

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 12-No.1 (2026) pp. 229-239
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

AI-Driven Strategic Modernization of Legacy ETL Workflows on Serverless

Cloud Platforms

 Thananjayan Kasi*

HCL America Inc., USA
* Corresponding Author Email: thananjayankasi@gmail.com - ORCID: 0000-0002-4407-7550

Article Info:

DOI: 10.22399/ijcesen.4754

Received : 03 November 2025

Revised : 28 December 2025

Accepted : 08 January 2026

Keywords

Serverless Computing,

ETL Modernization,

Event-Driven Architecture,

Distributed Processing,

Cloud-Native Transformation

Abstract:

Legacy ETL systems create considerable operational overhead with manual capacity

management, rigid scheduling models, and inadequate cloud integration support. The

proposed framework in this article presents a systematic solution for migrating legacy

ETL processes to serverless cloud environments, overcoming essential shortfalls

through AI-aided workflow classification, natural language processing-assisted code

translation, and event-oriented orchestration. Unlike previous lift-and-shift or

containerized models with operational inflexibilities, this framework embraces fully

managed serverless services integrated with machine learning functions. The result is

considerable cost savings, performance enhancements via distributed processing

engines, and improved data freshness. The framework involves automated inventory

documentation via metadata-driven models, AI-aided complexity stratification across

heterogeneous data, Apache Spark-based code refactoring using Business Process

Model and Notation templates, and reliable, fault-tolerant, trigger-activated

orchestrations. The model ensures improved reliability, scalability, and standards

compliance while eliminating infrastructure-related operational issues. Challenges in

metadata completeness gaps, translation processes with semantic drift, artificial

intelligence-related bias, and operational constraints are addressed comprehensively

through complete provenance tracking and parallel validations. The proposed

framework outperforms current serverless cloud-migration solutions through intelligent

automation and pattern-driven optimization. In an anonymized enterprise case study,

the framework reduced end-to-end batch processing time and infrastructure cost while

improving workflow success rates and migration throughput compared to the legacy

environment. A formal evaluation section details workflow classification quality,

translation accuracy, and operational improvements observed during the migration

program.

Index Terms: Serverless Computing, ETL Modernization, Event-Driven Architecture,

Distributed Processing, Cloud-Native Transformation

1. Introduction

1.1 Legacy ETL Challenges and Technical Debt

Conventional ETL(Extract, Transform, Load)

operations, implemented using traditional server

infrastructure and batch processing approaches,

face many obstacles in modern data environments.

Legacy ETL tools impose considerable operational

overhead, where data engineering teams dedicate

disproportionately large resources to system

maintenance rather than development efforts. These

conventional tools require manual capacity

management, operate according to fixed schedules

irrespective of data availability dynamics, and lack

strong integration mechanisms with cloud storage

and analytics services [1]. The technical debt

generated by monolithic design in traditional ETL

systems increases exponentially as data volumes

evolve from terabytes to petabytes, along with

fragile codebases, limited documentation, and

organizational knowledge dependencies.

Enterprise data warehousing infrastructures manage

hundreds to thousands of individual ETL processes

with intricate interlocks, making these processing

chains brittle. Single-point failures cascade across

multiple downstream processes. The lack of

flexibility in traditional architecture becomes

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

230

evident through proprietary constraints on

deployment cycles and inabilities to support real-

time processing needs [1]. The batch processing

window, which originally allowed overnight

completion, has become challenging to finish

within service-level agreements, with significant

amounts of key processing tasks exceeding

allocated timeframes. Capacity allocation processes

for mitigating peak workload processing have

created inefficiency in capacity utilization during

non-peak periods.

1.2 Serverless Cloud Paradigm and Cost

Efficiency

Serverless cloud infrastructure completely

restructures ETL system design through dynamic

resource provision, pay-for-use pricing, and

intrinsic support for distributed storage systems.

Serverless computing disrupts traditional cloud

migration patterns, which originally aimed to

mirror existing infrastructure in virtual machines.

Original cloud migration patterns were

predominantly based on lift-and-shift models and

containerization, which left core operational

complexities undiminished and required dedicated

platform engineering teams. Real-world

observations demonstrate that serverless computing

models offer significant cost savings compared to

continuously provisioned infrastructure, with

optimal results attainable for workloads with

variant execution and periodic processing schedules

[2]. Cost savings result from eliminating resource

idle times, automatic scalability, and millisecond-

level granularity of cost measures.This approach

progresses beyond prior methods by focusing on

fully managed services, event-oriented execution

models, and reduced complexity orchestration

designs. Contemporary serverless offerings include

dynamic scaling that adapts to changing workloads

at millisecond speeds, processing power that

divides large datasets across temporary compute

environments, and monitoring capabilities that

facilitate execution pattern insights. The paradigm

shift from monolithic, schedule-bound execution

environments to modular, event-oriented execution

designs enables enterprise-level access to sub-hour

data freshness that was not possible with prior

frameworks [2].

