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Abstract:  
 

Embedding-based Retrieval-Augmented Generation (RAG) systems are critical 

infrastructure for production AI applications, yet they remain vulnerable to embedding 

space poisoning attacks that achieve disproportionate success with minimal payloads 

(<1% corpus contamination, resulting in>80% attack success rates). Current single-

layer defense approaches optimize for high-amplitude signals in narrow-dimensional 

subspaces, making them systematically vulnerable to coordinated cross-layer attacks 

that distribute adversarial signals across architectural layers. EmbedGuard is an 

adaptive, cross-layer detection framework integrating hardware-backed cryptographic 

attestation with statistical anomaly detection across four RAG architectural layers: 

prompt layer injection detection, embedding layer hardware attestation via Trusted 

Execution Environments (TEEs), retrieval layer distributional analysis, and output layer 

consistency verification. The framework employs efficient techniques, including 

incremental Principal Component Analysis and Kullback-Leibler divergence metrics, to 

detect subtle, coordinated attacks while maintaining production-grade latencies. 

Evaluation of a production-scale system (500,000 embeddings, 47,000 queries) 

demonstrates a 94.7% detection rate for optimization-based attacks and 89.3% for 

adaptive attacks, with a 3.2% false positive rate and a 51ms mean latency overhead. 

Ablation studies quantify an 18.4 percentage point improvement from cross-layer 

correlation over the best single-layer approach. The framework operates in three 

deployment modes—passive logging, gated human review, and active automatic 

remediation—enabling deployment across diverse organizational contexts and security 

requirements while protecting against adversarial embedding manipulation. 

 

1. Introduction 
 

With the advent of large language models and their 

deployment in enterprise applications, Retrieval-

Augmented Generation (RAG) systems have 

emerged as one of the most impactful architectures 

for artificial intelligence applications. RAG systems 

combine the generative capabilities of neural 

language models with the ability to retrieve 

information dynamically from external knowledge 

sources, alleviating critical drawbacks of purely 

generative models such as knowledge staleness, 

factual hallucinations, and limited domain coverage 

[1, 2]. This architectural pattern has become 

ubiquitous in production deployments across 

healthcare, financial services, legal research, and 

customer service applications. 

Recent security research has identified critical 

vulnerabilities in RAG retrieval components, 

particularly embedding space poisoning attacks 

where adversaries insert maliciously constructed 

documents into the retrieval knowledge base to 

influence the generation process [3, 4]. These 

attacks exploit high-dimensional embedding 

geometry: even minimal corpus contamination (< 

1% of documents) can achieve attack success rates 

exceeding 80% through strategic semantic space 

positioning. Research demonstrates that attackers 

can generate documents that meet retrieval targets 

for specific query patterns while remaining 

sufficiently semantically diverse to evade 

clustering-based outlier detection techniques [3]. 

The permanence of embedding attacks 

differentiates them from transient prompt-based 

exploits, combining supply chain attack stealth with 

runtime exploit immediacy to create a distinct and 

persistent threat surface. 
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1.1 Economic and Security Implications 

 

These vulnerabilities have substantial economic 

implications for organizations deploying RAG 

systems. Analysis of data breach events 

demonstrates that artificial intelligence and 

machine learning systems face unique security 

challenges that incur significant financial impact. 

According to IBM Security's 2024 Cost of Data 

Breach Report, organizations experiencing breaches 

involving AI systems face average costs of $4.91 

million, with mean time to detection and 

containment extending to 267 days—substantially 

longer than conventional security incidents [2]. The 

persistence of embedding-space attacks exacerbates 

these costs, as poisoned vectors remain in 

knowledge bases until manually identified and 

removed, resulting in prolonged compromise 

timeframes. This permanence, combined with the 

difficulty of forensic analysis in high-dimensional 

embedding spaces, creates extended uncertainty 

regarding breach scope and impact. 

The high-dimensionality of embedding spaces 

(typically 768 to 1536 dimensions for modern 

embedding models) enables adversaries to construct 

documents that preserve semantic relevance for 

target query patterns while remaining 

grammatically valid and linguistically coherent, 

thus evading perplexity-based statistical detectors. 

Furthermore, adversarial embeddings demonstrate 

transferability between embedding models, 

meaning attackers who optimize attacks against 

publicly available models can successfully transfer 

them to proprietary models with high confidence of 

success [3, 5]. 

 

1.2 Limitations of Current Defense Mechanisms 

 

Contemporary defense mechanisms primarily adopt 

single-layer approaches, optimizing detection for 

isolated attack surfaces within the RAG 

architecture. RAGuard employs perplexity analysis 

and similarity filtering at the retrieval layer [6]. 

RobustRAG implements isolate-then-aggregate 

strategies with certifiable guarantees [5]. TrustRAG 

uses K-means clustering for embedding space 

pattern detection [7]. However, these single-layer 

defenses exhibit systematic vulnerabilities to 

coordinated attacks that leverage multiple 

architectural layers and deliberately avoid 

exhibiting detectable anomalies at any single 

monitored layer. 

The fundamental limitation of single-layer defenses 

lies in their optimization for high-amplitude signals 

in narrow dimensional subspaces. Perplexity-based 

filters assume poisoned documents exhibit 

linguistic incoherence, yet advanced adversaries 

generate fluent malicious text indistinguishable 

from legitimate documents. Clustering-based 

methods assume poisoned embeddings appear 

spatially anomalous, yet attackers optimize for 

embedding centrality while maintaining target 

query similarity. Activation-based methods assume 

poisoned content causes abnormal model behavior, 

yet adversaries craft documents producing 

contextually appropriate activation patterns. 

