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Abstract:  
 

E-commerce logistics networks are under increasing pressure to strike a balance 

between operational efficiency and service quality under unstable patterns of demand. 

The classical planning models treat facility location and vehicle routing as a set of 

independent optimization problems, which do not reflect important interdependencies 

between strategic network design and operational dispatch decisions. These decision 

layers are combined in a two-stage stochastic programming framework with distribution 

facilities in place before demand is realized, and operational flexibility is retained by 

taking recourse actions of dynamic routing decisions. The former is the determination 

of facility activation and the initial demand zone assignments in the face of uncertainty, 

and the latter is the adaptive construction of vehicle routes as the customer orders 

become known. Rolling horizon heuristics allow path replanning within operating 

windows, which can handle real-time arrivals of orders without the need to add too 

much computational load. Geospatial road network data provides realistic estimates of 

distances that accommodate real driving routes and city topography. The validation of 

simulation has shown that the efficiency in transportation, cost reduction, and 

responsiveness of service are significantly improved as compared to traditional 

centralized or static planning strategies. The combined framework is specifically useful 

where third-party logistics providers, online grocery delivery businesses, and business-

to-consumer retailers are dealing with uncertain demand and managing distributed 

customer bases with strong demand expectations in terms of delivery time. 

 

1. Introduction and Problem Context 
 

The digitalization of retail business has radically 

changed the logistics processes and established 

complicated problems concerning the optimization 

of the delivery network. The fourth quarter analysis 

shows that there are continued growth trends in 

electronic commerce in various retail products, with 

the total e-commerce sales showing continued 

quarterly growth that is reflective of basic changes 

in consumer purchasing behavior patterns [1]. This 

growth includes the incorporation of the old retail 

segments into the online environment as well as 

digitally native expressions of business that, 

together, result in the large quantities of small-

parcel deliveries that demand highly advanced 

logistics strategies. 

The last part of delivery operations, which involves 

distributing facilities to the individual consumer 

locations, is a critical challenge with specific 

operational constraints and cost structures. In 

contrast to consolidated linehaul transportation, 

where the economies of scale play in favor of the 

carriers, the destinations in this delivery phase are 

dispersed, service needs are individualized, and the 

navigation of the urban environment is complicated 

[2]. The uncertainty in demand patterns, where 

there is a significant variation in order volumes and 

geographic distributions in temporal cycles, also 

adds to the operational challenges. All these 

variations are based on various influencing factors 

such as promotional activities, seasonal trends, 

weather patterns, and changing consumer 

preferences that cannot be determined using 

deterministic methods [3]. 

The modern logistics networks have to satisfy 

conflicting goals at the same time: to reduce the 

spending on operations and to retain the service 

quality that is popular among customers,s so asto 

promptly satisfy their demand. Conventional 

computational methods of optimization usually 
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break down the network design problem, with 

facility location choices and vehicle routing 

activities being treated as separate planning 

activities. This sequential decision model is less 

efficient in reflecting the interdependencies among 

strategic network structure and operational routing 

efficiency, especially where there are uncertain 

conditions of demand [3]. 

Mathematical modeling of logistics networks has 

developed to include stochastic aspects, giving the 

realization that the future state of demand cannot be 

established precisely upon making strategic 

investments. Two-stage stochastic programming 

models offer a structured solution to this 

uncertainty-based decision-making, a category of 

decisions that is made before resolving the 

uncertainty stage is accomplished, and decisions 

that are made after the information is revealed in 

the second stage [4]. Facility location and 

allocation of capacity in the logistics scenario are 

strategic choices made at the first stage, and vehicle 

routing and dispatching schedule are operational 

choices made at the second stage in response to the 

demand trends that have been realized [4]. 

 

2. Theoretical Framework and Model 

Architecture 

 

Integrated location-routing as a problem with 

uncertainly known future is mathematically based 

on stochastic programming theory, which offers 

conceptual rigorous frameworks for making 

decisions when the future is probabilistically 

known but not deterministically predictable. A two-

stage stochastic program with recourse is the best 

paradigm according to which decision-makers 

commit themselves by making initial decisions 

prior to the uncertainty being cleared, and 

subsequent reactions are made upon the availability 

of information [5]. This framework is especially 

good in logistics planning, whereby strategic 

infrastructure decisions are made before operation 

dispatch decisions, which react to the daily 

realizations of demand. 