1.3 Opportunities in ETL Modernization using

AI

Artificial intelligence methodologies bring

transformative capabilities across the migration

lifecycle, resolving long-standing challenges in

understanding legacy code and improving

workflows. Large language models show

considerable promise in automatically modernizing

legacy code, including intensive documentation

generation, inherent business logic retrieval, and

translation of proprietary scripting languages to

cloud-native systems [3]. Natural language

processing methods facilitate semantic-level code

repository analyses to automatically retrieve

transformation patterns and business rules

manifested in procedures without formal

definitions.Machine learning algorithms improve

workflow classification accuracy by analyzing

historical execution patterns, resource utilization

profiles, and data volume attributes to recognize

optimal serverless configurations [4]. Supervised

machine learning algorithms trained on enterprise

ETL portfolios enable intelligent classification of

workflows into complexity levels. These models

provide migration effort estimates more accurately

than manual assessment methodologies.The

framework uses artificial intelligence across various

transformation stages: (1) natural language

processing for automatic code analysis and

documentation generation, (2) machine learning for

intelligent workflow classification and resource

allocation, and (3) deep learning for recognizing

patterns in transformation logic [5]. However,

artificial intelligence integration introduces specific

risks: bias in automatic code translation accuracy,

semantic drift in automated workflow

classification, and explainability challenges in

machine learning recommendations.Rather than

proposing new learning algorithms, the contribution

of this article lies in an applied AI-enabled

migration framework. The framework

systematically combines supervised workflow

classification, transformer-based code

understanding and translation, and pattern-driven

orchestration. The novelty resides in how these AI

capabilities integrate into a repeatable migration

lifecycle, with explicit attention to validation,

provenance, and operational risk management in

large-scale ETL estates.Figure 1 below highlights

the structural pillars of the framework that include

workflow analysis and categorization, logic

transformation and modernization, orchestration

and execution control, and resilience and

compliance. These provide systematic migration

capabilities from legacy infrastructure to cloud

infrastructure.

2. Assessment and Classification of Workflow

2.1 Systematic Inventory Analysis

The entire process begins with workflow

documentation, creating a comprehensive inventory

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

231

of existing ETL processes using automated

discovery tools and manual audits. The inventory

process captures crucial data, including processing

frequency, runtime duration, resource usage

patterns, and data throughput for existing processes.

Current data warehousing designs struggle with

adequate documentation challenges, where a large

portion of legacy processes lacks specification

documentation and designs are defined in code

alone without corresponding design documents [6].

Data lineage mapping identifies data flow processes

from source systems through various processing

stages to storage destinations. Automated tools

enable the parsing of SQL queries, procedures, and

configuration files utilized in flow processes.

However, comprehensive accuracy remains

difficult due to runtime generation processes [6].

Manual validation proves essential for

understanding implicit dependencies in processes.

The assessment evaluates complexity levels within

processes using cyclomatic complexity, code

measures, data source counts, and join operation

numbers. Automated ETL architecture designs

increasingly incorporate metadata-driven processes

that produce dynamic workflow designs based on

specification procedures [6].

Figure 2 below represents the layered migration

structure, illustrating systematic flow from legacy

systems through assessment, conversion,

orchestration, and finally deployment to serverless

platforms. Each level utilizes distinct tools and

approaches. Automated inventory and dependency

mapping are applied during the assessment phase.

Conversion employs Apache Spark and templates.

Orchestration uses event-based scheduling

techniques with fault tolerance facilities. Execution

relies on serverless functions with dynamic

resource provision. Monitoring and metadata

governance components span all levels.

2.2 Complexity Stratification

Workflow processes are classified systematically

according to complexity levels based on

computational requirements and transformation

sophistication. Data integration environments

involve diverse data sources ranging from

structured databases to semi-structured and

unstructured data, all presenting different

processing difficulties [7]. Simple workflows

involve basic mappings, data-type conversions, and

filter processes that consume minimal

computational power, completing in seconds to

minutes. These qualify for visual development

environments.

Moderate complexity transformations involve

aggregation logic, lookup operations against

reference datasets, and multi-step cleaning

procedures. The volume of data handled by these

procedures varies between gigabytes and terabytes,

with execution times spanning minutes to hours.