Modern defenses lack cross-layer correlation 

capabilities and fail to detect attacks with 

individually innocuous characteristics distributed 

across multiple layers that collectively achieve 

malicious objectives. 

 

1.3 Contributions 

 

To address these limitations, we present 

EmbedGuard: the first cross-layer detection 

framework with integrated cryptographic 

verification capabilities for RAG systems. The 

framework makes the following contributions: 

1. Cross-Layer Detection Architecture: 

EmbedGuard implements unified security 

reasoning across four layers of the RAG 

architecture—prompt analysis, embedding 

attestation, retrieval monitoring, and output 

verification—correlating anomaly signals 

that appear benign individually but indicate 

coordinated attacks when analyzed 

collectively. 

2. Cryptographic Provenance Attestation: 

The framework introduces hardware-

backed embedding generation using 

Trusted Execution Environments (TEEs), 

transforming embedding security from a 

statistical inference problem into a 

cryptographic verification problem. This 

fundamentally alters adversarial tradeoffs, 

requiring attackers to compromise 

hardware security rather than evade 

statistical detection. 

3. Production-Scale Evaluation: 

Comprehensive evaluation on a production-

scale system (500,000 embeddings, 47,000 

queries) demonstrates a 94.7% detection 

rate for optimization-based attacks and 

89.3% for adaptive attacks with 51ms mean 

latency overhead, representing 15.5-35.1 

percentage point improvements over 

existing single-layer defenses under 

adaptive attack scenarios. 

4. Ablation Analysis: Systematic ablation 

studies quantify individual layer 

contributions, revealing 18.4 percentage 

point improvement from cross-layer 

correlation beyond the best single-layer 
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approach, validating the architectural 

hypothesis that attackers cannot 

simultaneously evade orthogonal detection 

modalities. 

5. Flexible Deployment Framework: Three 

operational modes (passive, gated, active) 

enable deployment across diverse 

organizational contexts with varying risk 

tolerances, regulatory requirements, and 

operational constraints, from resource-

constrained environments to high-assurance 

applications. 

The remainder of this paper is organized as follows: 

Section 2 analyzes the threat landscape and 

limitations of existing defenses. Section 3 details 

the EmbedGuard architecture and detection 

mechanisms. Section 4 presents experimental 

evaluation and comparative analysis. Section 5 

discusses applications and societal implications. 

Section 6 concludes with future research directions. 

 

2. Threat Landscape and Existing Defense  

Mechanisms 

 

2.1 RAG Attack Surface and Poisoning 

Mechanics 

 

The attack surface of RAG systems encompasses 

multiple architectural layers, each presenting 

distinct vulnerabilities that adversaries can exploit 

to manipulate system behavior. Knowledge 

poisoning attacks modify the retrieval mechanism, 

steering language models toward attacker-

controlled content through careful manipulation of 

the embedding space and semantic similarity 

calculations fundamental to retrieval-based systems 

[3]. 

Research demonstrates that output manipulation is 

not necessarily linear with respect to the quantity of 

corrupted documents—even modest contamination 

(5-10 poisoned documents in corpora of 10,000) 

can produce disproportionate effects on system 

behavior [3]. Adversaries generate documents that 

satisfy retrieval targets for specific query patterns 

while maintaining sufficient semantic diversity to 

evade clustering-based outlier detection. Document 

poisoning attacks employ gradient-based 

optimization that maximizes retrieval probability by 

iteratively updating document content and 

embeddings, matching both target query 

distributions and statistical properties of benign 

corpus documents to remain indistinguishable while 

achieving malicious objectives. 

 

2.2 Economic Impact and Detection Challenges 

 

Research into data breach disclosures demonstrates 

that incidents involving AI systems exhibit 

significantly higher mean time to detection 

compared to breaches in systems without AI 

components. IBM's 2024 analysis indicates that AI-

related breaches average 267 days for detection and 

containment, with average costs reaching $4.91 

million [2]. This extended timeline results from the 

inherent difficulty of detecting anomalous behavior 

in AI systems with intrinsically variable 

performance characteristics. 

Cost analysis reveals that remediation expenses are 

highest when poisoning affects training data or 

model behavior, requiring poison purging, integrity 

validation, and potentially retraining in secure 

environments. Breaches affecting retrieval systems 

present additional recovery challenges due to 

distributed vector store architectures, where 

identifying all compromised embeddings at scale 

proves difficult. Forensic processes struggle to 

reason about attack impacts in high-dimensional 

embedding spaces, creating prolonged 

organizational uncertainty regarding breach scope. 

Comprehensive breach costs encompass detection 

and recovery time, regulatory fines (particularly 

when adversarial systems impact decision-making 

in regulated industries), and reputational damage 

extending 18-24 months beyond immediate 

remediation [2]. 

 

2.3 Single-Layer Defense Limitations 

 

Contemporary defense mechanisms operate at 

individual architectural abstraction levels, lacking 

cross-layer correlation capabilities essential for 

detecting distributed attacks. Analysis of backdoor 

attacks on natural language generation provides 

insights into how adversaries embed backdoors at 

different abstraction levels—malicious training data 

provision, model parameter manipulation, and 

inference-time triggers [7]. Studies demonstrate 

that data poisoning backdoors prove particularly 

challenging to detect as they exploit the model's 

learning process, typically assumed to be 

trustworthy. 

Activation-based detection methods effectively 

identify abnormal model behavior during inference 

but remain vulnerable to backdoors activated only 

under rare input conditions. Adversaries ensure that 

individual dimensions appear benign while 

achieving objectives through multi-dimensional 

control, necessitating observation of input, 

intermediate states, and output simultaneously [8]. 

