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Abstract:

Embedding-based Retrieval-Augmented Generation (RAG) systems are critical
infrastructure for production Al applications, yet they remain vulnerable to embedding
space poisoning attacks that achieve disproportionate success with minimal payloads
(<1% corpus contamination, resulting in>80% attack success rates). Current single-
layer defense approaches optimize for high-amplitude signals in narrow-dimensional
subspaces, making them systematically vulnerable to coordinated cross-layer attacks
that distribute adversarial signals across architectural layers. EmbedGuard is an
adaptive, cross-layer detection framework integrating hardware-backed cryptographic
attestation with statistical anomaly detection across four RAG architectural layers:
prompt layer injection detection, embedding layer hardware attestation via Trusted
Execution Environments (TEES), retrieval layer distributional analysis, and output layer
consistency verification. The framework employs efficient techniques, including
incremental Principal Component Analysis and Kullback-Leibler divergence metrics, to
detect subtle, coordinated attacks while maintaining production-grade latencies.
Evaluation of a production-scale system (500,000 embeddings, 47,000 queries)
demonstrates a 94.7% detection rate for optimization-based attacks and 89.3% for
adaptive attacks, with a 3.2% false positive rate and a 51ms mean latency overhead.
Ablation studies quantify an 18.4 percentage point improvement from cross-layer
correlation over the best single-layer approach. The framework operates in three
deployment modes—passive logging, gated human review, and active automatic
remediation—enabling deployment across diverse organizational contexts and security
requirements while protecting against adversarial embedding manipulation.

1. Introduction

particularly embedding space poisoning attacks
where adversaries insert maliciously constructed

With the advent of large language models and their
deployment in enterprise applications, Retrieval-
Augmented Generation (RAG) systems have
emerged as one of the most impactful architectures
for artificial intelligence applications. RAG systems
combine the generative capabilities of neural
language models with the ability to retrieve
information dynamically from external knowledge
sources, alleviating critical drawbacks of purely
generative models such as knowledge staleness,
factual hallucinations, and limited domain coverage
[1, 2]. This architectural pattern has become
ubiquitous in production deployments across
healthcare, financial services, legal research, and
customer service applications.

Recent security research has identified critical
vulnerabilities in RAG retrieval components,

documents into the retrieval knowledge base to
influence the generation process [3, 4]. These
attacks  exploit  high-dimensional embedding
geometry: even minimal corpus contamination (<
1% of documents) can achieve attack success rates
exceeding 80% through strategic semantic space
positioning. Research demonstrates that attackers
can generate documents that meet retrieval targets
for specific query patterns while remaining
sufficiently  semantically diverse to evade
clustering-based outlier detection techniques [3].
The  permanence of embedding  attacks
differentiates them from transient prompt-based
exploits, combining supply chain attack stealth with
runtime exploit immediacy to create a distinct and
persistent threat surface.
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1.1 Economic and Security Implications

These vulnerabilities have substantial economic
implications for organizations deploying RAG
systems. Analysis of data breach events
demonstrates that artificial intelligence and
machine learning systems face unique security
challenges that incur significant financial impact.
According to IBM Security's 2024 Cost of Data
Breach Report, organizations experiencing breaches
involving Al systems face average costs of $4.91
million, with mean time to detection and
containment extending to 267 days—substantially
longer than conventional security incidents [2]. The
persistence of embedding-space attacks exacerbates
these costs, as poisoned vectors remain in
knowledge bases until manually identified and
removed, resulting in prolonged compromise
timeframes. This permanence, combined with the
difficulty of forensic analysis in high-dimensional
embedding spaces, creates extended uncertainty
regarding breach scope and impact.

The high-dimensionality of embedding spaces
(typically 768 to 1536 dimensions for modern
embedding models) enables adversaries to construct
documents that preserve semantic relevance for
target  query  patterns  while  remaining
grammatically valid and linguistically coherent,
thus evading perplexity-based statistical detectors.
Furthermore, adversarial embeddings demonstrate
transferability — between embedding  models,
meaning attackers who optimize attacks against
publicly available models can successfully transfer
them to proprietary models with high confidence of
success [3, 5].

1.2 Limitations of Current Defense Mechanisms

Contemporary defense mechanisms primarily adopt
single-layer approaches, optimizing detection for
isolated attack surfaces within the RAG
architecture. RAGuard employs perplexity analysis
and similarity filtering at the retrieval layer [6].
RobustRAG implements isolate-then-aggregate
strategies with certifiable guarantees [5]. TrustRAG
uses K-means clustering for embedding space
pattern detection [7]. However, these single-layer
defenses exhibit systematic vulnerabilities to
coordinated attacks that leverage multiple
architectural layers and deliberately avoid
exhibiting detectable anomalies at any single
monitored layer.

The fundamental limitation of single-layer defenses
lies in their optimization for high-amplitude signals
in narrow dimensional subspaces. Perplexity-based
filters assume poisoned documents exhibit
linguistic incoherence, yet advanced adversaries
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generate fluent malicious text indistinguishable
from legitimate documents. Clustering-based
methods assume poisoned embeddings appear
spatially anomalous, yet attackers optimize for
embedding centrality while maintaining target
query similarity. Activation-based methods assume
poisoned content causes abnormal model behavior,

yet adversaries craft documents producing
contextually — appropriate  activation  patterns.
Modern defenses lack cross-layer correlation

capabilities and fail to detect attacks with
individually innocuous characteristics distributed
across multiple layers that collectively achieve
malicious objectives.

