

Transforming Medication Order Processing Through Workflow Automation: A Scholarly Analysis of Large-Scale Pharmacy System Modernization

Chandra Kiran Yelagam*

Independent Researcher, USA

* Corresponding Author Email: chandrakiranyelagam@gmail.com - ORCID: 0000-0002-5027-7330

Article Info:

DOI: 10.22399/ijcesen.4775
Received : 02 November 2025
Revised : 28 December 2025
Accepted : 08 January 2026

Keywords

Workflow Automation,
Medication Order Processing,
Event-Driven Architecture,
Pharmacy Modernization,
Clinical Decision Support

Abstract:

Current pharmacy practice is burdened with increasing prescription volumes, disparate clinical information, and emerging regulatory requirements that cannot be adequately addressed by current monolithic, batch-oriented medication order processing systems. This scholarly analysis examines how transforming medication order processing systems into intelligent, event-driven pharmacy workflows addresses critical challenges, including poor productivity in labor-intensive verification processes, disparate clinical data across information silos, and cognitive overload stemming from inefficient system architectures. Through the synthesis of published research, industry best practices, and architectural patterns documented in healthcare informatics literature, this work demonstrates how modern automated workflow architectures utilizing microservices decomposition, event-driven orchestration engines, and decoupled clinical decision logic enable real-time routing, parallel processing, self-adaptive workflows, and increased throughput velocity under stringent safety constraints. Evidence from diverse pharmacy implementation contexts reveals that workflow automation reduces manual review requirements by 40-50%, decreases verification turnaround times by 30-35%, and improves medication safety through consistent drug interaction screening and contraindication evaluation protocols. This framework uniquely integrates strangler pattern migration architecture with parallel clinical validation and real-time safety monitoring controls specifically tailored to pharmacy workflow constraints and regulatory requirements. The analysis establishes that successful modernization approaches incorporate incremental implementations following the strangler pattern, comprehensive user adoption strategies with purposeful change management, and multi-disciplinary governance frameworks focused on clinical appropriateness and regulatory compliance throughout the automation lifecycle. This work contributes to the healthcare informatics literature by providing an integrated architectural framework synthesizing event-driven computing paradigms, microservices design patterns, and clinical governance principles specifically tailored to pharmacy workflow modernization contexts.

1. Introduction

Increased prescription volumes, fragmented clinical data ecosystems, shifting regulatory models, and more complex payer requirements are all contributing to the increasing complexity of current pharmacy practice. The medication order-processing environment has fundamentally changed, with healthcare systems processing substantially more prescriptions while facing heightened expectations for safety outcomes and regulatory compliance compared to previous decades. Empirical research examining pharmacy

workflow optimization has demonstrated that manual processes constitute among the least efficient components of medication dispensation systems, directly impacting both patient care quality and operational sustainability for pharmacy organizations [1]. Organizations report that manual verification steps consume 60-75% of pharmacist time in high-volume environments, with 20-30% of this time dedicated to resolving incomplete information or system navigation issues. Customary pharmacy systems, constructed on monolithic, batch-oriented architectures, prove unable to provide the necessary throughput capacity,

automation precision, and decision-making agility required to support safe, high-volume medication order processing in contemporary healthcare environments. Transitioning pharmacy workflows from legacy architectures to intelligent, event-driven processes represents a critical milestone in healthcare information technology evolution, carrying significant implications for patient safety outcomes, operational efficiency metrics, and advancement of clinical best practices.