The two stages are differentiated by the formal 

structure that identifies the variables of decision, 

the parameters, and the constraints. Decisions at the 

first stage are usually discrete decisions like facility 

activation decisions, capacity installation decisions, 

or resource allocation decisions, which require prior 

commitment. The first-stage variables used in the 

logistics application are binary variables (the 

presence of an opening distribution facility at 

candidate locations) and continuous variables 

(capacity levels at the activated locations). The 

related costs are fixed facility establishment costs, 

lease or purchase costs of real estate, as well as the 

baseline operational costs without regard to the 

throughput volume [5]. 

Decisions at the second stage are the acts of 

recourse performed after the decision to uncertainty 

has been made, and they are adjusted to the 

particular situation that arises. In the case of vehicle 

routing, binary assignment indicators (indicating 

which facility to serve a customer in a particular 

scenario), binary arc traversal variables (making 

vehicle paths), and continuous variables (following 

the service time or vehicle loading) are second-

stage variables. The goal is that the expected total 

cost is minimized, which is a combination of first-

stage costs, incurred with certainty, and second-

stage costs, scenario-probability weighted costs, 

which depend on the realized demand [5]. 

The constraint structure makes decisions feasible 

and logical at both stages of decision-making. 

Constraints interrelate variables in the first and 

second stages such that the second-stage variables 

must only use the first-stage-established resource or 

facility. In any case, conventional vehicle routing 

assumptions are in place, such as flow conservation 

at the nodes, vehicle capacity limitation, route time 

limitations, and subtour elimination [5]. 

The combination of facility location and vehicle 

routing in one optimization provides significant 

trade-offs between the structure of the network and 

operating efficiency. This trade-off analysis has 

been extended by the stochastic formulation, which 

acknowledges that optimal facility configurations 

are dependent on demand variability patterns [6]. 

 

3. Solution Methodology and Algorithmic 

Approach 

 

The intricacy of integrated location-routing 

problems has led to the development of specialized 

solution methods that are optimism optimistic in 

determining the solution at the cost of realistic 

levels of tractability. Even the simplest 

deterministic versions of the vehicle routing 

problem fall in the NP-hard category of complexity, 

that is, there are no known polynomially time 

algorithms to provide optimal solutions to large-

scale problems [6]. This, combined with the 

integration with the facility location problems and 

stochastic demand models, makes the perfect 

optimization impossible with realistic problem sizes 

in real-world commercial contexts. Therefore, 

decomposition schemes and heuristic techniques 

are critical in deriving some useful solution 

schemes. 

Decomposition methods take advantage of the 

problem structure to break the integrated model into 

smaller, manageable subproblems that can be 

addressed individually with coordination 
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mechanisms that guarantee the overall quality of 

the solution. In one classical model, the decisions 

of the facility location master problem are isolated, 

and then the routing subproblem decisions take 

place, elevating the facility configuration in 

response to a routing cost feedback [7]. The master 

problem chooses which facilities to open based 

upon fixed cost and estimated routing cost, whereas 

subproblems calculate actual routing costs at each 

candidate facility configuration. The methods of 

cutting planes produce constraints that gradually 

reduce the lower bound of optimal costs of the 

master problem, directing the search to better 

solutions by systematic reduction of bad facility 

configurations. 

The practical nature of vehicle routing as a dynamic 

problem when customer orders arrive in a 

sequence, not known in advance, presents further 

challenges to the solution of the problem of optimal 

routing, as opposed to the traditional problem of 

optimal routing, which is dynamic in character. The 

dynamic vehicle routing issues involve the need to 

have decision policies that determine how to 

allocate emerging orders to vehicles and when to 

commit vehicles to particular routes as information 

becomes available over time [8]. Rolling horizon 

methods give practical solutions to dynamic 

routing, an approach that addresses a sequence of 

pre-planning routing problems whose finite 

planning horizons are updated as time advances. At 

every decision epoch, the algorithm is used to 

maximize routes of known orders in the current 

time window, considering the forward-looking 

period, to execute the first part of the solution, 

before the algorithm re-optimizes based on the new 

information or the increase in the planning horizon. 