Distributed computing paradigms efficiently handle

moderate data workloads via horizontal scaling and

distributed processing across different computation

nodes. Highly analytical workflows involve

complex statistical computation, machine learning

algorithm applications, and joining operations

across datasets numbering in the millions [6].

Heterogeneous data source integration adds

complexity due to structural and semantic

differences, as well as data quality variability

across disparate source systems [7].

The classification taxonomy examines other

dimensions beyond computational cost, including

data sensitivities and business criticality measures.

High-priority workflows associated with revenue

recognition, regulatory compliance reporting, or

real-time operational dashboards receive priority

treatment during migration sequencing. The

stratification process generates opportunities to

eliminate or consolidate workflows involving

redundant logic, obsolete reporting needs, or

deprecated processes. This creates opportunities for

migration scope reduction with improved

maintainability of the migrated platform [7].

2.3 AI-Enhanced Classification Mechanisms

Machine learning models extend traditional

classification method capabilities by analyzing

historical execution metadata, resource utilization

trends, and transformation complexity indicators to

predict optimal serverless configurations [4].

Supervised learning models trained on business

workflow portfolios provide accuracy levels above

manual assessment methods while operating in

shorter timeframes. Feature engineering extracts

useful variables related to metrics like cyclomatic

complexity, volume throughput rate, execution time

trends, and dependency graphs.

In a reference implementation, workflows are

labeled into three main complexity classes (simple,

moderate, advanced) and three business criticality

levels (low, medium, high) - based on expert

review of production jobs from a financial services

ETL portfolio. Feature vectors include structural

metrics (cyclomatic complexity, number of joins,

presence of window functions), runtime metrics

(median and p95 execution time, throughput), and

operational metrics (historical failure rate,

dependency depth). A gradient-boosted tree model

trained on this dataset of approximately 500 labeled

workflows (indicative value) achieved macro-

averaged F1 scores above 0.9 when distinguishing

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

232

simple versus advanced workflows, substantially

outperforming rule-based baselines.

The classification paradigm leverages artificial

intelligence by using an ensemble of decision trees,

random forests, and gradient boosting to classify

workflows based on various criteria

simultaneously: computational complexity, data

sensitivity, regulatory constraints, and criticality

ratings [4]. The trained models are tested using

cross-validation to ensure generalization and avoid

overfitting to legacy architecture-specific

characteristics.

3. Conversion Methodology and Technical

Translation

3.1 Logic Modernization

Legacy procedural code is systematically refactored

into cloud-native versions using contemporary

coding paradigms and distributed processing

infrastructure. It is converted from proprietary

coding dialects (like scripting languages specific to

legacy ETL systems) into open-source dialects,

including Python, Scala, and SQL dialects

supporting serverless compute engines. Distributed

processing engines, including the Apache Spark

framework, enable holistic development platforms

combining batch processing, analytical querying,

real-time processing, and machine learning tasks

[8]. This migration strategy for modernizing legacy

code balances code maintainability improvements

against migration process efficiency, dependent

upon legacy code structure and quality.

Visual development platforms handle simple

conversions via graphic interfaces that allow users

to create executable code through drag-and-drop

actions, defining workflows. Low-code platforms

have reduced turnaround time for simple data

transfer tasks and basic data cleaning tasks. For

complex analytical tasks, custom code development

using distributed processing engines divides data

across temporary computational clusters. The

Apache Spark platform architecture enables

petabyte data handling via in-memory computation,

fault-tolerant storage, and the latest optimization

techniques, including Catalyst query optimization

and Tungsten execution engine optimizations [8].

The framework has shown the possibility of

achieving up to an order-of-magnitude performance

improvement over conventional MapReduce

implementations of iterative computations in

representative benchmarks [8], which makes it

useful for machine learning pipelines and graph

computation tasks.

The translation methodology embodies incremental

testing techniques with parallel execution of legacy

and modernized workflows to ensure output

equality. Row-level reconciliation identifies value

differences beyond set tolerance limits, typically

minimal variability for calculations and zero

tolerance for non-numeric data. Performance

benchmarking compares performance metrics

between legacy systems and serverless technology

regarding processing time, with optimized

workflows significantly reducing processing time.

3.2 Pattern Recognition and Reuse

Common patterns emerge during conversion

analysis, revealing repeated implementations across

workflows. The Business Process Model and

Notation modeling framework plays an important

part in ETL process design through standardized

visual representation that maps business

requirements to implementations [9]. Data

cleansing processes, such as null processing, data

format normalization, and outlier identification,

form pattern categories that repeatedly appear in

workflow portfolios. Aggregation functions,

lookups, and slowly changing dimension

processing form other high-frequency pattern

categories.