1.3 Contributions

To address these limitations, we present
EmbedGuard: the first cross-layer detection
framework  with  integrated  cryptographic

verification capabilities for RAG systems. The
framework makes the following contributions:

1. Cross-Layer Detection Architecture:
EmbedGuard implements unified security
reasoning across four layers of the RAG
architecture—prompt analysis, embedding
attestation, retrieval monitoring, and output
verification—correlating anomaly signals
that appear benign individually but indicate
coordinated attacks when analyzed
collectively.

Cryptographic Provenance Attestation:
The framework introduces hardware-
backed embedding generation using
Trusted Execution Environments (TEES),
transforming embedding security from a
statistical inference problem into a
cryptographic verification problem. This
fundamentally alters adversarial tradeoffs,
requiring attackers to compromise
hardware security rather than evade
statistical detection.

Production-Scale Evaluation:
Comprehensive evaluation on a production-
scale system (500,000 embeddings, 47,000
queries) demonstrates a 94.7% detection
rate for optimization-based attacks and
89.3% for adaptive attacks with 51ms mean
latency overhead, representing 15.5-35.1
percentage point improvements over
existing single-layer defenses under
adaptive attack scenarios.

Ablation Analysis: Systematic ablation
studies quantify individual layer
contributions, revealing 18.4 percentage
point improvement from cross-layer
correlation beyond the best single-layer
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approach, validating the architectural
hypothesis that attackers cannot
simultaneously evade orthogonal detection
modalities.

Flexible Deployment Framework: Three
operational modes (passive, gated, active)
enable deployment across diverse
organizational contexts with varying risk
tolerances, regulatory requirements, and
operational constraints, from resource-
constrained environments to high-assurance
applications.

The remainder of this paper is organized as follows:
Section 2 analyzes the threat landscape and
limitations of existing defenses. Section 3 details
the EmbedGuard architecture and detection
mechanisms. Section 4 presents experimental
evaluation and comparative analysis. Section 5
discusses applications and societal implications.
Section 6 concludes with future research directions.

2. Threat Landscape and Existing Defense
Mechanisms

2.1 RAG Attack Surface
Mechanics

and Poisoning

The attack surface of RAG systems encompasses
multiple architectural layers, each presenting
distinct vulnerabilities that adversaries can exploit
to manipulate system behavior. Knowledge
poisoning attacks modify the retrieval mechanism,
steering language models toward attacker-
controlled content through careful manipulation of
the embedding space and semantic similarity
calculations fundamental to retrieval-based systems
[3].

Research demonstrates that output manipulation is
not necessarily linear with respect to the quantity of
corrupted documents—even modest contamination
(5-10 poisoned documents in corpora of 10,000)
can produce disproportionate effects on system
behavior [3]. Adversaries generate documents that
satisfy retrieval targets for specific query patterns
while maintaining sufficient semantic diversity to
evade clustering-based outlier detection. Document
poisoning  attacks  employ  gradient-based
optimization that maximizes retrieval probability by
iteratively updating document content and
embeddings, matching both target query
distributions and statistical properties of benign
corpus documents to remain indistinguishable while
achieving malicious objectives.

2.2 Economic Impact and Detection Challenges
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Research into data breach disclosures demonstrates
that incidents involving Al systems exhibit
significantly higher mean time to detection
compared to breaches in systems without Al
components. IBM's 2024 analysis indicates that Al-
related breaches average 267 days for detection and
containment, with average costs reaching $4.91
million [2]. This extended timeline results from the
inherent difficulty of detecting anomalous behavior
in Al systems with intrinsically variable
performance characteristics.

Cost analysis reveals that remediation expenses are
highest when poisoning affects training data or
model behavior, requiring poison purging, integrity
validation, and potentially retraining in secure
environments. Breaches affecting retrieval systems
present additional recovery challenges due to
distributed vector store architectures, where
identifying all compromised embeddings at scale
proves difficult. Forensic processes struggle to
reason about attack impacts in high-dimensional
embedding spaces, creating prolonged
organizational uncertainty regarding breach scope.
Comprehensive breach costs encompass detection
and recovery time, regulatory fines (particularly
when adversarial systems impact decision-making
in regulated industries), and reputational damage
extending 18-24 months beyond immediate
remediation [2].

2.3 Single-Layer Defense Limitations

Contemporary defense mechanisms operate at
individual architectural abstraction levels, lacking
cross-layer correlation capabilities essential for
detecting distributed attacks. Analysis of backdoor
attacks on natural language generation provides
insights into how adversaries embed backdoors at
different abstraction levels—malicious training data
provision, model parameter manipulation, and
inference-time triggers [7]. Studies demonstrate
that data poisoning backdoors prove particularly
challenging to detect as they exploit the model's
learning process, typically assumed to be
trustworthy.