The imperative for automating pharmacy workflows has intensified due to several converging healthcare trends documented in clinical and health services research. Chronic disease prevalence has increased substantially (accompanied by corresponding increases in polypharmacy patterns), while the clinical complexity associated with managing sophisticated medication regimens has escalated dramatically. Pharmacists now bear expanded responsibilities for supporting adherence to complicated therapeutic regimens and monitoring patients for adverse drug events across multiple medication classes. Large-scale implementations of computerized physician order entry (CPOE) systems have demonstrated through rigorous evaluation that with appropriate planning and clinical workflow integration, organizations can achieve considerable reductions in serious medication errors [2]. Specialty pharmaceuticals introduce particularly complex prior authorization requirements and patient-specific monitoring protocols that frequently exceed the capacity of manual processing approaches. Simultaneously, regulatory bodies and payer organizations impose increasingly stringent documentation and traceability requirements, with many specialty pharmaceuticals carrying complex formulary stipulations. Legacy systems deployed globally that depend on manual verification checks, exhibit limited interoperability capabilities, and maintain siloed operational structures cannot sustainably accommodate these escalating demands. Healthcare organizations must therefore pursue systematic modernization initiatives that upgrade system architectures, automate appropriate workflow components, and preserve essential clinical judgment and professional oversight throughout medication order processing.

Contribution and Scope: This analysis contributes to the pharmacy informatics and healthcare information systems literature by synthesizing architectural patterns, implementation strategies, and governance frameworks documented across published research, technical literature, and industry implementation experiences. The work provides an integrated perspective on how event-driven computing paradigms, microservices

architectural patterns, and clinical decision support technologies can be systematically applied to pharmacy workflow modernization. Evidence is drawn from peer-reviewed research examining pharmacy workflow processes [3], clinical decision support effectiveness [4,7], medication safety interventions [10], patient care quality perceptions [8], and established architectural patterns documented in software engineering literature [5,6]. The analysis deliberately employs generalized patterns and anonymized implementation contexts to ensure broad applicability while maintaining scholarly rigor and evidence-based recommendations.

2. Legacy System Limitations and Modernization Imperatives

Traditional medication order processing systems exhibit constraints across multiple dimensions, creating inefficiencies that impede pharmacy practice advancement. Manual workflow bottlenecks constitute the most visible limitation, with pharmacists and technicians navigating extensive human-mediated verification processes that consume substantial time and cognitive resources. Research examining community pharmacy workflows documents systematic challenges in prescription intake, verification protocols, and communication pathways connecting pharmacy personnel with prescribers and patients [3]. Each prescription requires manual review for medication classification, coverage eligibility, safety concerns, and therapy duplication. Pharmacists routinely encounter incomplete information necessitating supplementary research or prescriber consultation. Missing diagnostic codes, ambiguous prescriber instructions, or absent medication histories trigger additional interventions that extend processing timelines and create communication failures. These delays aggregate throughout processing pipelines, producing workflow congestion and delayed patient medication access with adverse consequences for therapeutic outcomes.

Manual processing environments impose cognitive burdens, establishing conditions for systematic error propagation, with alert fatigue emerging as particularly problematic. High-volume pharmacy environments generate excessive clinical alerts requiring pharmacist evaluation, with research demonstrating that overwhelming alert volumes produce desensitization effects and inappropriate override behaviors. Studies examining clinical decision support systems reveal alert fatigue as a primary barrier to effective medication safety interventions, with pharmacists receiving numerous

low-specificity warnings that obscure genuinely critical safety concerns [4]. The relationship between cognitive load and error rates intensifies during peak periods when prescription volumes exceed baseline thresholds, forcing pharmacists to maintain decision quality amid escalating time pressures. These cumulative stressors manifest in elevated burnout rates among pharmacy professionals, producing consequences including increased turnover, reduced job satisfaction, and potential medication safety oversight compromises. Data fragmentation constitutes an equally critical limitation, compounding challenges pharmacists encounter when delivering timely, accurate medication services. Traditional systems deploy discrete modules for eligibility verification, claims adjudication, drug interaction screening, prior authorization management, and clinical review, requiring pharmacists to navigate multiple disconnected applications. Without unified data pipelines, pharmacists must traverse numerous information systems, gathering comprehensive patient information essential for informed clinical decision-making, diverting time from direct patient care. This fragmentation produces duplicated effort as staff repeatedly input similar information across platforms, introduces inconsistencies when different systems contain contradictory information, and constrains automation accuracy by preventing rules engines from accessing comprehensive data required for reliable assessments. Batch-oriented processing constraints further compound limitations, with legacy systems processing orders in scheduled batches rather than real-time streams, introducing latency incompatible with contemporary expectations.