Template libraries integrate reusable transformation

components and parameterized configurations

tuned to fit specific scenarios. Relational algebra

provides a mathematical framework for describing

ETL procedures, allowing accurate modeling and

representation of data manipulation concepts such

as selection, projection, join, union, and aggregate

operations [9]. Normalized code execution ensures

consistency in transformation logic, integrating best

practices for error handling, logging, and

optimization.

Pattern catalogs record details regarding schemas,

transformation routines, and performance attributes

of every reusable software component. Metadata-

driven generation frameworks automatically

generate workflow instances based on configuration

files, speeding up deployment time. This

abstraction level enables efficient adaptation to

schema, regulatory, or business rule variations

without code rearrangement [9].

3.3 NLP-Powered Code Translation

Natural language processing application improves

legacy code understanding and translation integrity

using semantic analysis for undocumented

procedural codes. Large language models trained

on various programming languages create complete

documentation for legacy ETL processes by

identifying subtle business and transformation

requirements encoded in source code [3].

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

233

Documentation automation reduces execution time

for processes retained in organizational memory.

The translation engine is implemented as a

transformer-based large language model specialized

on ETL and SQL code, prompted with paired

examples of proprietary scripts and their Spark or

SQL equivalents. In the case study across various

workflows, approximately 65–75% (indicative

value) of legacy steps in low- and medium-

complexity workflows were auto-translated and

accepted after a single human review pass, with

remaining steps either edited or implemented

manually. This reduced manual code-writing effort

for target Spark jobs by an estimated 30–40%

relative to re-implementation (from-scratch)

approaches.

Code translation engines utilize natural language

processing to establish semantic equivalency

between proprietary scripting languages and cloud-

native code versions, aligning business logic while

synchronizing code for serverless environments [3].

Code transformation engines based on transformers

consider the structure and naming conventions of

variables and control flow to infer transformation

logic and suggest optimal implementation

approaches through cloud-native distributed

processing engines. Code transformation accuracy

is influenced by code complexity and semantic

ambiguity associated with business rule definitions.

4. Architecture and Control of Execution

4.1 Event-Driven Scheduling

Serverless orchestration introduces new

methodologies, replacing traditional time-based

scheduling with event-driven executions based on

dynamic responses to system state changes. Event-

driven systems reduce wait times associated with

data readiness before initiating processes,

performing significantly better than traditional

fixed-interval time-based systems. Enterprise

integration patterns are essential for designing

decoupled communication systems based on

message passing to facilitate asynchronous

processing tasks in dynamic orchestration systems

[10]. Triggering events can be based on file

receipts, database changes, message queues, or

completed upstream tasks. Event-driven systems

pursue optimal resource use efficiency by

eliminating speculative polling along with idle

processing cycles.

The orchestration framework assesses trigger

conditions according to defined rules, triggering

workflow execution only when prerequisite

conditions are fulfilled. Complex event processing

engines allow several events to be correlated,

enabling scenarios needing data from diverse

sources. Conditional branching logic enables

dynamic workflows to choose data routes based on

characteristics, time windows, or business rule

outcomes. Pattern integration architectures identify

service-oriented patterns emphasizing interface

standardization, and message-oriented patterns

entailing asynchronous communication and

temporal decoupling [10].

4.2 Resilience Engineering

Orchestration frameworks include efficient fault

tolerance mechanisms integrating retry logic,

backoff strategies, and circuit breaker designs to

address transient failures effectively. Retry

strategies enable users to define retry limits and

backoff delay times that grow exponentially from

initial values to maximum backoff times, avoiding

system overload during degraded operations.

Distributed database systems require strong fault

tolerance mechanisms to manage consistency and

availability requirements over geographically

diverse sites that may experience network partitions

or hardware failures [11].

Alerting mechanisms offer real-time alerts across

various channels once failure numbers breach retry

limits and performance metrics vary from baselines.

Service level agreements monitor execution time,

success rates, and data freshness indicators against

specified objectives, providing automated reports

highlighting compliance percentages. Distributed

designs leverage replication techniques, consensus

algorithms, and automatic failover solutions to

remain operational regardless of individual

component failures [11]. Event-driven serverless

architecture in ETL application execution shows

superior fault-tolerance abilities with dynamic

scalability to handle changing workload demands

[12].

4.3 Dependency Management

In complex workflows, subtle dependency

management is achieved using directed acyclic

graphs. Dependency analysis in directed acyclic

graphs is used in scheduling engines to search for

parallelisms in different workflow branches,

executing them simultaneously. In parallel

execution plans, the total time required to process

complex workflows comprising multiple

independently executed transitions is drastically

reduced. Dynamic branching enables variable

conditional processing dependencies ranging from

intermediate processing stage result characteristics

to business rule evaluation results. Checkpointing

mechanisms enable transformation processing by

saving intermediate data at predefined periodic

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

234

intervals, allowing restarts from anywhere in the

pipeline [11].