The heuristic construction and improvement 

processes allow the quick creation of high-quality 

routing solutions subject to the time constraints of 

operational decision-making demands. Local search 

improvement techniques improve starting solutions 

by exploring local neighborhoods in an iterative 

process, looking at small changes to existing 

solutions, and accepting those that are discovered 

[6]. 

 

4. Experimental Design and Validation 

Framework 

 

To empirically validate integrated location-routing 

models, it is necessary to have carefully constructed 

computational experiments that are sufficient to 

represent the key attributes of the problem and to 

allow the model to be analyzed analytically. The 

evaluation of model performance when it comes to 

analyzing it in various conditions of demand and 

operational conditions can be explored through the 

use of simulation-based evaluation [9]. 

Experimental design involves the specification of 

problem instances, such as geographical area, 

candidate sets of facilities, demand trends, and 

operational specifications, and specification of the 

baseline comparison strategies and performance 

measures to be used in quantitative assessment. 

Geographical representation usually generalizes the 

service area into discrete areas of demand based on 

natural geographical or administrative lines. Postal 

code areas offer convenient aggregations of space, 

which trade off spatial resolution to compute 

manageability since each delivery address can be 

aggregated into a representative zone centroid 

without necessarily modeling all the possible 

destinations [9]. The candidate facility set is a list 

of possible distribution center locations that are 

identified based on strategic factors that include 

distance to transportation facilities, availability of 

real estate, and coverage of a major concentration 

of demand. 

The characterization of demand is an important 

point of customer order design since the 

stochasticity of the customer orders is the main 

uncertainty in the optimization problem. The 

empirical basis of demand modeling is historical 

transaction data, which is collected based on the 

actual records of business operations over a long 

duration, and the volume of orders and geographic 

distribution are extracted [9]. The patterns of 

demand across zones can be identified statistically 

through historical analysis of how different zones 

display demand, and this is not just an average 

volume, but also variance, and correlation 

structures affecting the best network designs. 

Scenario generation methods convert these 

empirical distributions into discrete sets of 

scenarios, which can be optimized computationally 

through sampling algorithms that ensure that 

critical statistical properties are preserved, but the 

size of the set is kept small to ensure tractability. 

Baseline comparison strategies will likely give the 

points at which the integrated model will be 

compared to the performance improvement of 

lower or more traditional methods. The centralized 

static routing base indicates classic logistic 

operations in which all the deliveries are made in 

the same central warehouse, with routes being 

scheduled per day, with full prior information of the 

orders [10]. Performance assessment uses various 

indicators that represent various aspects of logistics 

network efficiency, such as transportation 

efficiency, economic performance, and service 

quality [10]. 

 

5. Performance Analysis and Comparative 

Results 
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The computational analysis of integrated location-

routing optimization indicates that there are 

significant performance benefits along several 

evaluation dimensions as compared to traditional 

planning methods. The facility structure that has 

been determined under two-stage stochastic 

programming usually has an average number of 

facilities whose locations are strategic to balance 

transportation efficiency with the cost of 

infrastructure [11]. The scale of problems to which 

optimal solutions are applicable, based on the 

parameters of demand density, cost structure, and 

the scale of a problem, is that metropolitan-scale 

problems are often solved by multiple facilities 

located in different regions instead of on one 

extreme, centralized, or on the other extreme, over-

proliferated small facilities. 

The distribution of geography of the chosen 

facilities expresses the demand concentration 

patterns as well as the uncertainty feature of the 

best solutions. Facilities are located strategically 

close to high-demand operating areas to reduce 

transportation distances to most of the delivery 

locations, which is in line with traditional facility 

location concepts [11]. Stochastic optimization, 

however, makes subtle positioning changes based 

on the strong solution as opposed to the 

deterministic solution, and occasionally a location 

with greater flexibility is preferred to serve multiple 

demand areas as opposed to locations that are as 

close as possible to individual large areas. This 

behavior of hedging is a consequence of the fact 

that the model takes variability in demand as a 

scenario into account and will value factory 

configurations that ensure acceptable performance 

under a wide range of possible demand realizations 

instead of only taking the most probable or average 

realizations. 

One of the main performance benefits of combined 

optimization schemes is transportation efficiency. 