Activation-based detection methods effectively
identify abnormal model behavior during inference
but remain vulnerable to backdoors activated only
under rare input conditions. Adversaries ensure that
individual dimensions appear benign while
achieving objectives through multi-dimensional
control, necessitating observation of input,
intermediate states, and output simultaneously [8].
Query-efficient adversarial testing frameworks
demonstrate how sophisticated adversaries optimize
attacks against deployed defenses using Bayesian
optimization methods, efficiently exploring attack
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spaces with low query budgets even against black-
box defenses without internal knowledge [10].
Adaptive attackers employ iterative processes that
learn to optimize attacks through feedback from
detection failures. Statistical threshold defenses
prove particularly vulnerable as adversaries sample
around threshold boundaries and design attacks
exploiting these limits. While ensemble defenses
based on diverse detection methods provide
stronger protection, multi-objective optimization
enables simultaneous attacks against every
ensemble component [10].

2.4 Geometric Properties Enabling Attacks

The mechanics of embedding-space attacks explain
why conventional anomaly detection approaches
prove insufficient for securing RAG systems. In
high-dimensional embedding spaces, the curse of
dimensionality creates regions unlikely to contain
legitimate documents, providing exploitable
opportunities for attackers. Adversaries position
documents in low-density regions near specific
guery vectors, ensuring preferential retrieval while
evading distance-based outlier detection.

The concentration of measure phenomenon
explains distance-based anomaly detection failures:
in high dimensions, distances between nearest and
farthest neighbors become negligible [3]. This
geometric property allows adversaries to create
embeddings virtually indistinguishable from corpus
distributions across most dimensions except those
most relevant for target queries. Attackers exploit
this by concentrating adversarial signals in query-
relevant subspaces while maintaining normalcy in
remaining  dimensions,  distributing  attack
signatures to evade single-dimensional analysis.

3. EmbedGuard Architecture and Detection
Mechanisms

3.1 Architectural Overview

EmbedGuard implements a unified framework for
reasoning about security signals across all four
layers of the RAG system architecture, integrating
low-latency streaming analysis alongside standard
inference pipelines to maintain production system
viability. The architecture enables deployment in
scenarios with strict latency requirements where
serialized security checks would prove prohibitive.
The system employs a multi-stage detection
pipeline where each stage performs independent
security checks and reports to a central correlation
engine that identifies distributed attacks across
architectural modules.
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3.2 Layer 1: Prompt Injection Detection

The prompt layer performs semantic analysis to
identify injection attempts and jailbreak patterns
before input enters the retrieval pipeline. Recent
research on universal adversarial attacks
demonstrates systematic vulnerabilities in language
model input processing, enabling adversaries to use
specially crafted prompt suffixes to elicit malicious
model outputs [5, 8]. Adversarial prompts exhibit
contextual signatures of malicious intent, including
semantic content violations, unusual mixing of
benign text with instruction-like  prompts,
syntactically anomalous patterns consistent with
prompt engineering, and semantic gaps between
user intent and prompt parameters.

The prompt analyzer employs a DistilBERT-based
neural classifier trained on 156,000 adversarial-
benign query pairs from recent prompt injection
datasets [8, 9], achieving 87.3% detection accuracy
with  4.2ms mean latency. The classifier
architecture optimizes the tradeoff between
accuracy and computational efficiency, distilling
detection mechanisms into a smaller model capable
of real-time inference across all queries. Detection
targets include direct instruction injection, context
manipulation, role-play attacks, and payload
encoding techniques.

Detection signals from the prompt layer receive
intermediate confidence weighting (B; = 0.35) in
the correlation engine due to probabilistic detection
characteristics and potential for false positives on
legitimate, unusual queries. While prompt-layer
detection prevents adversaries from using crafted
queries to surface poisoned content, it provides
insufficient protection against embedding-space
poisoning, where legitimate queries unknowingly
trigger the retrieval of malicious documents.

3.3 Layer 2:
Attestation

Cryptographic Embedding

EmbedGuard's core contribution is the embedding
layer, which integrates hardware-based
cryptographic attestation of embedding provenance.
Previous approaches assume retrieval systems store
vectors generated by embedding models using
specific documents as input, but do not verify this
assumption in practice. Trusted Execution
Environments provide hardware infrastructure for
secure computation with cryptographic proof of
correctness, offering isolated spaces for sensitive
calculations protected from privileged system
software [9].

TEE-Based Embedding Generation Protocol:
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Legitimate embeddings are generated entirely
within TEE-protected enclaves following this
protocol:

1. Enclave Initialization: Embedding model
(all-mpnet-base-v2, 768 dimensions) and
source documents are loaded into protected
memory isolated from system software.
Isolated Computation: Vector generation
executes in a hardware-isolated context
inaccessible to privileged software. The
TEE maintains cryptographic
measurements of executing code and model
weights.

Attestation Certificate Generation: The
TEE produces a cryptographically signed
certificate binding:

o Input document hash: H(D)

o Embedding model hash: H(Model)

o Qutput vector: E

o Timestamp: T

o Hardware platform measurements:
PCR values

The attestation signature is hardware-protected
using keys inaccessible to system software,
enabling downstream verification that embeddings
originated from approved models over authentic
inputs.
Verification at Retrieval Time:
During retrieval operations, EmbedGuard validates
attestation certificates through:

e Signature Verification: Cryptographic
validation using TEE public keys
Model Integrity Confirmation:
Verification that approved embedding
models generated vectors
Temporal Validity Checks: Ensuring
certificates remain within validity periods
Hardware Platform Validation:
Confirming trusted platform configuration
Security Properties:
Unauthenticated embeddings—including all
adversarially injected vectors—deterministically
fail verification, providing a 100% true positive rate
for direct embedding injection attacks. This
transforms the security model from statistical
evasion to hardware compromise, fundamentally
shifting adversarial calculus. Embedding attestation
receives maximal weighting (B, = 0.75) in the
correlation  engine due to  deterministic
cryptographic guarantees.
Performance Characteristics:
Performance testing reveals a signature generation
overhead of 1.8ms per embedding operation and a
validation overhead of 0.3ms per retrieved
document. Batch validation of 10 documents
completes in 2.1ms through parallelization. While
TEE-protected  execution incurs  measurable
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overhead during document ingestion (12.8ms per
document, including memory encryption and
certificate generation), this cost amortizes across
document lifetime due to read-heavy access
patterns typical of retrieval systems [9].

3.4 Layer 3: Retrieval Distributional Analysis

The retrieval layer implements distributional
analysis, detecting statistical deviations in query-
document similarity distributions, employing three
complementary mechanisms:

Incremental Principal Component Analysis:

The system maintains dynamically updated
principal components of document-query similarity
distributions using incremental PCA to avoid full
corpus recomputation. This reduces computation
from 847ms (batch PCA) to 15.2ms per query.
Query similarity distributions project into PCA
space (k=50 principal components, updated every
1,000 queries), with deviations from expected
subspace indicating coordinated poisoning where
multiple malicious documents alter retrieval
distributions.

Mathematical formulation:

OGiven similarity vector s € R» for n documents
Project: s pca = U~T s where U are top-k
eigenvectors

Anomaly score: ||s - UUMT s|| > t_pca

0

Kullback-Leibler Divergence Monitoring:

The system computes the KL divergence between
current and historical similarity score distributions:
OD_KL(P_current || P_historical) = £ P_current(x)
log(P_current(x) / P_historical(x))

OEmpirically calibrated threshold t = 0.15 achieves
a 89.1% detection rate with 4.3% false positive rate.
High divergence indicates retrieval behavior
deviating from historical patterns, potentially from
poisoned embeddings designed to interfere with
retrieval.

Temporal Rank Correlation:

Spearman's rank correlation measures ranking
stability across temporally proximate queries:

Op =1-(6Zd) / (n(n>-1))

OWhere d represents rank differences. Benign
retrieval exhibits rank stability for semantically
similar queries (p > 0.7), while poisoning attacks
cause systematic rank inversions (p < 0.3) as
adversarial documents inappropriately surface for
target queries.

The system accounts for query semantic similarity
and user session characteristics when evaluating
expected consistency. Retrieval layer signals
receive intermediate weighting (B3 = 0.50) due to a
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strong correlation with attacks but a statistical (non-
deterministic) nature.

3.5 Layer 4: Output Consistency Verification

The output layer detects attacks manifesting during
generation through perturbation-based stability
testing, building on research demonstrating that
backdoored models exhibit sensitivity to small
input perturbations [7].

Retrieval Perturbation Strategy:

EmbedGuard generates K=5 alternative retrieval
sets through:

e Reranking with alternative similarity
metrics (cosine, dot product, L2)

e Document substitution with near-neighbors
(within £0.05 cosine distance)

e Controlled ablation of top-k results

Stability Measurement:

The system executes generation with each
perturbed set and measures output stability:

O Stability (/K) Zi-;% sim(output_original,
output_i)

OWhere sim() computes semantic similarity using
sentence transformers.

Benign queries produce stable outputs (>0.82) as
perturbations preserve semantic content. Poisoning
attacks exhibit instability (<0.65) as adversarial
document removal fundamentally alters outputs.
This relies on the assumption that benign queries
maintain stable outputs given slight retrieval
variations since similar documents present similar
information, while attacks dependent on specific
poisoned documents demonstrate sensitivity to their
presence or absence.

Output verification triggers only for queries with
elevated threat signals from prior layers (<0.1% of
traffic), imposing 6.3ms latency for affected queries
while maintaining acceptable overall performance.
Signals receive lower weighting (B, = 0.20),
acknowledging legitimate reasons for output
variation.

3.6 Threat Correlation Engine

The correlation engine fuses detection signals
across layers using learned weighted scoring:
OThreatScore = Xi_,* B x signal;

OLayer Weight Calibration:

Weights are calibrated empirically on held-out
attack samples comprising 5,000 attacks across all
categories:

Cross-Layer Pattern Recognition:
The engine identifies attack signatures distributed
across layers that appear benign individually but
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indicate coordinated attacks when correlated.
Example detection pattern:

e Linguistically fluent document (passes
prompt layer)
e Unauthenticated embedding (fails TEE
attestation)
e Distributional anomaly (fails retrieval
analysis)
e Output instability (fails consistency check)
Combined signal: ThreatScore = 0.35(0.1) +

0.75(1.0) + 0.50(0.8) + 0.20(0.7) = 1.225 (high
confidence attack)

The correlation engine employs machine learning
classifiers trained on multi-layer feature sets (187
features spanning all layers) to learn complex
interaction patterns. Bayesian inference frameworks
combine layer-specific detection confidences with
prior probabilities based on query characteristics
and user context, producing posterior attack
probabilities that guide mitigation decisions.