5. Limitations

5.1 Metadata Completeness Challenges

Legacy systems often lack complete metadata and

technical documentation, including clear data

lineage descriptions [13], which complicates

migration. Business logic is frequently embedded

only in procedural code and institutional memory,

creating interpretation challenges during

translation.

Automated metadata extraction system success

rates vary based on code complexity and

documentation standards. Static analysis identifies

direct dependencies, but faces challenges analyzing

runtime-adjusted SQL queries, dynamic file paths,

and decision-driven execution paths. Manual

analysis time represents a significant portion of the

entire migration process for less documented

projects, extending timelines beyond initial

estimates. Missing metadata about data quality

business rule implementations, error handling

processes, and change-over-time justification

makes migration tougher, requiring stakeholder

interviews and archaeological analysis of deployed

environments to rebuild working knowledge.

Business intelligence migration projects for cloud-

native platforms encounter severe obstacles

adapting legacy reporting models, business logic

computations, and analytics embedding to new

architecture paradigms [13].

5.2 Explanation of Fidelity

Translating legacy logic into serverless

programming can introduce potential semantic drift

where refactored code produces different semantic

functionality despite working syntactically.

Complex business rules may not transition cleanly

into declarative or distributed computing paradigms

for operations depending upon iterative

mathematics, stateful transformations, or order-

dependent operations. Validation testing is needed

to detect equivalent functionality across various

data examples and legacy events for the specific

code being refactored.

Data provenance tracing becomes highly relevant

during migration validation to maintain

transformation integrity and traceability during the

transition process. Data provenance systems trace

total lineage details about how various data artifacts

derive from inputs at various processing stages,

from inputs through transformed outputs [14].

Organizations report validation processes involve

considerable migration project resources regarding

disparity identification during various test scenarios

through reconciliation processes. Numerical

differences occur due to computation precision

differences between legacy and modern

computation engines in multi-step transforms.

Legacy systems with deprecated functions or

proprietary algorithms and calculation methods are

especially challenging for transformation, requiring

new transformation implementation methods [14].

5.3 Operational and AI-Related Risks

Cold starts on serverless functions affect time-

sensitive workflows requiring sub-second latencies.

Wait times on initial function calls for interpreted

language environments cause unacceptable

processing latencies. Recent developments in

optimal serverless environment usage include

utilizing pre-warming, connection pooling, and

caching algorithms responsible for reducing cold

start latencies [16]. Simultaneous processing

capabilities on serverless environments are limited,

restricting processing capabilities within specified

time limits on function executions per region.

Memory processing capability limitations restrict

large data processing in single-function executions,

prompting data partition usage within multi-stage

processing frameworks [13].

Artificial intelligence integration risks pose

challenges needing active addressing. Biased

syntax can appear in code translation models

trained on limited programming language corpora,

leading to confusion when understanding domain-

related business logic or internal scripting

expressions [15]. Semantic drifting in machine

learning workflow classification can arise when

model training corpora fail to capture typical

organization-related ETL process patterns.

Explainability challenges in artificial intelligence

migration decisions pose validation process

difficulties, as administrators struggle

understanding reasoning behind these decisions

[15].Mitigation techniques include validation

frameworks with human verification loops in

critical workflow migrations, varied training

datasets covering multiple organizational

environments, and transparent artificial intelligence

techniques explaining decisions. Model retraining

with evolving workflow migration outcomes

prevents classification drift. Various ensemble

techniques using different artificial intelligence

methods make models resistant to individual

artificial intelligence weaknesses [15].

6. Comparison and Validation of Frameworks

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

235

6.1 Comparative Analysis with Existing

Frameworks

This framework's uniqueness over existing

serverless ETL migration models derives from

numerous architectural and methodological

breakthroughs. Conventional cloud-native data

engineering platforms consider only infrastructure

migration without incorporating intelligent

automation or artificial intelligence optimization

concepts [17]. Past serverless migration models

dealt only with code modernization through

containerization patterns without considering

legacy-related code-level issues for ETL platform

migration [5].

The proposed framework advances beyond earlier

approaches through artificial intelligence tool

integration at different transformation process

levels, ranging from natural language processing to

automate code documentation and translation,

machine learning to enable smart workflow

classification, and pattern recognition to develop

reusable templates [3,4]. Comparative assessments

prove migration process efficiency through reduced

manual analysis, accurate classification through

machine learning evaluation, and quality

improvement through Business Process Model and

Notation standardization [9].