Query-efficient adversarial testing frameworks 

demonstrate how sophisticated adversaries optimize 

attacks against deployed defenses using Bayesian 

optimization methods, efficiently exploring attack 
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spaces with low query budgets even against black-

box defenses without internal knowledge [10]. 

Adaptive attackers employ iterative processes that 

learn to optimize attacks through feedback from 

detection failures. Statistical threshold defenses 

prove particularly vulnerable as adversaries sample 

around threshold boundaries and design attacks 

exploiting these limits. While ensemble defenses 

based on diverse detection methods provide 

stronger protection, multi-objective optimization 

enables simultaneous attacks against every 

ensemble component [10]. 

 

2.4 Geometric Properties Enabling Attacks 

 

The mechanics of embedding-space attacks explain 

why conventional anomaly detection approaches 

prove insufficient for securing RAG systems. In 

high-dimensional embedding spaces, the curse of 

dimensionality creates regions unlikely to contain 

legitimate documents, providing exploitable 

opportunities for attackers. Adversaries position 

documents in low-density regions near specific 

query vectors, ensuring preferential retrieval while 

evading distance-based outlier detection. 

The concentration of measure phenomenon 

explains distance-based anomaly detection failures: 

in high dimensions, distances between nearest and 

farthest neighbors become negligible [3]. This 

geometric property allows adversaries to create 

embeddings virtually indistinguishable from corpus 

distributions across most dimensions except those 

most relevant for target queries. Attackers exploit 

this by concentrating adversarial signals in query-

relevant subspaces while maintaining normalcy in 

remaining dimensions, distributing attack 

signatures to evade single-dimensional analysis. 

 

3. EmbedGuard Architecture and Detection 

Mechanisms 

 

3.1 Architectural Overview 

 

EmbedGuard implements a unified framework for 

reasoning about security signals across all four 

layers of the RAG system architecture, integrating 

low-latency streaming analysis alongside standard 

inference pipelines to maintain production system 

viability. The architecture enables deployment in 

scenarios with strict latency requirements where 

serialized security checks would prove prohibitive. 

The system employs a multi-stage detection 

pipeline where each stage performs independent 

security checks and reports to a central correlation 

engine that identifies distributed attacks across 

architectural modules. 

 

3.2 Layer 1: Prompt Injection Detection 

 

The prompt layer performs semantic analysis to 

identify injection attempts and jailbreak patterns 

before input enters the retrieval pipeline. Recent 

research on universal adversarial attacks 

demonstrates systematic vulnerabilities in language 

model input processing, enabling adversaries to use 

specially crafted prompt suffixes to elicit malicious 

model outputs [5, 8]. Adversarial prompts exhibit 

contextual signatures of malicious intent, including 

semantic content violations, unusual mixing of 

benign text with instruction-like prompts, 

syntactically anomalous patterns consistent with 

prompt engineering, and semantic gaps between 

user intent and prompt parameters. 

The prompt analyzer employs a DistilBERT-based 

neural classifier trained on 156,000 adversarial-

benign query pairs from recent prompt injection 

datasets [8, 9], achieving 87.3% detection accuracy 

with 4.2ms mean latency. The classifier 

architecture optimizes the tradeoff between 

accuracy and computational efficiency, distilling 

detection mechanisms into a smaller model capable 

of real-time inference across all queries. Detection 

targets include direct instruction injection, context 

manipulation, role-play attacks, and payload 

encoding techniques. 

Detection signals from the prompt layer receive 

intermediate confidence weighting (β₁ = 0.35) in 

the correlation engine due to probabilistic detection 

characteristics and potential for false positives on 

legitimate, unusual queries. While prompt-layer 

detection prevents adversaries from using crafted 

queries to surface poisoned content, it provides 

insufficient protection against embedding-space 

poisoning, where legitimate queries unknowingly 

trigger the retrieval of malicious documents. 

 

3.3 Layer 2: Cryptographic Embedding 

Attestation 

 

EmbedGuard's core contribution is the embedding 

layer, which integrates hardware-based 

cryptographic attestation of embedding provenance. 

Previous approaches assume retrieval systems store 

vectors generated by embedding models using 

specific documents as input, but do not verify this 

assumption in practice. Trusted Execution 

Environments provide hardware infrastructure for 

secure computation with cryptographic proof of 

correctness, offering isolated spaces for sensitive 

calculations protected from privileged system 

software [9]. 

TEE-Based Embedding Generation Protocol: 
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Legitimate embeddings are generated entirely 

within TEE-protected enclaves following this 

protocol: 

1. Enclave Initialization: Embedding model 

(all-mpnet-base-v2, 768 dimensions) and 

source documents are loaded into protected 

memory isolated from system software. 

2. Isolated Computation: Vector generation 

executes in a hardware-isolated context 

inaccessible to privileged software. The 

TEE maintains cryptographic 

measurements of executing code and model 

weights. 

3. Attestation Certificate Generation: The 

TEE produces a cryptographically signed 

certificate binding: 

○ Input document hash: H(D) 

○ Embedding model hash: H(Model) 

○ Output vector: E 

○ Timestamp: T 

○ Hardware platform measurements: 

PCR values 

The attestation signature is hardware-protected 

using keys inaccessible to system software, 

enabling downstream verification that embeddings 

originated from approved models over authentic 

inputs. 

