecast metrics.

Scope limits exclude personnel and licensing costs.
Reported cost savings represent infrastructure
efficiency gains and do not account for the initial

investment required to operationalize the
framework, including tooling and platform
infrastructure (~$180K annual recurring),

engineering effort for setup and policy development
(~11 engineer-months), and ongoing operational
overhead (~1.5 FTE for policy maintenance and
governance facilitation, detailed in Section 6).
While these investments were offset by savings

within 4-5 months, their exclusion from the
primary savings calculations may overstate net
financial benefit for organizations evaluating
adoption without considering implementation costs.
Public safety is maintained by reporting
percentages and anonymizing the organization.
Cloud provider-specific services and pricing
models may affect the portability of individual
techniques, though the governance and evaluation
principles remain generalizable.

11. Practitioner Guidance

A. Implementation Checklist

e Enforce cost ownership via tags
(team/app/envi/cost-center) with CI/CD gates.

e Establish utilization baselines; generate and
canary rightsizing recommendations.

e Combine predictive and scheduled autoscaling
with safe bounds and warm-ups.

e Define storage tiering policies
(hot/warm/cold/archive) with exceptions
registry.

e Size commitment coverage to steady-state;
review monthly to avoid over-commit.

e Encode standards as policy-as-code; enable
continuous compliance and drift detection.

e Build cost—performance dashboards; alert on
anomalous cost/perf drift.

e Add cost checkpoints to change and

architecture reviews; track forecast variance.

Table 1 summarizes the primary challenge categories, underlying issues, and their operational impact within the
evaluated environment.

Challenge Category

Key Issues

Impact

Infrastructure Complexity

Multi-account, multi-region;
heterogeneous services;
distributed data

Large optimization search space;
coordination overhead

Organizational Gaps

Decentralized ownership; weak
cost accountability; inconsistent

Persistent spend growth; low
attribution fidelity

tagging
Traditional Approaches Manual cleanup; budget caps; ad Operational risk; poor
hoc reviews sustainability

Healthcare Constraints

Compliance; HA; auditability;
PHI/PII protections

Narrow optimization envelope;
strict guardrails

Root Causes

Poor utilization visibility, no
automated remediation

Systemic inefficiencies

Table 2 outlines inputs, actions, and expected outcomes by technique.

Technique Inputs

Action Expected Outcome

Historical & real-time
telemetry; SLOs

Utilization-Based
Rightsizing

class/size via canary

Adjust instance Higher utilization without

SLO violations
rollout

Demand-Aware Demand history;

Predictive, scheduled,

Reduced off-peak waste;

Autoscaling calendars; metrics bounded scaling stable performance
Storage Lifecycle Access patterns; Automated tier Lower unit storage cost at
Optimization retention; RTO/RPO transitions with scale

796

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

exceptions

Commitment-Based

Baseline stability;

Apply and periodically

Sustained pricing discounts

Pricing growth forecasts adjust commitments with guardrails
Idle Resource Activity telemetry; Detect and remove Budget recovery;
Remediation tagging metadata idle/orphaned assets regression prevention

Governance &

Policies, cost &
reliability signals,

Enforce guardrails via

policy-as-code and

Orchestration

Durable optimization,
auditability, regression

thods.

exceptions pipelines prevention
Table 3 summarizes the primary governance components, their implementation mechanisms, and enforcement me
Section Governapce Implementation Detail Enforcement / Outcome
Mechanism
Cost Ownership Mandatory I'Requwed ta_gs (team, l\llon-kcomflll?nt provisioning
& Tagging resource application, environment, cost bloc ed,_ ull cost attnbl_mon
metadata center) validated in CI/CD and drill-down analytics
. Executable Autoscall_ng requirements, Automated deny/remediate
Policy-as-Code L storage lifecycle policies, A .
optimization . . actions; drift detection
Controls instance size bounds evaluated .
standards . prevents regressions
at deploy and runtime
Correlated Cost signals linked with Early detection of adverse
Cost Performance - .
- telemetry availability, latency, throughput, | trade-offs; blameless post-
Observability oo .
dashboards and error rates optimization reviews
. Standmg_checkpomts In team Efficiency treated as first-
Operational Embedded cost | spend reviews and architecture .
. .] . class concern in change
Checkpoints review gates governance; required cost -
) management decisions
impact notes

Table 4 summarizes the public-safe, aggregate outcomes

Metric Year 1 Year 2
Annualized infrastructure cost N An additional
: ~18% N
reduction ~5%
Availability/latency adherence Met SLOs Met SLOs
Forecast variance vs. budget Improved Improved

12. Conclusions

Engineering-first cloud cost optimization, anchored
in rightsizing, autoscaling, storage lifecycle
management, commitment discipline, and policy-
as-code can yield double-digit percentage savings
initially and continued improvements thereafter,
even as demand and total spend increase. By
embedding cost checkpoints, observability, and
ownership into routine operations, enterprises can
sustain efficiency as a core reliability practice
rather than a periodic financial intervention.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

e Acknowledgement: The author thanks the
platform engineering, SRE, security, and finance
partners who contributed to design, validation,

797

and adoption. Any views expressed are those of
the author and do not necessarily reflect the
views of any employer or client.

e Author contributions: The authors declare that
they have equal right on this paper.

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

e Use of Al Tools: The author(s) declare that no
generative Al or Al-assisted technologies were
used in the writing process of this manuscript.

References

[1] K. Bennett et al.,, "State of the Cloud 2023,"
Bessemer Venture Partners, 2023. Available:
https://www.bvp.com/atlas/state-of-the-cloud-2023

[2] Amazon Web Services, "COST 1. How do you
implement cloud financial management?,” AWS
Well-Architected Framework, 2023. Available:
https://docs.aws.amazon.com/wellarchitected/latest/
framework/cost-01.html

Jayasree Natarajan Swarnaras / IJCESEN 12-1(2026)786-798

[3] L. M. Dang et al., "A Survey on Internet of Things
and Cloud Computing for Healthcare," Electronics,
8(7), 2019.

[4] W. Igbal, M. Dailey, D. Carrera, and P. Janecek,
"Adaptive resource provisioning for read-intensive
multi-tier applications in the cloud,"” Future
Generation Computer Systems, 27(6), 2011.

[5] N. Roy, A. Dubey, and A. Gokhale, "Efficient
Autoscaling in the Cloud using Predictive Models
for Workload Forecasting," Proc. IEEE CLOUD,
2011.

[6] A. Bhatnagar et al., "More for less: Five ways to
lower cloud costs without destroying value,”
McKinsey, 2022. Available:
https://www.mckinsey.com/capabilities/tech-and-
ai/our-insights/more-for-less-five-ways-to-lower-
cloud-costs-without-destroying-value

[7] D. DeBellis and N. Harvey, "2023 State of DevOps
Report: Culture is everything," Google Cloud,
2023. Available:
https://cloud.google.com/blog/products/devops-
sre/announcing-the-2023-state-of-devops-report

798