Existing methods typically cover workflow

orchestration or code translation, but not complete

task sets including comprehensive assessment,

intelligent transfer, event-driven orchestration, and

validation as a single process [17]. Metadata-driven

generation tool and automated dependency

mapping mechanism utilization differentiate the

proposed approach from existing manual migration

practices, mostly dependent on institutional

experiences and expert opinions.

6.2 Case Study: Enterprise Financial Services

ETL Migration

In an anonymized financial services firm, legacy

ETL infrastructure for regulatory reporting and risk

analysis was migrated to serverless cloud

architecture using the proposed framework. The

legacy infrastructure handled daily transaction

reconciliations, monthly regulatory reports, and

quarterly risk analysis determinations through batch

processing systems in distributed data centers. The

pre-migration environment used fixed-capacity

servers handling multiple ETL jobs ranging from

straightforward data transfer to complex analysis

tasks. The infrastructure showed large

underutilization patterns during the idle periods,

requiring manual handling. Failed workflow

handling required manual efforts. Processing times

for crucial task batches exceeded allocated time

slots.

There was a substantial reduction in infrastructure

cost due to the consumption-based pricing model,

which eliminated idle capacity. The total processing

time decreased significantly due to parallel

processing and elastic scaling that matched

resources to workload demand. The workflow

success rate improved markedly due to automated

retry logic and standardized failure‑handling

patterns that reduced the need for human

intervention. Elastic resource allocation handled

volume peaks during quarter-end processing

operations without infrastructure changes. The

serverless concept allowed sub-hour processing for

time-sensitive regulatory operation requirements,

which was challenging under batch processing

operation model limitations. These results bear

testimony to the benefits observed in this case study

implementation.

The migration strategy used artificial intelligence-

enforced classifications for workflow evaluation,

modernized code translations utilizing Apache

Spark, and event-based orchestration with robust

fault tolerance mechanisms [12]. Natural language

processing accelerated documentation creation for

undocumented legacy workflows previously

requiring extensive reverse engineering processes

[3]. Serverless architecture enabled elastic scaling

during peak processing periods and optimized

resource expenditure during off-peak periods

through granular billing mechanisms [2]. Overall

inventory analysis and automated dependency

mappings established end-to-end workflow

documentation. Parallel validation testing ensured

functional equality between legacy and modernized

workflow versions. The incremental migration plan

strategy emphasized high-value workflows

associated with critical business functions and

ensured coordination among data engineering

groups and platform operations [1].

6.3 Quantitative Evaluation

In the anonymized financial services environment,

the proposed framework was evaluated over a

portfolio of several hundred production ETL

workflows spanning regulatory reporting,

reconciliations, and risk analytics. The evaluation

focused on three dimensions: AI model quality,

migration productivity, and operational outcomes

after go-live.

For workflow classification, the supervised

machine learning ensemble correctly predicted

expert-assigned complexity and priority labels in

the majority of cases, with accuracy and macro-F1

consistently above 0.9 for primary classes.

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

236

Misclassifications were primarily observed at

boundaries between moderate and advanced

analytical workloads and were caught by human

review gates.

For code translation, the natural language

processing-based engine produced compilable

target code for most simple and moderate

transformations, reducing manual implementation

effort by roughly one-third when measured in

engineering hours per migrated job. Complex

analytical jobs still required significant human

design but benefited from AI-generated

documentation and partial code skeletons.

From an operational perspective, the migrated

serverless architecture reduced median daily batch

window duration by a substantial margin, as

indicated in the case study observations, and

lowered infrastructure expenditure due to pay-per-

use pricing and elastic scaling. Workflow failure

rates also decreased, driven by standardized

patterns, automated retry logic, and enhanced

observability. These results, although organization-

specific and indicative of this particular

implementation, offer evidence of the benefits of

combining AI-driven analysis with serverless

execution.

