Copyright © IJCESEN

International Journal of Computational and Experimental

WOESEN
Science and ENgineering - ’
(IJCESEN) T

Vol. 12-No.1 (2026) pp. 229-239
http://www.ijcesen.com

————

. e
ISSN: 2149-9144
Research Article

Al-Driven Strategic Modernization of Legacy ETL Workflows on Serverless

Cloud Platforms

Thananjayan Kasi*

HCL America Inc., USA

* Corresponding Author Email: thananjayankasi@gmail.com - ORCID: 0000-0002-4407-7550

Article Info:

DOI: 10.22399/ijcesen.4754
Received : 03 November 2025
Revised : 28 December 2025
Accepted : 08 January 2026

Keywords

Serverless Computing,

ETL Modernization,
Event-Driven Architecture,
Distributed Processing,
Cloud-Native Transformation

Abstract:

Legacy ETL systems create considerable operational overhead with manual capacity
management, rigid scheduling models, and inadequate cloud integration support. The
proposed framework in this article presents a systematic solution for migrating legacy
ETL processes to serverless cloud environments, overcoming essential shortfalls
through Al-aided workflow classification, natural language processing-assisted code
translation, and event-oriented orchestration. Unlike previous lift-and-shift or
containerized models with operational inflexibilities, this framework embraces fully
managed serverless services integrated with machine learning functions. The result is
considerable cost savings, performance enhancements via distributed processing
engines, and improved data freshness. The framework involves automated inventory
documentation via metadata-driven models, Al-aided complexity stratification across
heterogeneous data, Apache Spark-based code refactoring using Business Process
Model and Notation templates, and reliable, fault-tolerant, trigger-activated
orchestrations. The model ensures improved reliability, scalability, and standards
compliance while eliminating infrastructure-related operational issues. Challenges in
metadata completeness gaps, translation processes with semantic drift, artificial
intelligence-related bias, and operational constraints are addressed comprehensively
through complete provenance tracking and parallel validations. The proposed
framework outperforms current serverless cloud-migration solutions through intelligent
automation and pattern-driven optimization. In an anonymized enterprise case study,
the framework reduced end-to-end batch processing time and infrastructure cost while
improving workflow success rates and migration throughput compared to the legacy
environment. A formal evaluation section details workflow classification quality,
translation accuracy, and operational improvements observed during the migration
program.

Index Terms: Serverless Computing, ETL Modernization, Event-Driven Architecture,
Distributed Processing, Cloud-Native Transformation

1. Introduction

irrespective of data availability dynamics, and lack
strong integration mechanisms with cloud storage

1.1 Legacy ETL Challenges and Technical Debt

Conventional ETL(Extract, Transform, Load)
operations, implemented using traditional server
infrastructure and batch processing approaches,
face many obstacles in modern data environments.
Legacy ETL tools impose considerable operational
overhead, where data engineering teams dedicate
disproportionately large resources to system
maintenance rather than development efforts. These
conventional tools require manual capacity
management, operate according to fixed schedules

and analytics services [1]. The technical debt
generated by monolithic design in traditional ETL
systems increases exponentially as data volumes
evolve from terabytes to petabytes, along with
fragile codebases, limited documentation, and
organizational knowledge dependencies.

Enterprise data warehousing infrastructures manage
hundreds to thousands of individual ETL processes
with intricate interlocks, making these processing
chains brittle. Single-point failures cascade across
multiple downstream processes. The lack of
flexibility in traditional architecture becomes

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

evident through proprietary constraints on
deployment cycles and inabilities to support real-
time processing needs [1]. The batch processing
window, which originally allowed overnight
completion, has become challenging to finish
within service-level agreements, with significant
amounts of key processing tasks exceeding
allocated timeframes. Capacity allocation processes
for mitigating peak workload processing have
created inefficiency in capacity utilization during
non-peak periods.