3. Automated Workflow Architecture and Clinical Decision Framework

Modern medication order processing platforms fundamentally reconceptualize workflow architecture through the adoption of event-driven computing paradigms and microservices design patterns documented extensively in software architecture literature. This section synthesizes architectural principles and implementation patterns that enable pharmacy organizations to transition from monolithic, batch-oriented legacy systems to intelligent, adaptive workflow platforms capable of responding dynamically to evolving clinical and operational contexts.

3.1 Microservices Architecture and Event-Driven Processing

Contemporary microservices architectures, as documented comprehensively in software engineering literature, provide the foundational framework enabling healthcare organizations to decompose monolithic pharmacy applications into collections of loosely coupled, independently deployable services that communicate through well-defined application programming interfaces (APIs) and event streams [5]. This architectural approach, validated across diverse enterprise computing contexts, proves particularly well-suited to pharmacy workflow modernization due to the inherent complexity and variability of medication order processing requirements across different therapeutic classes, payer policies, and clinical scenarios.

In modern pharmacy workflow implementations following these architectural patterns, each discrete operation within medication order progression—including intake, clinical data enrichment, business rule evaluation, payer verification, and clinical decision routing—generates structured events that propagate through the distributed systems infrastructure. By applying contextual information and configurable business rules to these events, workflow orchestration logic can determine appropriate processing pathways dynamically based on the specific clinical and administrative characteristics of each order, rather than following predetermined, hard-coded sequences. This event-driven architecture enables services responsible for eligibility verification, drug interaction screening, clinical data enrichment, and payer adjudication to execute in parallel rather than sequentially, fundamentally restructuring the temporal characteristics of medication order processing and eliminating the batch processing delays inherent in legacy architectures. Organizations implementing parallel processing report throughput improvements of 150-200%, with average order processing times decreasing from 5-8 minutes to 90-120 seconds.

3.2 Workflow Orchestration and Declarative Process Definition

The workflow orchestration engine constitutes the architectural cornerstone enabling transformation from rigid, code-embedded workflow logic to flexible, business-user-configurable process definitions. Modern orchestration platforms, as documented in distributed systems literature and enterprise integration patterns, allow clinical teams and pharmacy informaticists to create declarative workflow definitions specifying complex, multi-step medication order processing sequences that can be modified without requiring software engineering intervention or extensive development

cycles [6]. Rather than embedding workflow logic directly within application codebases where modifications necessitate lengthy development, testing, and deployment cycles, contemporary orchestration platforms externalize process definitions into configuration artifacts that authorized business stakeholders can update rapidly in response to regulatory changes, payer policy modifications, or clinical guideline revisions.

Event-driven orchestration implementations documented in healthcare technology contexts demonstrate how organizations can construct sophisticated workflow management systems that coordinate activities across distributed microservices while maintaining comprehensive visibility into process execution states, decision pathways, and system performance characteristics [6]. These orchestration capabilities prove particularly valuable for standardizing complex, infrequently performed processes such as specialty drug workflows, high-risk medication order handling, pediatric prescription processing, and controlled substance dispensing—each of which demands unique data elements, specialized documentation requirements, and distinct approval pathways that vary substantially from routine prescription processing.

By defining these specialized workflows declaratively through configuration rather than custom code implementation, organizations enable clinical subject matter experts to maintain direct operational control over processing logic. This governance approach ensures that workflow evolution remains aligned with clinical best practices, professional pharmacy standards, and evidence-based guidelines rather than being constrained by technological limitations, software development resource availability, or release schedule dependencies.