Figure 1: 4-Pillar Serverless Cloud ETL Framework [1-4]

Figure 2: Serverless ETL Migration Framework Architecture [6-11]

Table 1: ETL Workflow Classification Framework and Complexity Dimensions [6,7]

Workflow Attribute Description

Simple transformations Basic field mappings, type conversions

Moderate complexity Aggregation, lookup operations

Advanced analytical Statistical calculations, ML applications

Data sources Structured, semi-structured, unstructured

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

237

Execution time range Seconds to hours

Data volume processing Gigabytes to terabytes

Schema challenges Heterogeneity, semantic inconsistencies

Metadata-driven generation Dynamic workflow configuration

Consolidation opportunities Redundant and deprecated processes

Priority criteria Business criticality, compliance

Table 2: Technical translation components and distributed processing capabilities [3,8,9]

Technology Component Capability

Apache Spark framework Unified batch, streaming, ML processing

Performance improvement
Up to an order of magnitude in representative

workloads

Dataset scale support Petabyte-scale processing

Computation model In-memory distributed processing

Catalyst optimization Advanced query planning

Tungsten engine Execution enhancements

BPMN modeling Visual ETL process representation

Relational algebra Formal transformation specification

Low-code platforms Drag-and-drop workflow generation

NLP translation Automated code modernization

Testing strategy Parallel legacy-modern execution

Table 3: Event-driven orchestration architecture and fault tolerance framework [10-12]

Orchestration Element Implementation

Trigger mechanisms File arrival, CDC events, message queues

Event processing Multiple stream correlation

Integration patterns Service-oriented, message-oriented

Retry policy configuration Exponential backoff strategies

Fault tolerance Circuit breaker patterns

SLA monitoring Duration, success rates, data freshness

Replication strategies Distributed node consistency

Consensus protocols Automated failover mechanisms

Dependency representation Directed acyclic graphs

Checkpointing intervals Configurable state persistence

Table 4: Critical limitations, validation challenges, and mitigation strategies [13-16]

Challenge Category Impact Mitigation Strategy

Documentation deficiencies Incomplete technical specifications Automated NLP extraction

Business rule embedding Procedural code without documentation LLM documentation generation

Reverse engineering effort Extensive manual code inspection AI-assisted pattern recognition

Static code analysis Dynamic SQL generation struggles Runtime profiling tools

Semantic drift risk Functional divergence in translation Parallel validation testing

Provenance tracking Complete lineage documentation Automated tracking systems

Validation resource

consumption
Substantial project effort AI-powered test generation

Numerical precision

differences
Rounding variation accumulation Precision threshold monitoring

Cold start latencies Sub-second response impact Pre-warming optimization

Memory allocation limits Dataset partitioning requirements Intelligent data sharding

AI translation bias Misinterpretation of domain logic Diverse training datasets

Classification drift
Suboptimal configuration

recommendations
Regular model retraining

4. Conclusions

Legacy ETL process migration to serverless cloud

platforms enables organizations to overcome

traditional batch infrastructure limitations by

combining event-driven execution, elastic scaling,

and consumption-based pricing with distributed

processing engines. The proposed framework

contributes a structured, AI-enabled lifecycle

covering inventory assessment, workflow

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

238

stratification, NLP-assisted documentation and

translation, pattern-driven implementation, and

event-based orchestration with built-in resilience.

The case study and quantitative observations

illustrate that this approach can reduce batch

windows, lower infrastructure costs, and increase

workflow success rates while decreasing manual

effort for classification and code migration. The

framework explicitly addresses metadata gaps,

semantic drift, and AI-related bias through

provenance tracking, human-in-the-loop validation,

and model governance practices. Future directions

include incorporating artificial intelligence-driven

code translation tools for improved automation

accuracy, developing schema evolution frameworks

supporting zero-downtime migrations, and

extending support for real-time streaming

architectures with self-learning algorithms that

continuously optimize performance based on

operational patterns [18]. The framework provides

replicable methodologies for financial services,

healthcare, telecommunications, and data-intensive

industries seeking scalable, cost-efficient,

compliant data platform architectures supporting

agile development and real-time analytics

capabilities.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

 Disclaimer: This work represents the author's

views and does not reflect the policies or

positions of HCL America Inc.

References

[1] O. Ogunwole et al., "Modernizing Legacy Systems:

A Scalable Approach to Next-Generation Data

Architectures and Seamless Integration",

International Journal of Multidisciplinary

Research and Growth Evaluation, 2023. [Online].

DOI:

https://doi.org/10.54660/.IJMRGE.2023.4.1.901-

909

[2] N. Syeda et al., "Analysis of cost-efficiency of

serverless approaches", arXiv, Jun. 2025. [Online].

DOI: https://doi.org/10.48550/arXiv.2506.05836

[3] D. Chanda, "Automated ETL Pipelines for Modern

Data Warehousing: Architectures, Challenges, and

Emerging Solutions", The Eastasouth Journal of

Information Systems and Computer Science, 2024.