Verification at Retrieval Time: 

During retrieval operations, EmbedGuard validates 

attestation certificates through: 

● Signature Verification: Cryptographic 

validation using TEE public keys 

● Model Integrity Confirmation: 

Verification that approved embedding 

models generated vectors 

● Temporal Validity Checks: Ensuring 

certificates remain within validity periods 

● Hardware Platform Validation: 

Confirming trusted platform configuration 

Security Properties: 

Unauthenticated embeddings—including all 

adversarially injected vectors—deterministically 

fail verification, providing a 100% true positive rate 

for direct embedding injection attacks. This 

transforms the security model from statistical 

evasion to hardware compromise, fundamentally 

shifting adversarial calculus. Embedding attestation 

receives maximal weighting (β₂ = 0.75) in the 

correlation engine due to deterministic 

cryptographic guarantees. 

Performance Characteristics: 

Performance testing reveals a signature generation 

overhead of 1.8ms per embedding operation and a 

validation overhead of 0.3ms per retrieved 

document. Batch validation of 10 documents 

completes in 2.1ms through parallelization. While 

TEE-protected execution incurs measurable 

overhead during document ingestion (12.8ms per 

document, including memory encryption and 

certificate generation), this cost amortizes across 

document lifetime due to read-heavy access 

patterns typical of retrieval systems [9]. 

 

3.4 Layer 3: Retrieval Distributional Analysis 

 

The retrieval layer implements distributional 

analysis, detecting statistical deviations in query-

document similarity distributions, employing three 

complementary mechanisms: 

Incremental Principal Component Analysis: 

The system maintains dynamically updated 

principal components of document-query similarity 

distributions using incremental PCA to avoid full 

corpus recomputation. This reduces computation 

from 847ms (batch PCA) to 15.2ms per query. 

Query similarity distributions project into PCA 

space (k=50 principal components, updated every 

1,000 queries), with deviations from expected 

subspace indicating coordinated poisoning where 

multiple malicious documents alter retrieval 

distributions. 

Mathematical formulation: 

Given similarity vector s ∈ ℝⁿ for n documents 

Project: s_pca = U^T s where U are top-k 

eigenvectors 

Anomaly score: ||s - UU^T s|| > τ_pca 

 

 

Kullback-Leibler Divergence Monitoring: 

The system computes the KL divergence between 

current and historical similarity score distributions: 

D_KL(P_current || P_historical) = Σ P_current(x) 

log(P_current(x) / P_historical(x)) 

a 89.1% detection rate with 4.3% false positive rate. 

High divergence indicates retrieval behavior 

deviating from historical patterns, potentially from 

poisoned embeddings designed to interfere with 

retrieval. 

Temporal Rank Correlation: 

Spearman's rank correlation measures ranking 

stability across temporally proximate queries: 

ρ = 1 - (6Σd²) / (n(n²-1)) 

. Benign 

retrieval exhibits rank stability for semantically 

similar queries (ρ > 0.7), while poisoning attacks 

cause systematic rank inversions (ρ < 0.3) as 

adversarial documents inappropriately surface for 

target queries. 

The system accounts for query semantic similarity 

and user session characteristics when evaluating 

expected consistency. Retrieval layer signals 

receive intermediate weighting (β₃ = 0.50) due to a 
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strong correlation with attacks but a statistical (non-

deterministic) nature. 

 

3.5 Layer 4: Output Consistency Verification 

 

The output layer detects attacks manifesting during 

generation through perturbation-based stability 

testing, building on research demonstrating that 

backdoored models exhibit sensitivity to small 

input perturbations [7]. 

Retrieval Perturbation Strategy: 

EmbedGuard generates K=5 alternative retrieval 

sets through: 

● Reranking with alternative similarity 

metrics (cosine, dot product, L2) 

● Document substitution with near-neighbors 

(within ±0.05 cosine distance) 

● Controlled ablation of top-k results 

Stability Measurement: 

The system executes generation with each 

perturbed set and measures output stability: 

Stability = (1/K) Σᵢ₌₁ᴷ sim(output_original, 

output_i) 

sentence transformers. 

Benign queries produce stable outputs (>0.82) as 

perturbations preserve semantic content. Poisoning 

attacks exhibit instability (<0.65) as adversarial 

document removal fundamentally alters outputs. 

This relies on the assumption that benign queries 

maintain stable outputs given slight retrieval 

variations since similar documents present similar 

information, while attacks dependent on specific 

poisoned documents demonstrate sensitivity to their 

presence or absence. 

Output verification triggers only for queries with 

elevated threat signals from prior layers (<0.1% of 

traffic), imposing 6.3ms latency for affected queries 

while maintaining acceptable overall performance. 

Signals receive lower weighting (β₄ = 0.20), 

acknowledging legitimate reasons for output 

variation. 

 

3.6 Threat Correlation Engine 

 

The correlation engine fuses detection signals 

across layers using learned weighted scoring: 

ThreatScore = Σᵢ₌₁⁴ βᵢ × signalᵢ 

Layer Weight Calibration: 

Weights are calibrated empirically on held-out 

attack samples comprising 5,000 attacks across all 

categories: 

 

Cross-Layer Pattern Recognition: 

The engine identifies attack signatures distributed 

across layers that appear benign individually but 

indicate coordinated attacks when correlated. 

Example detection pattern: 

● Linguistically fluent document (passes 

prompt layer) 

● Unauthenticated embedding (fails TEE 

attestation) 

● Distributional anomaly (fails retrieval 

analysis) 

● Output instability (fails consistency check) 

Combined signal: ThreatScore = 0.35(0.1) + 

0.75(1.0) + 0.50(0.8) + 0.20(0.7) = 1.225 (high 

confidence attack) 

The correlation engine employs machine learning 

classifiers trained on multi-layer feature sets (187 

features spanning all layers) to learn complex 

interaction patterns. Bayesian inference frameworks 

combine layer-specific detection confidences with 

prior probabilities based on query characteristics 

and user context, producing posterior attack 

probabilities that guide mitigation decisions. 