3.7 Operational Modes

EmbedGuard supports three deployment modes
accommodating diverse operational requirements:
Passive Mode: All anomaly detections are logged
without remediation actions, enabling security
teams to establish a baseline understanding without
service disruption. Each flagged transaction records
complete context (prompt, retrieved documents
with attestations, generated response, layer-specific
signals) totaling 2.3-4.7 MB per incident. Temporal
correlation links related incidents across sessions,
revealing multi-stage attacks.  Organizations
typically establish alerting thresholds for high-
confidence detections (posterior probability > 0.85),
enabling rapid response without automated
intervention.

Gated Mode: High-confidence attacks (0.70-0.85
posterior probability) are flagged for manual
review. The system pauses processing and presents
security analysts with comprehensive context,
including query, retrieval results, preliminary
analysis, and recommended actions. Visualization

tools display embedding space positions,
provenance  chains, perturbation  stability
comparisons, and temporal patterns. Average

review time: 3-5 minutes per flagged query with
visualization support versus 8-12 minutes without
tools.

Active Mode: Automatic blocking or fallback
generation occurs when attack probabilities exceed
thresholds (typically >0.85). The system returns
safe responses without executing potentially
malicious operations. Fallback strategies include
generic non-committal responses or retrieval-free
generation using only parametric knowledge.
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Requires careful threshold calibration to minimize
false positive rates impacting user experience.

The adjustable framework allows organizations to
align deployment with risk appetite and operational
requirements—aggressive detection thresholds in
active mode for high-assurance applications, or
gated/passive  modes for lower assurance
environments.

4. Experimental Evaluation and Comparative
Analysis

4.1 Experimental Setup
Infrastructure Configuration:

e Hardware: AMD EPYC 7542 processors,
256GB RAM
TEE Platform: AMD SEV-SNP for
attestation capabilities
Embedding Model: all-mpnet-base-v2 (768
dimensions)

Document Corpus: 500,000 embeddings
spanning technical documentation, medical
literature, legal texts, and encyclopedic
knowledge

Query Workload: 47,000 evaluation queries
across diverse domains

Attack Implementation:

The evaluation implements four attack categories
from recent security literature [3, 4, 10]:

1. Optimization-Based Attacks: Gradient-
based document refinement maximizing
retrieval probability using projected
gradient descent (ProjGrad) with learning
rate 0.01 over 500 iterations
Transferability-Based Attacks: Attacks
crafted against public embedding models
(BERT-base, RoBERTa) transferred to
private models, exploiting 47% cross-
architecture transfer rates
Semantic Manipulation Attacks:
Adversarial documents embedded in fluent
natural language, maintaining linguistic
coherence while achieving malicious
retrieval objectives
Adaptive Attacks: Query-efficient
optimization with knowledge of deployed
defenses using Bayesian optimization
methods [10], iteratively refining attacks
through detection feedback
Baseline Defenses:

Comeparative evaluation against three state-of-the-
art systems:

e RAGuard [6]: Adversarial retriever
training with perplexity-based filtering
RobustRAG [5]: Isolate-then-aggregate
strategy with certifiable guarantees
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e TrustRAG [7]: K-means clustering with
similarity-based filtering

4.2 Detection Performance Results

EmbedGuard demonstrates high detection rates
across all attack categories while maintaining
production-viable latency characteristics. The
94.7% detection rate for optimization-based attacks
substantially — exceeds single-layer  defenses.
Coordinated multi-layer attacks achieve the highest
detection (96.2%) as attack signatures distributed
across layers produce correlated anomalies
detectable through cross-layer analysis. Even
against sophisticated adaptive attacks designed with
knowledge of deployed defenses, the system
maintains 89.3% detection, substantially higher
than single-layer approaches.

False positive rates remain acceptably low (2.9-
5.2%) due to multi-evidence requirements in the
Bayesian correlation engine. The system requires
either multiple weak signals or single strong signals
to trigger high-confidence alerts, reducing false
alarms on unusual-but-legitimate queries. Latency
overhead (47-58ms mean) falls within acceptable
bounds for interactive applications requiring sub-
100ms response times.

4.3 Comparative Analysis

All systems were evaluated under identical
experimental conditions with the same attack
datasets.

Head-to-head comparison demonstrates substantial
advantages for EmbedGuard across all metrics.
Under baseline attack scenarios, EmbedGuard
achieves a 7.5 percentage point improvement over
the next-best defense (RAGuard). The advantage
becomes more pronounced under adaptive attack
scenarios where adversaries optimize evasion:
EmbedGuard maintains 89.3% detection while
single-layer defenses degrade to 54.2-61.4%. This
27.9-35.1 percentage point advantage validates the
cross-layer  correlation  hypothesis—attackers
cannot simultaneously evade orthogonal detection
modalities.

The modest latency increase (51ms versus 35-42ms
for baselines) proves acceptable given substantial
security improvements. EmbedGuard achieves
lower false positive rates (3.2%) than two of three
baselines despite more aggressive detection,
reflecting multi-evidence correlation reducing false
alarms.