The integration of facility location and routing 

allows finding network structures that reduce the 

overall distance of the vehicles traveled, yet 

maintain operation constraints [11]. Computational 

experiments invariably show large distance savings 

over baseline strategies, with composite strategies 

incurring quantifiably reduced total vehicle-miles 

traveled compared to single-facility operations that 

are carefully planned or multi-facility structures 

that are not planned to explicitly address routing. 

Measurements of service quality offer alternative 

performance lenses to the cost-minimization goals. 

Improvements in service time measures that are 

normally seen with integrated location-routing 

strategies are a combination of the beneficial effect 

of shorter transportation distances and an increase 

in operational flexibility. The use of integrated 

optimization methods is more likely to produce 

more uniform service time distributions of a smaller 

variability than the baseline strategies [12]. 

 

6. Applications and Strategic Implications 

 

The unified location-routing optimization model 

demonstrates a wide range of applications in a 

variety of logistic situations that are typified by 

unpredictability in demand and time sensitivity of 

the service. One of the logical areas of application 

where the flexibility of the methodology is of 

specific value is the use by third-party logistics 

providers of multi-client delivery networks [3]. 

Such organizations run delivery operations with a 

diverse group of clients that are retailers that have 

different product lines, patterns of order, and 

service needs. Due to the irregularity of the volume 

of shipments and destinations per day with each 

client, aggregate demand at the network level is 

uncertain even when the client-specific patterns can 

be partially predictable. This uncertainty can be 

factored in through strategic positioning of facilities 

undertaken in a way that takes into consideration 

the scenarios via optimization to achieve 

operational efficiency when the conditions of the 

client mix change. 

The economic value proposition of third-party 

logistics applications continues to be the direct cost 

minimization, but also competitive positioning and 

consideration of a client relationship. Efficiency in 

transportation translates to reduced per-shipment 

operating costs, which result in affordable pricing 

proposals when offering bids to client contracts [3]. 

Improvement of performance in service times is to 

be used in the differentiated service offerings at 

premium pricing possibilities time-sensitive 

delivery segments. The dynamic nature of 

optimized network designs will give the buffer 

capacity to ensure that the demand wave of clients 

does not result in the degradation of service 

provision, and the ability to retain clients over the 

long term due to reliability. 

The application opportunities of online grocery 

delivery operations are especially interesting 

because of the unique nature of the operational 

processes of the sector, with restrictions of 

perishability and unpredictability of the time of the 

order, and high expectations of delivery within a 

very short period. Consumer grocery orders are 

delivered continually, which has a shorter lead time 

during working days, since buying decisions are 

usually made shortly before the required 

consumption periods [4]. This time dynamics 

compares to the old type of retail e-commerce, in 

which orders are collected at night and completed 

in batches the next day, and requires the true 
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dynamic routing strategies that can use the orders at 

real-time or near-real-time intervals. 

B2C e-retailers that have an established distribution 

network can use integrated optimization techniques 

on the tactical decision level to increase the use of 

the current network [3]. Logistics optimization has 

both environmental sustainability implications that 

go beyond the personal gains of an organization to 

the wider effects on society. The emissions of the 

transportation industry make up major parts of the 

overall greenhouse gas inventories in developed 

economies, and urban freight processes are major 

causes of air quality problems in metropolitan areas 

[2]. 

Main body of manuscript should be written using 

times new roman and 11 punto. The reference 

should be given in bracket for journal [1], for book 

[2], for e-book [3], for conference presentation [4] 

and for web site [5]. For all references, list the first 

six authors; add "et al." if there are additional 

authors. Please cite reference as following if you 

need mention name : “Akkurt (2009) has performed 

an experiment fort his purposes [2]”. The formula 

should be given as in equation 1. 
 