 

3.7 Operational Modes 

 

EmbedGuard supports three deployment modes 

accommodating diverse operational requirements: 

Passive Mode: All anomaly detections are logged 

without remediation actions, enabling security 

teams to establish a baseline understanding without 

service disruption. Each flagged transaction records 

complete context (prompt, retrieved documents 

with attestations, generated response, layer-specific 

signals) totaling 2.3-4.7 MB per incident. Temporal 

correlation links related incidents across sessions, 

revealing multi-stage attacks. Organizations 

typically establish alerting thresholds for high-

confidence detections (posterior probability > 0.85), 

enabling rapid response without automated 

intervention. 

Gated Mode: High-confidence attacks (0.70-0.85 

posterior probability) are flagged for manual 

review. The system pauses processing and presents 

security analysts with comprehensive context, 

including query, retrieval results, preliminary 

analysis, and recommended actions. Visualization 

tools display embedding space positions, 

provenance chains, perturbation stability 

comparisons, and temporal patterns. Average 

review time: 3-5 minutes per flagged query with 

visualization support versus 8-12 minutes without 

tools. 

Active Mode: Automatic blocking or fallback 

generation occurs when attack probabilities exceed 

thresholds (typically >0.85). The system returns 

safe responses without executing potentially 

malicious operations. Fallback strategies include 

generic non-committal responses or retrieval-free 

generation using only parametric knowledge. 
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Requires careful threshold calibration to minimize 

false positive rates impacting user experience. 

The adjustable framework allows organizations to 

align deployment with risk appetite and operational 

requirements—aggressive detection thresholds in 

active mode for high-assurance applications, or 

gated/passive modes for lower assurance 

environments. 

 

4. Experimental Evaluation and Comparative 

Analysis 

 

4.1 Experimental Setup 

Infrastructure Configuration: 

● Hardware: AMD EPYC 7542 processors, 

256GB RAM 

● TEE Platform: AMD SEV-SNP for 

attestation capabilities 

● Embedding Model: all-mpnet-base-v2 (768 

dimensions) 

● Document Corpus: 500,000 embeddings 

spanning technical documentation, medical 

literature, legal texts, and encyclopedic 

knowledge 

● Query Workload: 47,000 evaluation queries 

across diverse domains 

Attack Implementation: 

The evaluation implements four attack categories 

from recent security literature [3, 4, 10]: 

1. Optimization-Based Attacks: Gradient-

based document refinement maximizing 

retrieval probability using projected 

gradient descent (ProjGrad) with learning 

rate 0.01 over 500 iterations 

2. Transferability-Based Attacks: Attacks 

crafted against public embedding models 

(BERT-base, RoBERTa) transferred to 

private models, exploiting 47% cross-

architecture transfer rates 

3. Semantic Manipulation Attacks: 

Adversarial documents embedded in fluent 

natural language, maintaining linguistic 

coherence while achieving malicious 

retrieval objectives 

4. Adaptive Attacks: Query-efficient 

optimization with knowledge of deployed 

defenses using Bayesian optimization 

methods [10], iteratively refining attacks 

through detection feedback 

Baseline Defenses: 

Comparative evaluation against three state-of-the-

art systems: 

● RAGuard [6]: Adversarial retriever 

training with perplexity-based filtering 

● RobustRAG [5]: Isolate-then-aggregate 

strategy with certifiable guarantees 

● TrustRAG [7]: K-means clustering with 

similarity-based filtering 

4.2 Detection Performance Results 

 

 

EmbedGuard demonstrates high detection rates 

across all attack categories while maintaining 

production-viable latency characteristics. The 

94.7% detection rate for optimization-based attacks 

substantially exceeds single-layer defenses. 

Coordinated multi-layer attacks achieve the highest 

detection (96.2%) as attack signatures distributed 

across layers produce correlated anomalies 

detectable through cross-layer analysis. Even 

against sophisticated adaptive attacks designed with 

knowledge of deployed defenses, the system 

maintains 89.3% detection, substantially higher 

than single-layer approaches. 

False positive rates remain acceptably low (2.9-

5.2%) due to multi-evidence requirements in the 

Bayesian correlation engine. The system requires 

either multiple weak signals or single strong signals 

to trigger high-confidence alerts, reducing false 

alarms on unusual-but-legitimate queries. Latency 

overhead (47-58ms mean) falls within acceptable 

bounds for interactive applications requiring sub-

100ms response times. 

 

4.3 Comparative Analysis 

 

All systems were evaluated under identical 

experimental conditions with the same attack 

datasets. 

Head-to-head comparison demonstrates substantial 

advantages for EmbedGuard across all metrics. 

Under baseline attack scenarios, EmbedGuard 

achieves a 7.5 percentage point improvement over 

the next-best defense (RAGuard). The advantage 

becomes more pronounced under adaptive attack 

scenarios where adversaries optimize evasion: 

EmbedGuard maintains 89.3% detection while 

single-layer defenses degrade to 54.2-61.4%. This 

27.9-35.1 percentage point advantage validates the 

cross-layer correlation hypothesis—attackers 

cannot simultaneously evade orthogonal detection 

modalities. 

The modest latency increase (51ms versus 35-42ms 

for baselines) proves acceptable given substantial 

security improvements. EmbedGuard achieves 

lower false positive rates (3.2%) than two of three 

baselines despite more aggressive detection, 

reflecting multi-evidence correlation reducing false 

alarms. 