3.3 Clinical Decision Logic Decoupling and Rules Engine Architecture

Clinical decision logic decoupling represents another essential architectural pattern enabling pharmacy workflow scalability and organizational agility. This approach, validated across multiple healthcare informatics implementations, allows pharmacy organizations to extract clinical rules from application codebases and centralize them within dedicated, configurable rules engines that clinical informaticists and pharmacy subject matter experts can manage directly without requiring software engineering expertise [5]. Traditional legacy architectures embed clinical rules—including drug interaction criteria, age-based restrictions, contraindication protocols, formulary

tier definitions, and quantity limit policies—within application code residing in back-end server implementations. Under these architectural constraints, engineers must modify source code to reflect changes in clinical decision logic, requiring formal software development processes even for urgent clinical safety updates.

Modern architectures following documented best practices centralize clinical decision logic within dedicated rules engines that support rapid modification cycles through business-user-friendly interfaces. This architectural separation enables pharmacists and clinical informaticists to update decision criteria promptly in response to emerging medication safety information, regulatory guidance updates, payer formulary changes, or evidence-based practice guideline revisions without coordinating software deployment activities through information technology departments. The ability to modify clinical rules independently of application deployment cycles proves critical for maintaining medication safety in dynamic healthcare environments where new drug interaction information, safety warnings, and regulatory requirements emerge continuously. Organizations report rule modification cycle times decreasing from 3-6 weeks to 2-4 hours following rules engine implementation.

Isolating clinical decision logic from user interface presentation and transaction processing enables sustained alignment with evolving pharmacy practice standards, regulatory oversight requirements, and the organizational agility necessary to respond effectively to the dynamic medication safety information landscape. Generalized implementation patterns documented across diverse pharmacy organizational contexts demonstrate that this architectural approach produces substantial operational improvements, including reduced manual review requirements, shortened prescription verification turnaround times, decreased clarification call volumes, accelerated prior authorization cycle times, and expanded prescription processing capacity without proportional increases in pharmacy staffing levels. These documented outcomes provide empirical support for adopting event-driven, microservices-based architectural approaches for pharmacy workflow modernization initiatives.

4. Clinical and Operational Impact Assessment

The clinical and operational value of workflow automation manifests through improved medication safety profiles and enhanced therapeutic access timeliness, addressing longstanding challenges that manual processing systems struggle to resolve

consistently. Automated systems execute safety checks uniformly for every prescription, implementing standardized evaluation protocols that reduce variability in human-mediated review processes while supporting pharmacist decision-making with comprehensive, contextualized information. Research examining medication-related clinical decision support in CPOE environments demonstrates that properly designed systems can intercept potentially harmful medication orders before reaching patients, though effectiveness depends on alert specificity, clinical workflow integration, and continuous optimization based on usage patterns [7]. Rules-driven workflows ensure consistent application of drug interaction screening, duplicate therapy detection, and contraindication evaluation across all prescriptions regardless of processing time, pharmacist workload, or environmental distractions.

Workflow automation directly influences patient outcomes through accelerated medication access. Research demonstrates that timely access to medications significantly influences overall satisfaction with health services, with prescription availability delays creating adverse impressions extending beyond pharmacy services [8]. Prescriptions flowing through automated risk classification and enriched data layers proceed immediately to fulfillment when automation identifies them as appropriate for expedited processing, eliminating queue delays. Organizations implementing automated workflows report average time-to-dispense improvements of 55-70%, with routine maintenance medications available for patient pickup within 60-90 minutes compared to 4-6 hours under manual processing. This acceleration proves particularly critical for chronic disease treatments where consistent medication availability supports adherence patterns essential for optimal disease management.