Table 1: Decision Variables and Cost Components in Two-Stage Stochastic Framework [5] 

Stage Decision Type Variable Category Cost Structure 

First Stage 

Facility Activation Binary indicators Fixed establishment costs 

Capacity Installation Continuous variables Real estate lease/purchase 

Resource Allocation Discrete choices Baseline operational costs 

Second 

Stage 

Customer Assignment 
Binary assignment 

indicators 
Scenario-dependent routing 

Vehicle Routing 
Binary arc traversal 

variables 
Distance-based transportation 

Service Scheduling 
Continuous time/load 

variables 
Probability-weighted recourse 

 

Table 2: Computational Complexity and Solution Methodologies [6-8] 

Problem 

Component 

Complexity 

Class 
Solution Approach Key Technique 

Computational 

Benefit 

Vehicle Routing 

Problem 

NP-hard 

Decomposition 

methods 

Master-subproblem 

separation 

Tractable 

subproblems 

Facility Location Cutting plane methods 
Progressive constraint 

tightening 

Lower bound 

refinement 

Integrated Location-

Routing 

Rolling horizon 

heuristics 

Sequential static 

optimization 

Real-time 

adaptability 

Dynamic Order 

Assignment 

Greedy insertion 

algorithms 

Minimum incremental 

cost 
Fast initial solutions 

Route Optimization Local search procedures 
Neighborhood 

exploration 

Near-optimal 

quality 

 

Table 3: Experimental Design Components and Validation Parameters [9, 10] 

Design Element 
Representation 

Method 
Data Source Analysis Technique Purpose 

Geographic Scope Postal code zones 
Administrative 

boundaries 
Spatial aggregation 

Computational 

manageability 

Facility 

Candidates 

Distribution center 

locations 

Transportation 

infrastructure 
Strategic positioning 

Coverage 

optimization 

Demand Patterns 
Order volume 

distributions 

Historical 

transaction data 
Statistical analysis 

Uncertainty 

modeling 

Scenario 

Generation 

Discrete scenario 

sets 

Empirical 

distributions 
Monte Carlo sampling 

Stochastic 

representation 

Baseline Strategy 

1 

Centralized static 

routing 

Single warehouse 

origin 
Deterministic planning 

Traditional 

comparison 

Baseline Strategy Decentralized static Multiple facility Fixed allocation Multi-depot 
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2 routing locations benchmark 

 

Table 4: Performance Metrics Across Optimization Strategies [11, 12] 

Strategy Type 
Facility 

Configuration 

Transportation 

Efficiency 

Service Time 

Performance 

Spatial 

Flexibility 

Demand 

Adaptability 

Centralized 

Static 

Single 

warehouse 

Lowest 

efficiency 

Longest average 

time 

Limited 

coverage 
No adaptation 

Decentralized 

Static 

Multiple fixed 

facilities 

Moderate 

efficiency 
Moderate time 

Regional 

coverage 

Limited 

adaptation 

Integrated 

Stochastic 

Strategically 

distributed 

Highest 

efficiency 

Shortest average 

time 

Optimal 

coverage 
Full adaptation 

Deterministic 

Multi-facility 

Average-

demand 

placement 

Reduced 

efficiency 

Above-average 

time 
Fixed coverage 

Minimal 

adaptation 

 

7. Conclusions 

 
The combination of facility location and dynamic 

vehicle routing in single stochastic optimization 

models works toward the basic constraints of the 

conventional logistics planning paradigms. The 

integrated framework is able to make more robust 

network designs that sustain performance with a 

wide range of demand realizations by explicitly 

modelling demand uncertainty with scenario-based 

representation and recourse decisions that provide 

operational routing flexibility. The two-stage vessel 

fits well with strategic infrastructure commitments 

and the tactical operational responses, as it 

acknowledges their difference in terms of time 

scales and contains the necessary 

interdependencies. The application of rolling 

horizons offers viable tools for adapting to new 

information continuously in the course of 

operational implementation, striking a balance 

between the responsiveness requirements and the 

computational tractability requirements. 

Computational validation establishes significant 

gains in various aspects of performance, such as 

transportation, minimization of cost, and service 

time improvement, as compared to traditional 

baseline strategies. The framework demonstrates a 

generalized applicability to the third-party logistics 

processes, online grocery delivery service, and the 

conventional retail distribution network that is 

experiencing the demand volatility issue. Direct 

economic benefits are accompanied by 

environmental co-benefits in the form of fewer 

vehicle-miles traveled in support of sustainability 

goals, in addition to operational efficiency goals. 

The practical value and quality of the solution can 

be expanded by adding inventory positioning 

decision-making, a multi-modal transportation 

facility, and machine learning demand forecasting 

in the future. 
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