 

5. Applications and Societal Implications 
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RAG system integrity can be critical for several 

application domains where safety or compliance 

with regulations is essential, such as medical 

applications, where a medical knowledge retrieval 

system directly influences the processes of clinical 

decision making. Clinical decision support systems 

often use RAG architectures to analyze a range of 

resources such as medical literature, treatment 

protocols, clinical cases, and drug databases to 

produce evidence-based diagnosis and treatment 

recommendations. Research on patterns of data 

breaches often highlights that healthcare 

organizations are particularly at risk of AI-related 

security incidents [2]. The audits show that 

breaching the integrity of CDS systems has 

consequences for victim organizations in terms of 

patient safety by treating patients based on incorrect 

treatment advice, regulatory compliance by 

contravening the law of health data protection, and 

financial costs from incident response efforts, and 

image damage. The analysis further reveals that the 

inability of healthcare organizations to remedy 

incidents that change the knowledge base is due to 

pre-existing automated checks for the integrity of 

medical content on large document repositories that 

cannot account for clinical relevance. 

Attestation mechanisms provided by EmbedGuard 

allow for cryptographic proofs of trustworthiness 

needed for healthcare applications, making it 

possible for clinical systems to report treatment 

recommendations that rely on trusted medical 

literature rather than potentially compromised 

information sources. For example, the regulatory 

requirement for provenance in medical AI can be 

fulfilled. The attestation architecture provides audit 

trails showing how specific information was 

generated from the original medical evidence 

publications, how it was embedded, retrieved, and 

integrated into the clinical recommendation. The 

architecture's audit trails provide for verification 

that a specific recommendation was generated from 

a validated source of evidence, which can be used 

to address liability issues in real-world uses of 

artificial intelligence in clinical environments. 

Because attestation certificates are cryptographic, 

they could help provide legal evidence of the 

source of information, which might help defend a 

malpractice case involving AI-supported decision-

making. 

The integrity requirements of financial services 

systems are similar to those of an MI, since an 

RAG architecture underlying a financial service 

may be used in trading, assessing risk, or regulatory 

compliance. Financial institutions may use RAG 

systems to aggregate regulatory filings, earnings 

transcripts, market research findings, economic 

indicators, and proprietary analysis for investment 

and regulatory decisions.  Such attacks can have an 

outsized impact in financial services, for example, 

by poisoning market intelligence systems to 

influence investment selections, game risk models, 

or compromise compliance tooling. This can create 

important profit opportunities or harm the financial 

marketplace. The work discusses how attacks to 

financial AI systems exploit their ability to retrieve 

and compile information from various sources by 

introducing tainted information into these sources 

that is still semantically coherent enough to pass 

through content validation systems. 

The cross-layer detection capabilities of 

EmbedGuard have immediate applications in the 

finance domain, where adversaries are known to be 

advanced and adaptive. Adding the prompt, 

embedding, retrieval, and output layers can allow 

for the detection of adversaries acting in concert, 

such as financial adversaries steering the market by 

generating poisoned financial analysis documents, 

competitive intelligence operations impacting 

competitor analysis, and adversarial trading 

exploiting the predictability of AI agents. The 

cryptographic attestation component can potentially 

provide a regulatory-compliant audit trail that can 

prove that financial trading decisions and risk 

analyses were based on trusted sources of 

information. Financial regulators have trained their 

attention on AI systems, as algorithmic trading and 

algorithmic risk management have become more 

common, and they are increasingly looking for 

verifiable controls over financial decisions made 

using AI systems. 

Legal research tools are another application area 

where embedding integrity directly impacts users in 

a professional context (and creates meaningful 

liability). Legal RAG systems retrieve case law, 

statutes and regulations, regulatory policy guidance, 

and legal commentary to inform legal analysis, 

brief generation, contract review, and legal strategy. 

When knowledge systems underlying client advice 

are compromised, the threat landscape for 

professional services organizations evolves [2]. In 

this research, legal practice is especially vulnerable: 

once leaked, a compromised legal research system 

can introduce incorrect legal interpretation into 

many client matters with a limited chance of 

detection, creating cascading professional liability 

exposure. The study also found that professional 

services organizations take longer to remediate AI 

breaches because human specialists need to validate 

document provenance over wide-ranging document 

collections. 

EmbedGuard's provenance attestation addresses 

this need from the legal industry by allowing law 

firms to cryptographically attest that legal research 

outputs are derived from primary sources of 
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information about the law that have been attested 

for authenticity. These sources include official 

court reporters, legislative databases, and verified 

legal commentaries. This is especially important to 

the legal industry now that increasingly advanced 

AI systems are being used to assist with legal 

research. The attestation framework also has a 

practical usage for establishing the provenance of 

legal reasoning if an AI-written document were to 

be challenged in a malpractice lawsuit. The cross-

layer detection approaches can help reduce 

adversarial attacks on legal research via embedding 

poisoning, including systematic omission of 

adverse precedent, promotion of incorrect legal 

reasoning, and insertion of bias into case law 

relevance rankings. 

EmbedGuard research also seeks to address broader 

equity issues, such as disparity between technology 

service sectors and between large technology 

companies and smaller businesses in their ability to 

implement security infrastructure [2]. The research 

finds that large organizations have dedicated AI 

security teams, the resources to build custom 

security solutions, and the capacity to undertake 

research and development of state-of-the-art 

security technologies. At the same time, smaller 

organizations do not have teams and resources 

responsible for securing AI systems, and must rely 

on capabilities in general cybersecurity products 

that do not have AI-specific security functions. This 

creates asymmetries in security: smaller 

organizations are more vulnerable to adversarial AI 

attacks, even while serving populations and 

communities that have few alternative means of 

support. In addition to differing technical 

capabilities, the investigation found that smaller 

organizations require considerably more time to 

detect and remediate security incidents related to AI 

due to lower levels of expertise and resources. 