5. Applications and Societal Implications
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RAG system integrity can be critical for several
application domains where safety or compliance
with regulations is essential, such as medical
applications, where a medical knowledge retrieval
system directly influences the processes of clinical
decision making. Clinical decision support systems
often use RAG architectures to analyze a range of
resources such as medical literature, treatment
protocols, clinical cases, and drug databases to
produce evidence-based diagnosis and treatment
recommendations. Research on patterns of data
breaches often  highlights that healthcare
organizations are particularly at risk of Al-related
security incidents [2]. The audits show that
breaching the integrity of CDS systems has
consequences for victim organizations in terms of
patient safety by treating patients based on incorrect
treatment advice, regulatory compliance by
contravening the law of health data protection, and
financial costs from incident response efforts, and
image damage. The analysis further reveals that the
inability of healthcare organizations to remedy
incidents that change the knowledge base is due to
pre-existing automated checks for the integrity of
medical content on large document repositories that
cannot account for clinical relevance.

Attestation mechanisms provided by EmbedGuard
allow for cryptographic proofs of trustworthiness
needed for healthcare applications, making it
possible for clinical systems to report treatment
recommendations that rely on trusted medical
literature rather than potentially compromised
information sources. For example, the regulatory
requirement for provenance in medical Al can be
fulfilled. The attestation architecture provides audit
trails showing how specific information was
generated from the original medical evidence
publications, how it was embedded, retrieved, and
integrated into the clinical recommendation. The
architecture's audit trails provide for verification
that a specific recommendation was generated from
a validated source of evidence, which can be used
to address liability issues in real-world uses of
artificial intelligence in clinical environments.
Because attestation certificates are cryptographic,
they could help provide legal evidence of the
source of information, which might help defend a
malpractice case involving Al-supported decision-
making.

The integrity requirements of financial services
systems are similar to those of an MI, since an
RAG architecture underlying a financial service
may be used in trading, assessing risk, or regulatory
compliance. Financial institutions may use RAG
systems to aggregate regulatory filings, earnings
transcripts, market research findings, economic
indicators, and proprietary analysis for investment
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and regulatory decisions. Such attacks can have an
outsized impact in financial services, for example,
by poisoning market intelligence systems to
influence investment selections, game risk models,
or compromise compliance tooling. This can create
important profit opportunities or harm the financial
marketplace. The work discusses how attacks to
financial Al systems exploit their ability to retrieve
and compile information from various sources by
introducing tainted information into these sources
that is still semantically coherent enough to pass
through content validation systems.

The  cross-layer  detection  capabilities  of
EmbedGuard have immediate applications in the
finance domain, where adversaries are known to be
advanced and adaptive. Adding the prompt,
embedding, retrieval, and output layers can allow
for the detection of adversaries acting in concert,
such as financial adversaries steering the market by
generating poisoned financial analysis documents,
competitive intelligence operations impacting
competitor analysis, and adversarial trading
exploiting the predictability of Al agents. The
cryptographic attestation component can potentially
provide a regulatory-compliant audit trail that can
prove that financial trading decisions and risk
analyses were based on trusted sources of
information. Financial regulators have trained their
attention on Al systems, as algorithmic trading and
algorithmic risk management have become more
common, and they are increasingly looking for
verifiable controls over financial decisions made
using Al systems.

Legal research tools are another application area
where embedding integrity directly impacts users in
a professional context (and creates meaningful
liability). Legal RAG systems retrieve case law,
statutes and regulations, regulatory policy guidance,
and legal commentary to inform legal analysis,
brief generation, contract review, and legal strategy.
When knowledge systems underlying client advice
are compromised, the threat landscape for
professional services organizations evolves [2]. In
this research, legal practice is especially vulnerable:
once leaked, a compromised legal research system
can introduce incorrect legal interpretation into
many client matters with a limited chance of
detection, creating cascading professional liability
exposure. The study also found that professional
services organizations take longer to remediate Al
breaches because human specialists need to validate
document provenance over wide-ranging document
collections.

EmbedGuard's provenance attestation addresses
this need from the legal industry by allowing law
firms to cryptographically attest that legal research
outputs are derived from primary sources of
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information about the law that have been attested
for authenticity. These sources include official
court reporters, legislative databases, and verified
legal commentaries. This is especially important to
the legal industry now that increasingly advanced
Al systems are being used to assist with legal
research. The attestation framework also has a
practical usage for establishing the provenance of
legal reasoning if an Al-written document were to
be challenged in a malpractice lawsuit. The cross-
layer detection approaches can help reduce
adversarial attacks on legal research via embedding
poisoning, including systematic omission of
adverse precedent, promotion of incorrect legal
reasoning, and insertion of bias into case law
relevance rankings.

EmbedGuard research also seeks to address broader
equity issues, such as disparity between technology
service sectors and between large technology
companies and smaller businesses in their ability to
implement security infrastructure [2]. The research
finds that large organizations have dedicated Al
security teams, the resources to build custom
security solutions, and the capacity to undertake
research and development of state-of-the-art
security technologies. At the same time, smaller
organizations do not have teams and resources
responsible for securing Al systems, and must rely
on capabilities in general cybersecurity products
that do not have Al-specific security functions. This

organizations are more vulnerable to adversarial Al
attacks, even while serving populations and
communities that have few alternative means of
support. In addition to differing technical
capabilities, the investigation found that smaller
organizations require considerably more time to
detect and remediate security incidents related to Al
due to lower levels of expertise and resources.