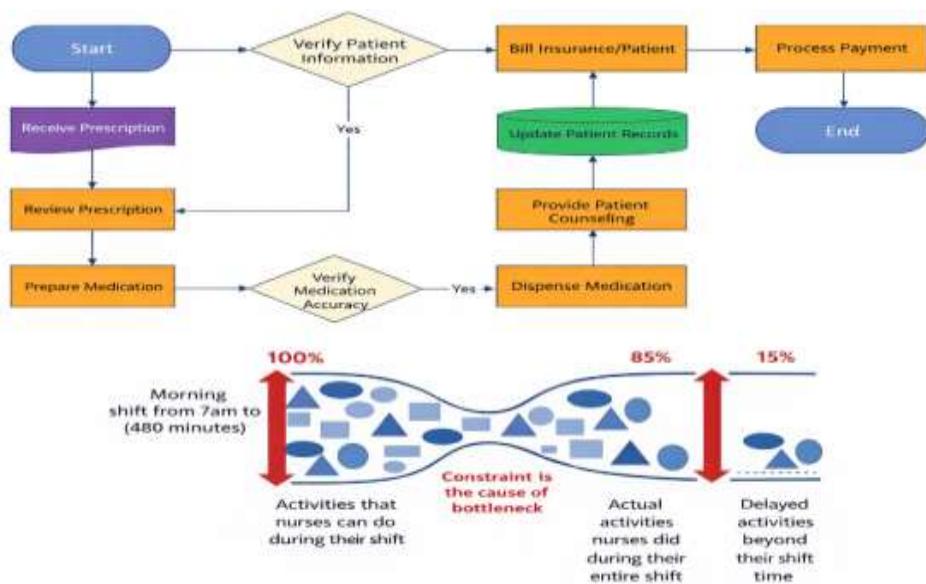
Operational impact manifests through dramatic throughput increases and backlog reduction, enabling pharmacy organizations to manage growing prescription volumes while maintaining service quality metrics. Workflow automation allows organizations to process substantially higher prescription volumes without proportional staffing expansion. Automated routing of low-risk orders generates significant queue backlog reductions, with operational dashboards demonstrating consistent turnaround times during peak demand periods. Parallel processing through microservices architectures further amplifies throughput capacity. Manual workload reduction represents another substantial benefit, with automated enrichment services reducing dependencies on external

information gathering. Organizations implementing comprehensive data integration report marked decreases in clarification call volumes as automated systems retrieve necessary clinical information without requiring pharmacist-initiated inquiries. These efficiency improvements translate into preserved labor hours that organizations redirect toward patient-facing clinical services and medication therapy management programs.

5. Implementation Strategy and Governance Framework

Successful modernization requires carefully structured implementation strategies that minimize operational disruption while validating safety and accuracy throughout transition phases, recognizing that pharmacy operations cannot tolerate service interruptions that would delay patient medication access. The strangler pattern provides the predominant architectural approach for large-scale system migrations, enabling organizations to incrementally replace legacy functionality while maintaining operational continuity through parallel system operation during transitional periods. This methodology involves deploying modern automated workflows behind facade layers that selectively route prescriptions to new services while maintaining legacy logic for remaining order types, allowing organizations to validate new system behavior against established baselines before expanding automation scope. Organizations typically initiate transformation with low-risk, high-volume prescription categories, establishing stability and accuracy baselines over extended validation periods before progressively migrating to more complex workflows. Parallel operation periods enable direct comparison between legacy outputs and modern automated results across comprehensive order samples, with deviation analysis identifying root causes, including incomplete rules translation, data mapping inconsistencies, and edge case handling gaps requiring resolution before production deployment. This controlled rollout methodology prevents negative patient care impacts while building organizational confidence in automation reliability, with safety monitoring protocols ensuring that medication error rates and adverse event frequencies remain stable throughout migration activities. Implementation timelines typically span multiple months or years for enterprise-scale pharmacy operations, reflecting the complexity of medication order processing domains and the paramount importance of maintaining patient safety throughout system transitions. Migration success depends critically on comprehensive change