In addition to the robustness and tunability, being a 

production-level framework is meant to address 

equity concerns, allowing any organization to 

deploy strong defenses regardless of resource 

levels. Deployment granularity can range from 

small environments protecting concentrated 

knowledge bases to larger distributed environments 

including enterprise-wide retrieval infrastructures. 

EmbedGuard offers this feature with its modular 

components. These operational modes allow the 

organizations to balance security assurance and 

operational cost, depending on their mission, 

capacity, and resources. Resource-constrained 

organizations may use a passive or gated 

operational mode to achieve reduced cost while still 

maintaining visibility about potential attacks. 

Democratizing AI security for mission-critical use 

cases in rural healthcare, community legal services, 

and for small financial advisors, where a successful 

attack could have disproportionate adverse 

consequences on disadvantaged populations who 

have limited or no alternatives, is also important. 

 

Table 1: RAG Attack Vectors and Poisoning Characteristics [1][2] 

Attack Component Vulnerability Mechanism Persistence Duration Detection Complexity 

Embedding Space 

Poisoning 

Strategic document positioning in 

high-dimensional semantic space 

Extended persistence 

until explicit removal 

High complexity due to 

distributed vector storage 

Gradient-Based 

Optimization 

Iterative refinement maximizing 

retrieval probability 

Sustained across query 

sessions 

Difficult through traditional 

forensic techniques 

Transferability 

Exploitation 

Cross-architecture attack 

effectiveness 

Long-term knowledge 

base compromise 

Extended detection and 

containment timelines 

Semantic Similarity 

Manipulation 

Query-document matching 

exploitation 

Persistent vector 

influence 

Complex remediation 

requiring integrity 

validation 

 

Table 2: Single-Layer Defense Limitations [3][4] 

Defense Mechanism Primary Detection Target Vulnerability to Adaptation Evasion Strategy 

Perplexity-Based 

Filtering 

Linguistic anomalies in 

document content 

High vulnerability to fluent 

text generation 

Linguistically coherent 

malicious documents 

Clustering-Based 

Outlier Detection 

Spatial positioning in 

embedding space 

Moderate vulnerability to 

centrality optimization 

Embedding space centrality 

maintenance 

Activation-Based 

Analysis 

Model behavior during 

inference 

Moderate vulnerability to 

normal pattern mimicry 

Contextually appropriate 

activation patterns 

Statistical Threshold 

Monitoring 

Anomalous similarity 

distributions 

High vulnerability to threshold 

probing 

Systematic boundary 

identification 
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Figure 1: EmbedGuard cross-layer detection architecture. Four detection layers (Prompt Analysis, TEE Embedding 

Attestation, Retrieval Distributional Analysis, Output Consistency) generate threat signals that flow to the central 

Threat Correlation Engine. The engine fuses signals using learned weights and outputs to configurable deployment 

modes (Passive, Gated, Active). 

 

 
Figure 2: TEE-based embedding attestation protocol. Documents are hashed and loaded into the TEE enclave, which 

generates embeddings and cryptographic attestation certificates. At retrieval time, certificates are validated before 

accepting results. 

 

Layer Weight (β) Rationale Latency Contribution 

Prompt 0.35 Probabilistic but with low false alarms 4.2ms (8.2%) 

Embedding (TEE) 0.75 Deterministic cryptographic verification 12.8ms (25.1%) 

Retrieval 0.50 Strong signal, but statistical 23.5ms (46.1%) 

Output 0.20 Legitimate reasons for instability 6.3ms (12.4%) 

 

Table 2: Cross-Layer Detection Components [5][6] 

Detection 

Layer 
Monitoring Mechanism Signal Characteristics 

Contribution to Threat 

Score 

Prompt Layer 
Semantic analysis and contextual 

classification 

Distinctive patterns in adversarial 

inputs 

Intermediate weight for 

probabilistic signals 

Embedding 

Layer 

Hardware-backed cryptographic 

attestation 

Deterministic provenance 

verification 

Maximal weight for 

cryptographic guarantees 

Retrieval Layer 
Distributional analysis and 

ranking consistency 

Statistical deviations from 

baseline patterns 

Intermediate weight for 

correlation signals 
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Output Layer 
Consistency verification across 

perturbed sets 

Instability under retrieval 

perturbations 

Lower weight for generation 

variations 

 

Table 3: EmbedGuard Detection Performance by Attack Category 

Attack Type Detection Rate False Positive Rate Mean Latency P99 Latency Sample Size 

Optimization-Based 94.7% 3.2% 47ms 142ms 12,500 attacks 

Transferability-Based 91.4% 4.1% 51ms 156ms 9,800 attacks 

Semantic Manipulation 88.9% 3.8% 49ms 148ms 11,200 attacks 

Adaptive Attacks 89.3% 5.2% 53ms 164ms 8,300 attacks 

Coordinated Multi-Layer 96.2% 2.9% 58ms 171ms 5,200 attacks 

 

Table 4: Adaptive Attack Resilience [7][8] 