In addition to the robustness and tunability, being a
production-level framework is meant to address
equity concerns, allowing any organization to
deploy strong defenses regardless of resource
levels. Deployment granularity can range from
small  environments protecting concentrated
knowledge bases to larger distributed environments
including enterprise-wide retrieval infrastructures.
EmbedGuard offers this feature with its modular
components. These operational modes allow the
organizations to balance security assurance and
operational cost, depending on their mission,
capacity, and resources. Resource-constrained
organizations may use a passive or gated
operational mode to achieve reduced cost while still
maintaining visibility about potential attacks.
Democratizing Al security for mission-critical use
cases in rural healthcare, community legal services,
and for small financial advisors, where a successful
attack could have disproportionate adverse
consequences on disadvantaged populations who
have limited or no alternatives, is also important.

creates asymmetries in  security:  smaller
Table 1: RAG Attack Vectors and Poisoning Characteristics [1][2]
Attack Component Vulnerability Mechanism Persistence Duration Detection Complexity
Embedding Space |Strategic document positioning in| Extended persistence High complexity due to
Poisoning high-dimensional semantic space| until explicit removal | distributed vector storage
Gradient-Based Iterative refinement maximizing | Sustained across query [Difficult through traditional
Optimization retrieval probability sessions forensic techniques
Transferability Cross-architecture attack Long-term knowledge Extended detection and
Exploitation effectiveness base compromise containment timelines
Semantic Similarity Query-document matching Persistent vector Compl_e_x re_medlgtlon
. . - . requiring integrity
Manipulation exploitation influence validation

Table 2: Single-Layer Defense Limitations [3][4]

Defense Mechanism

Primary Detection Target

Vulnerability to Adaptation

Evasion Strategy

Perplexity-Based
Filtering

Linguistic anomalies in
document content

High vulnerability to fluent
text generation

Linguistically coherent
malicious documents

Clustering-Based
Outlier Detection

Spatial positioning in
embedding space

Moderate vulnerability to
centrality optimization

Embedding space centrality
maintenance

Activation-Based

Model behavior during Moderate vulnerability to

Contextually appropriate

Analysis inference normal pattern mimicry activation patterns
Statistical Threshold Anomalous similarity  [High vulnerability to threshold Systematic boundary
Monitoring distributions probing identification
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EmbedGuard Cross-Layer Detection Architecture

Layer 1: Prompt Analysis

Layer 2: Embedding Atfestation
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Figure 1: EmbedGuard cross-layer detection architecture. Four detection layers (Prompt Analysis, TEE Embedding
Attestation, Retrieval Distributional Analysis, Output Consistency) generate threat signals that flow to the central
Threat Correlation Engine. The engine fuses signals using learned weights and outputs to configurable deployment
modes (Passive, Gated, Active).

Figure 2: TEE-Based Embedding Attestation Protocol
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Verification at Retrieval Time

Figure 2: TEE-based embedding attestation protocol. Documents are hashed and loaded into the TEE enclave, which
generates embeddings and cryptographic attestation certificates. At retrieval time, certificates are validated before
accepting results.

Layer Weight () Rationale Latency Contribution
Prompt 0.35 Probabilistic but with low false alarms 4.2ms (8.2%)
Embedding (TEE) 0.75 Deterministic cryptographic verification 12.8ms (25.1%)
Retrieval 0.50 Strong signal, but statistical 23.5ms (46.1%)
Output 0.20 Legitimate reasons for instability 6.3ms (12.4%)

Table 2: Cross-Layer Detection Components [5][6]

Detection Monitoring Mechanism Signal Characteristics Contribution to Threat
Layer Score
Semantic analysis and contextual[Distinctive patterns in adversarial|  Intermediate weight for
Prompt Layer e - s
classification inputs probabilistic signals
Embedding |Hardware-backed cryptographic Deterministic provenance Maximal weight for
Layer attestation verification cryptographic guarantees
. Distributional analysis and Statistical deviations from Intermediate weight for
Retrieval Layer - - . o
ranking consistency baseline patterns correlation signals
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0 Consistency verification across Instability under retrieval Lower weight for generation
utput Layer . _—
perturbed sets perturbations variations
Table 3: EmbedGuard Detection Performance by Attack Category
Attack Type Detection Rate [False Positive Rate| Mean Latency | P99 Latency | Sample Size
Optimization-Based 94.7% 3.2% 47ms 142ms 12,500 attacks
Transferability-Based 91.4% 4.1% 51ms 156ms 9,800 attacks
Semantic Manipulation 88.9% 3.8% 49ms 148ms 11,200 attacks
Adaptive Attacks 89.3% 5.2% 53ms 164ms 8,300 attacks
Coordinated Multi-Layer 96.2% 2.9% 58ms 171ms 5,200 attacks
Table 4: Adaptive Attack Resilience [7][8]
Attack Adaptation Single-Layer Defense Cross-Layer Correlation (')Apthrizszi:?n
Strategy Response Response Requi
equirement
Linguistic Fluency Defense evasion through Detection through multi-layer | Increased computational
Optimization perplexity reduction signal conjunction complexity
Embedding Centrality | Defense evasion through Detection through attestation Multi-objective
Optimization spatial positioning and output analysis optimization challenge
Activation Pattern Defense evasion through Detection through prompt and [Orthogonal signal evasion
Mimicry normal behavior retrieval anomalies difficulty
. . Threshold boundary Persistent detection through Hardware-level
Iterative Refinement . e S . . .
identification deterministic attestation compromise requirement