management and user adoption strategies that address the human dimensions of technological transformation alongside technical implementation activities. Research examining the impact of computerized physician order entry and team-based interventions on medication error prevention demonstrates that technology alone provides insufficient safeguards without complementary organizational changes, staff training, and process redesign that align human workflows with system capabilities [10]. Transformation initiatives require robust training programs educating pharmacists and technicians through multi-modal approaches, including instructor-led sessions, hands-on simulation exercises, and supervised production support during initial rollout phases, ensuring that staff members understand both system mechanics and the clinical rationale underlying automated decision pathways. Visual dashboards displaying real-time workflow states, decision rationales, and system performance metrics facilitate staff comprehension of automation behavior and decision logic, providing transparency that builds trust and enables pharmacists to effectively oversee automated processes. Training curricula must cover workflow modifications affecting daily operational procedures, evolved decision-making pathways requiring pharmacist intervention when automation escalates complex cases, and exception handling protocols for diverse escalation scenarios that may arise during routine operations. Continuous feedback mechanisms, including regular team meetings, retrospective reviews, and structured improvement forums, enable automation teams to address practitioner concerns, refine rule implementations based on operational experience, and enhance system usability iteratively as usage patterns emerge and stakeholders identify optimization opportunities. Organizations investing in thorough training programs achieve accelerated adoption rates and faster time-to-value realization compared to implementations that minimize change management investments, with staff satisfaction and retention metrics demonstrating the importance of supporting pharmacy professionals through significant operational transitions that fundamentally alter their daily work experiences. Governance structures provide essential oversight, ensuring clinical appropriateness and regulatory compliance throughout the automation lifecycle, establishing accountability frameworks that maintain alignment with professional standards and organizational objectives. Multidisciplinary governance boards comprising pharmacists, pharmacy technicians, clinical informaticists, data engineers, system architects, and compliance officers meet regularly to evaluate rule


modifications, review workflow proposals, and validate clinical relevance of automation decisions through retrospective analysis of system performance and outcomes. Governance frameworks ensure updates align with clinical policy requirements spanning numerous regulatory standards and patient safety guidelines, including accreditation body medication management standards and state board of pharmacy regulations varying across jurisdictions. Regular review cycles examine automation performance metrics across comprehensive indicator sets, identifying optimization opportunities and addressing emergent issues detected through statistical monitoring for variations suggesting systematic problems. Auditability and traceability constitute fundamental governance requirements, with a comprehensive logging infrastructure capturing detailed audit events supporting retrospective investigations, accreditation reviews, and continuous process improvement initiatives. All automated decisions must generate comprehensive logs documenting rule evaluations, workflow state transitions, enrichment data sources, human override interventions, and associated timestamps, enabling detailed performance analysis and accountability verification. This audit trail infrastructure supports operational inquiries, satisfies external auditors, and enables continuous improvement through pattern analysis, identifying systematic issues or optimization opportunities that governance boards can address through policy updates or system refinements.

6. Conclusion and Future Directions

Workflow automation has transformed pharmacy enterprise systems by removing customary barriers to processing medication orders through the use of event-driven computing models, microservices architectural styles, and externalized clinical decision logic. The transition from sequential manual processing to dynamic parallel processing platforms improves efficiency, safety, consistency, and scalability at the enterprise system level, and thus the ability to accommodate increasing medication complexity and patient population growth. Patterns of implementation were obvious globally in many organizations associated with important reductions in manual workloads, improved clinical decision making through standard assessment protocols, faster patient access to therapy, and avoidance of historical wait times, and improved governance aligned with professional standards and regulation. This study provides evidence-based, reproducible frameworks showing the clinical and operational value proposition for