Attack Adaptation 

Strategy 

Single-Layer Defense 

Response 

Cross-Layer Correlation 

Response 

Adversarial 

Optimization 

Requirement 

Linguistic Fluency 

Optimization 

Defense evasion through 

perplexity reduction 

Detection through multi-layer 

signal conjunction 

Increased computational 

complexity 

Embedding Centrality 

Optimization 

Defense evasion through 

spatial positioning 

Detection through attestation 

and output analysis 

Multi-objective 

optimization challenge 

Activation Pattern 

Mimicry 

Defense evasion through 

normal behavior 

Detection through prompt and 

retrieval anomalies 

Orthogonal signal evasion 

difficulty 

Iterative Refinement 
Threshold boundary 

identification 

Persistent detection through 

deterministic attestation 

Hardware-level 

compromise requirement 

 

Table 5: Comparative Performance Against State-of-the-Art Defenses 

Defense System 
Baseline 

Detection 

Adaptive 

Detection 
FP Rate Mean Latency 

Advantage vs. Best 

Baseline 

EmbedGuard (Ours) 94.7% 89.3% 3.2% 51ms — 

RAGuard [6] 87.2% 61.4% 4.8% 38ms +27.9pp adaptive 

RobustRAG [5] 82.9% 58.7% 6.1% 42ms +30.6pp adaptive 

TrustRAG [7] 79.3% 54.2% 5.3% 35ms +35.1pp adaptive 

 

 
Figure 3: Comparative detection rates under baseline and adaptive attack scenarios. EmbedGuard maintains 89.3% 

detection under adaptive attacks compared to 54.2-61.4% for single-layer approaches. 

 

Table 3: Ablation study results showing detection performance with layer combinations. 

Configuration Detection Rate FP Rate Δ from Full 

Full System (4 Layers) 94.7% 3.2% — 

w/o Output Layer 91.2% 3.8% -3.5pp 

w/o Retrieval Layer 87.4% 4.1% -7.3pp 

w/o Embedding (TEE) 84.6% 5.7% -10.1pp 

w/o Prompt Layer 89.8% 3.9% -4.9pp 

Embedding Only (Best 

Single) 

76.3% 2.1% -18.4pp 
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Figure 4: Ablation study showing layer contribution. Cross-layer correlation provides an 18.4 percentage point 

improvement over the best single-layer approach. 

 

 
Figure 5: Latency breakdown by detection layer. Retrieval analysis accounts for 46.1% of overhead but provides the 

strongest statistical signal for coordinated attack detection. 

 

Table 4: Per-layer latency breakdown. Retrieval analysis dominates overhead but provides the strongest statistical 

signal. 

Layer Mechanism Mean Latency % of Total 

Prompt Analysis Neural classification 4.2ms 8.2% 

Embedding Attestation TEE verification 12.8ms 25.1% 

Retrieval Analysis PCA + KL divergence 23.5ms 46.1% 

Output Verification Perturbation stability 6.3ms 12.4% 

Correlation Engine Signal fusion 4.2ms 8.2% 

Total Pipeline End-to-end 51.0ms 100% 

 

6. Conclusions 

 
As retrieval-augmented generation (RAG) systems 

become the backbone of AI applications, new 

security architectures are needed to address their 

unique threat model. Existing security architectures 

designed for vertically integrated solutions are 

ineffective against adversaries that can exploit 

vulnerabilities across multiple layers of an RAG 

system via compositional attacks (cross-layer 

attacks). By spreading poison across all levels of 

the system, Poisoned RAG shows that highly 

effective attacks can be deployed using only a small 

fraction of a poisoned corpus, and that poison can 
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be strategically placed in high-dimensional 

embedding space to evade statistical defenses while 

ensuring high retrieval performance. The cross-

layer detection and cryptographic provenance 

attestation enabled by EmbedGuard represents a 

foundational improvement to RAG's security stack, 

as it enables matching anomalous signals across the 

prompt, embedding, retrieval, and output layers to 

enable provably effective detection of complex 

poisoning attacks with production-grade latency. 

The novel hardware attestation schemes proposed 

in this work enforce a fundamental shift in the 

security model of embedding security, turning it 

from a statistical inference problem (evading 

detection via statistical masking) into a 

cryptographic verification problem (forcing 

attackers to compromise the hardware). 

Experiments show that the system has better 

performance than state-of-the-art single-layer 

defenses under adaptive attacks that evade 

statistical detection by applying iterative 

optimizations based on access to the deployed 

defense. In contrast to single-layer defenses, two-

layer mechanisms with (1) cryptographic 

verification of authenticated embeddings and (2) 

cross-layer correlation of attacks through 

distributed signatures of anomalies reduce common 

limitations in probabilistic protections that attackers 

can exploit with carefully created attacks. Its 

operational modes allow it to be deployed across a 

range of organizational structures with various risk 

tolerances and operational constraints. This aspect 

is particularly relevant due to the heterogeneity of 

threat models, regulatory considerations, and 

operational capabilities of organizations, such as 

healthcare, financial services, and legal industries, 

where correctness guarantees often correlate with 

operational safety, regulatory compliance, and 

professional liability. Attestation provides 

cryptographic proof that outputs came from a 

trusted source and not an opponent. Beyond the 

sector, EmbedGuard addresses the broader need for 

a fair AI security infrastructure for society. 

Through a production-ready framework and 

flexible deployment modes, the tool enables low-

resource organizations to deploy state-of-the-art 

defenses that were previously available only to 

well-resourced technology organizations. The 

ability to transition the security model from post 

hoc, signature-based defenses to proactive, 

provenance-based security models reflects a 

maturing community and the development of 

architectural patterns for instantiating defenses 

across the evolving AI security domains. 

Furthermore, high-quality AI security is possible at 

little to no cost to system utility in production 

deployments. 
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