Table 5: Comparative Performance Against State-of-the-Art Defenses

Baseline Adaptive Advantage vs. Best
Defense System Detection Detegtion FP Rate [Mean Latency Basgeline
EmbedGuard (Ours) 94.7% 89.3% 3.2% 51ms —
RAGuard [6] 87.2% 61.4% 4.8% 38ms +27.9pp adaptive
RobustRAG [5] 82.9% 58.7% 6.1% 42ms +30.6pp adaptive
TrustRAG [7] 79.3% 54.2% 5.3% 35ms +35.1pp adaptive

Comparative Detection Performance

100

04.7%

B2 9%

Detection Rate (%)

20

EmbedGuard RobustRAG
{Ours)

TrustRAG

. B

-+l Adaptive Attacks

asaline Attacks

RAGUard

Figure 3: Comparative detection rates under baseline and adaptive attack scenarios. EmbedGuard maintains 89.3%
detection under adaptive attacks compared to 54.2-61.4% for single-layer approaches.

Table 3: Ablation study results showing detection performance with layer combinations.

Configuration Detection Rate FP Rate A from Full
Full System (4 Layers) 94.7% 3.2% —
w/o Output Layer 91.2% 3.8% -3.5pp
w/o Retrieval Layer 87.4% 4.1% -7.3pp
w/o Embedding (TEE) 84.6% 5.7% -10.1pp
w/o Prompt Layer 89.8% 3.9% -4.9pp
Embedding Only (Best 76.3% 2.1% -18.4pp
Single)
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Ablation Study: Layer Contribution Analysis

Embedding
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Figure 4: Ablation study showing layer contribution. Cross-layer correlation provides an 18.4 percentage point
improvement over the best single-layer approach.

Latency Breakdown by Detection Layer
Total: 51ms

Prompt Analysis
(4.2ms)

TEE Attestation
(12.8ms)

Carrelation Engine
14.2ms)

Output Verification
{6.3msz)

=~ Retrieval Anatysls
{23.5ms)

Figure 5: Latency breakdown by detection layer. Retrieval analysis accounts for 46.1% of overhead but provides the
strongest statistical signal for coordinated attack detection.

Table 4: Per-layer latency breakdown. Retrieval analysis dominates overhead but provides the strongest statistical

signal.

Layer Mechanism Mean Latency % of Total
Prompt Analysis Neural classification 4.2ms 8.2%
Embedding Attestation TEE verification 12.8ms 25.1%
Retrieval Analysis PCA + KL divergence 23.5ms 46.1%
Output Verification Perturbation stability 6.3ms 12.4%
Correlation Engine Signal fusion 4.2ms 8.2%
Total Pipeline End-to-end 51.0ms 100%

6. Conclusions

As retrieval-augmented generation (RAG) systems
become the backbone of Al applications, new
security architectures are needed to address their
unique threat model. Existing security architectures
designed for vertically integrated solutions are
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ineffective against adversaries that can exploit
vulnerabilities across multiple layers of an RAG
system via compositional attacks (cross-layer
attacks). By spreading poison across all levels of
the system, Poisoned RAG shows that highly
effective attacks can be deployed using only a small
fraction of a poisoned corpus, and that poison can
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be strategically placed in high-dimensional
embedding space to evade statistical defenses while
ensuring high retrieval performance. The cross-
layer detection and cryptographic provenance
attestation enabled by EmbedGuard represents a
foundational improvement to RAG's security stack,
as it enables matching anomalous signals across the
prompt, embedding, retrieval, and output layers to
enable provably effective detection of complex
poisoning attacks with production-grade latency.
The novel hardware attestation schemes proposed
in this work enforce a fundamental shift in the
security model of embedding security, turning it
from a statistical inference problem (evading

detection via statistical masking) into a
cryptographic  verification  problem  (forcing
attackers to  compromise the hardware).
Experiments show that the system has better
performance than state-of-the-art single-layer
defenses under adaptive attacks that evade
statistical ~ detection by applying iterative

optimizations based on access to the deployed
defense. In contrast to single-layer defenses, two-
layer mechanisms with (1) cryptographic
verification of authenticated embeddings and (2)
cross-layer  correlation of attacks through
distributed signatures of anomalies reduce common
limitations in probabilistic protections that attackers
can exploit with carefully created attacks. Its
operational modes allow it to be deployed across a
range of organizational structures with various risk
tolerances and operational constraints. This aspect
is particularly relevant due to the heterogeneity of
threat models, regulatory considerations, and
operational capabilities of organizations, such as
healthcare, financial services, and legal industries,
where correctness guarantees often correlate with
operational safety, regulatory compliance, and
professional  liability.  Attestation  provides
cryptographic proof that outputs came from a
trusted source and not an opponent. Beyond the
sector, EmbedGuard addresses the broader need for
a fair Al security infrastructure for society.
Through a production-ready framework and
flexible deployment modes, the tool enables low-
resource organizations to deploy state-of-the-art
defenses that were previously available only to
well-resourced technology organizations. The
ability to transition the security model from post
hoc, signature-based defenses to proactive,
provenance-based security models reflects a
maturing community and the development of
architectural patterns for instantiating defenses
across the evolving Al security domains.
Furthermore, high-quality Al security is possible at
little to no cost to system utility in production
deployments.
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