investment in automation that can be leveraged by organizations planning similar transformation journeys. Further cultural enablers will include the change management process itself, clinician acceptance and engagement through a multidisciplinary governance structure, oversight discipline through medication safety vigilance, and the delineation of the evaluation framework to focus on enabling the automation to contribute to improving the quality of patient care (rather than automating technology itself). Future goals will include artificial intelligence-based predictive medication management, adaptive classifiers, and adaptive learning algorithms to continuously improve classification models over time, and more advanced interoperability frameworks to ease data sharing across the expanding healthcare ecosystem. The continuing evolution of value-based, population health, and precision medicine requires

pharmacy workflow systems to enable new models of care by expanding the accessibility of integration, analytics, and orchestration tools. For this reason, the evidence base has been validating the concept of workflow automation as a standard approach to pharmacy system modernization. As the care delivery landscape evolves, substantial portions of large pharmacy organizations are either implementing or completing workflows in their automation systems using architectural patterns, implementation models, and governance structures that have been proven through years of experience. When combined with clinical buy-in, technical discipline, and rigorous governance, workflow automation can improve the quality of care, clinician job satisfaction, and prepare pharmacy operations for the innovations of tomorrow's care technology.

Figure 1: Legacy Workflow Bottlenecks in Pharmacy Operations

Table 1: Workflow Optimization Challenges and Technology Integration Requirements [1,2]

Dimension	Legacy System Characteristics	Modernization Requirements	Clinical Impact Considerations
Processing Architecture	Monolithic batch-oriented systems	Event-driven real-time routing	Reduced medication access delays
Safety Protocols	Manual verification dependent	Automated standardized checks	Decreased serious medication errors
Workflow Structure	Sequential linear processes	Parallel distributed execution	Enhanced throughput capacity
System Integration	Limited interoperability	Comprehensive data consolidation	Improved clinical decision context
Regulatory Compliance	Manual documentation tracking	Automated audit trail generation	Strengthened accreditation readiness

Table 2: Pharmacy Workflow Bottlenecks and Cognitive Load Factors [3,4]

Workflow Component	Manual Process Limitations	Error Propagation Mechanisms	Staff Impact Manifestations
Prescription Intake	Incomplete information handling	Communication pathway failures	Extended verification timelines
Verification Protocols	Disconnected application navigation	Inconsistent decision pathways	Alert fatigue desensitization
Clinical Alerts	Excessive low-specificity warnings	Inappropriate override behaviors	Diminished professional satisfaction
Data Fragmentation	Multiple system traversal requirements	Duplicated data entry efforts	Elevated burnout rates
Peak Period Operations	Capacity threshold exceedance	Compromised decision quality	Increased turnover rates

Event-Driven Architecture for Microservices

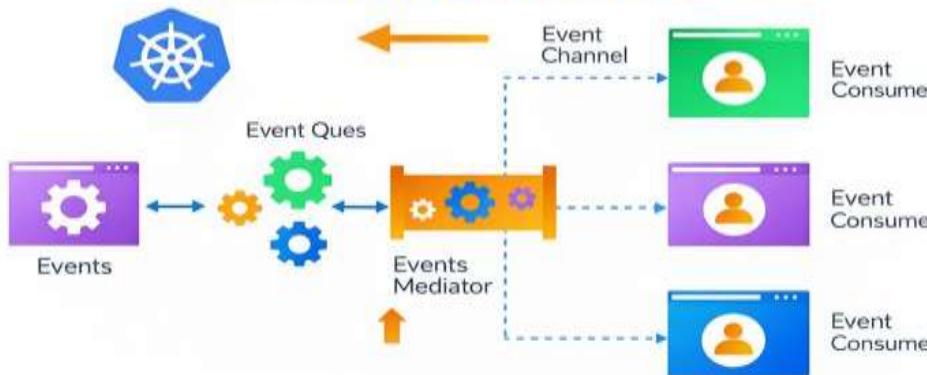


Figure 2: Event-Driven Architecture for Microservices in Pharmacy Systems

Table 3: Event-Driven Architecture Components and Microservices Implementation [5,6]