[Online]. DOI: doi.org/10.58812/esiscs.v1i03.523

[4] I.M. Putrama and P. Martinek, "Heterogeneous data

integration: Challenges and opportunities",

ScienceDirect, 2024. [Online]. DOI:

https://doi.org/10.1016/j.dib.2024.110853

[5] M. Zaharia et al., "Apache Spark: A unified engine

for big data processing", ACM Digital Library,

2016. [Online]. DOI:

https://doi.org/10.1145/2934664

[6] J. Awiti et al., "Design and implementation of ETL

processes using BPMN and relational algebra",

ScienceDirect, 2020. [Online]. DOI:

https://doi.org/10.1016/j.datak.2020.101837

[7] S. Aier and R. Winter, "Fundamental Patterns for

Enterprise Integration Services", IGI Global

Scientific Publishing, 2010. [Online]. DOI:

https://doi.org/10.4018/jssmet.2010010103

[8] S.R. Chigurupati, "Distributed Database Systems for

Scalable Enterprise Applications: A New

Paradigm", IJSAT, Mar. 2025. [Online]. DOI:

https://doi.org/10.71097/IJSAT.v16.i1.2795

[9] T.T. Bukhari et al., "Cloud-Native Business

Intelligence Transformation: Migrating Legacy

Systems to Modern Analytics Stacks for Scalable

Decision-Making", IJSRHSS, 2024. [Online]. DOI:

https://doi.org/10.32628/IJSRSSH242763

[10] M.M. Alam and W. Wang, "A Comprehensive

Survey on the State-of-the-art Data Provenance

Approaches for Security Enforcement", arXiv,

2021. [Online]. DOI:

https://doi.org/10.48550/arXiv.2107.01678

[11] C. Diggs et al., "Leveraging LLMs for Legacy Code

Modernization: Challenges and Opportunities for

LLM-Generated documentation", arXiv, 2024.

[Online]. DOI:

https://doi.org/10.48550/arXiv.2411.14971

[12] A. Awasthi and A. Vaidya, "ETL Pipeline

Integration for Machine Learning-Based Product

Classification: a Comprehensive Guide", IJARET,

Mar.-Apr. 2025. [Online]. DOI:

https://doi.org/10.34218/IJARET_16_02_006

[13] R. Krasniqi et al., "SE Perspective on LLMs: Biases

in Code Generation, Code Interpretability, and

Code Security Risks", ACM Digital Library, 4th

Dec. 2025. [Online]. DOI:

https://doi.org/10.1145/3774324

[14] S. Metla, "Powering America's Digital Future: Big

Data Migration and ETL Modernization for

Scalable Intelligence", Sarcouncil Journal of

Engineering and Computer Sciences - Zenodo, Jul.

https://doi.org/10.54660/.IJMRGE.2023.4.1.901-909
https://doi.org/10.54660/.IJMRGE.2023.4.1.901-909
https://doi.org/10.48550/arXiv.2506.05836
http://doi.org/10.58812/esiscs.v1i03.523
https://doi.org/10.1016/j.dib.2024.110853
https://doi.org/10.1145/2934664
https://doi.org/10.1016/j.datak.2020.101837
https://doi.org/10.4018/jssmet.2010010103
https://doi.org/10.71097/IJSAT.v16.i1.2795
https://doi.org/10.32628/IJSRSSH242763
https://doi.org/10.48550/arXiv.2107.01678
https://doi.org/10.48550/arXiv.2411.14971
https://doi.org/10.34218/IJARET_16_02_006
https://doi.org/10.1145/3774324

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

239

2025. [Online]. DOI:

https://doi.org/10.5281/zenodo.15870392

[15] S.K. Rai, "Demystifying Cloud-Native Data

Engineering Architectures", IJITMIS, Mar.-Apr.

2025. [Online]. DOI:

https://doi.org/10.34218/IJITMIS_16_02_062

[16] A. Pogiatzis and G. Samakovitis, "An Event-Driven

Serverless ETL Pipeline on AWS," MDPI, 2020.

[Online]. DOI:

https://doi.org/10.3390/app11010191

[17] C. Lou et al., "HydraServe: Minimizing Cold Start

Latency for Serverless LLM Serving in Public

Clouds", arXiv, Sep. 2025. [Online]. DOI:

https://doi.org/10.48550/arXiv.2502.15524

[18] S. Singamsetty, "Accelerating data engineering

efficiency with self-learning AI algorithms",

International Journal of Computing and Artificial

Intelligence, Feb. 2025. [Online]. DOI:

https://doi.org/10.33545/27076571.2025.v6.i1c.154

https://doi.org/10.5281/zenodo.15870392
https://doi.org/10.34218/IJITMIS_16_02_062
https://doi.org/10.3390/app11010191
https://doi.org/10.48550/arXiv.2502.15524
https://doi.org/10.33545/27076571.2025.v6.i1c.154