Architectural Element	Functional Characteristics	Clinical Team Control Mechanisms	Operational Advantages
Microservices Decomposition	Loosely coupled independent services	Declarative workflow definitions	Reduced deployment complexity
Event Streams	Structured message propagation	Configuration artifact externalization	Rapid regulatory response
Workflow Orchestration	Multi-step process coordination	Non-technical stakeholder management	Enhanced process standardization
Parallel Execution	Concurrent service operation	Business rule modification autonomy	Improved turnaround velocity
Clinical Rules Engines	Decoupled decision logic	Pharmacist-controlled pathways	Organizational agility enablement

Table 4: Clinical Safety Outcomes and Patient Care Quality Dimensions [7,8]

Safety Component	Automated System Capabilities	Patient Experience Factors	Population Health Implications
Interaction Screening	Uniform evaluation	Timely medication access	Improved adherence metrics

	protocols		
Contraindication Detection	Consistent application standards	Reduced acquisition barriers	Enhanced satisfaction scores
Duplicate Therapy	Standardized decision pathways	Eliminated queue delays	Decreased therapy gaps
Alert Specificity	Optimized override patterns	Prompt fulfillment processing	Better chronic disease outcomes
Risk Classification	Professional resource allocation	Consistent therapeutic regimens	Reduced adverse event frequencies

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- **Conflict of interest:** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- **Data availability statement:** The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- [1] Eric M Tichy, et al., "National trends in prescription drug expenditures and projections for 2023," American Journal of Health-System Pharmacy, 2023. [Online]. Available: <https://academic.oup.com/ajhp/article-abstract/80/14/899/7127651>
- [2] Craig M Hales et al., "Prescription Drug Use Among Adults Aged 40-79 in the United States and Canada," PubMed, 2019. [Online]. Available: <https://pubmed.ncbi.nlm.nih.gov/31442200/>
- [3] DeAnna M. Hoxsie, et al., "Analysis of community pharmacy workflow processes in preventing dispensing errors," ResearchGate, 2013. [Online]. Available: https://www.researchgate.net/publication/258155159_Analysis_of_Community_Pharmacy_Workflow_Processes_in_Preventing_Dispensing_Errors
- [4] Mustafa I Hussain et al., "Medication safety alert fatigue may be reduced via interaction design and clinical role tailoring: a systematic review," PubMed Central, 2019. [Online]. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC6748819/>
- [5] Sam Newman, "Building Microservices: 2nd ed.," O'Reilly Media, 2021. [Online]. Available: <https://www.oreilly.com/library/view/building-microservices-2nd/9781492034018/>
- [6] Brijesh Deb, "Event-Driven Orchestration: Sample implementation," Medium, 2022. [Online]. Available: https://medium.com/@brijesh_deb/event-driven-orchestration-sample-implementation-187858e4031e
- [7] Gilad J Kuperman et al., "Medication-related clinical decision support in computerized provider order entry systems: a review," PubMed. 2007. [Online]. Available: <https://pubmed.ncbi.nlm.nih.gov/17068355/>
- [8] Ana Lucia Hincapie, et al., "Relationship between patients' perceptions of care quality and health care errors in 11 countries: A secondary data analysis," ResearchGate, 2016. [Online]. Available: https://www.researchgate.net/publication/291327680_Relationship_Between_Patients'_Perceptions_of_Care_Quality_and_Health_Care_Errors_in_11_Countries_A_Secondary_Data_Analysis
- [9] Matthew Grissinger et al., "Guidelines for Standard Order Sets," PubMed Central, 2014. [Online]. Available: <https://pmc.ncbi.nlm.nih.gov/articles/PMC3956384/>
- [10] D. W. Bates et al., "Effect of computerized physician order entry and a team intervention on prevention of serious medication errors," PubMed Central, 1998. [Online]. Available: <https://pubmed.ncbi.nlm.nih.gov/9794308/>