1.2 Serverless Cloud Paradigm and Cost
Efficiency

Serverless cloud infrastructure completely
restructures ETL system design through dynamic
resource provision, pay-for-use pricing, and

intrinsic support for distributed storage systems.
Serverless computing disrupts traditional cloud
migration patterns, which originally aimed to
mirror existing infrastructure in virtual machines.
Original ~ cloud migration patterns were
predominantly based on lift-and-shift models and
containerization, which left core operational
complexities undiminished and required dedicated
platform engineering teams. Real-world
observations demonstrate that serverless computing
models offer significant cost savings compared to
continuously provisioned infrastructure, with
optimal results attainable for workloads with
variant execution and periodic processing schedules
[2]. Cost savings result from eliminating resource
idle times, automatic scalability, and millisecond-
level granularity of cost measures.This approach
progresses beyond prior methods by focusing on
fully managed services, event-oriented execution
models, and reduced complexity orchestration
designs. Contemporary serverless offerings include
dynamic scaling that adapts to changing workloads
at millisecond speeds, processing power that
divides large datasets across temporary compute
environments, and monitoring capabilities that
facilitate execution pattern insights. The paradigm
shift from monolithic, schedule-bound execution
environments to modular, event-oriented execution
designs enables enterprise-level access to sub-hour
data freshness that was not possible with prior
frameworks [2].

1.3 Opportunities in ETL Modernization using
Al

Artificial intelligence methodologies bring
transformative capabilities across the migration
lifecycle, resolving long-standing challenges in
understanding legacy code and improving

230

workflows. Large language models show
considerable promise in automatically modernizing
legacy code, including intensive documentation
generation, inherent business logic retrieval, and
translation of proprietary scripting languages to
cloud-native systems [3]. Natural language
processing methods facilitate semantic-level code
repository analyses to automatically retrieve
transformation patterns and business rules
manifested in procedures without formal
definitions.Machine learning algorithms improve
workflow classification accuracy by analyzing
historical execution patterns, resource utilization
profiles, and data volume attributes to recognize
optimal serverless configurations [4]. Supervised
machine learning algorithms trained on enterprise
ETL portfolios enable intelligent classification of
workflows into complexity levels. These models
provide migration effort estimates more accurately
than manual assessment methodologies.The
framework uses artificial intelligence across various
transformation stages: (1) natural language
processing for automatic code analysis and
documentation generation, (2) machine learning for
intelligent workflow classification and resource
allocation, and (3) deep learning for recognizing
patterns in transformation logic [5]. However,
artificial intelligence integration introduces specific
risks: bias in automatic code translation accuracy,
semantic drift in automated workflow
classification, and explainability challenges in
machine learning recommendations.Rather than
proposing new learning algorithms, the contribution
of this article lies in an applied Al-enabled
migration framework. The framework
systematically combines supervised workflow
classification, transformer-based code
understanding and translation, and pattern-driven
orchestration. The novelty resides in how these Al
capabilities integrate into a repeatable migration
lifecycle, with explicit attention to validation,
provenance, and operational risk management in
large-scale ETL estates.Figure 1 below highlights
the structural pillars of the framework that include

workflow analysis and categorization, logic
transformation and modernization, orchestration
and execution control, and resilience and

compliance. These provide systematic migration
capabilities from legacy infrastructure to cloud
infrastructure.

2. Assessment and Classification of Workflow

2.1 Systematic Inventory Analysis

The entire process begins with workflow
documentation, creating a comprehensive inventory

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

of existing ETL processes using automated
discovery tools and manual audits. The inventory
process captures crucial data, including processing
frequency, runtime duration, resource usage
patterns, and data throughput for existing processes.
Current data warehousing designs struggle with
adequate documentation challenges, where a large
portion of legacy processes lacks specification
documentation and designs are defined in code
alone without corresponding design documents [6].
Data lineage mapping identifies data flow processes
from source systems through various processing
stages to storage destinations. Automated tools
enable the parsing of SQL queries, procedures, and
configuration files utilized in flow processes.
However, comprehensive accuracy remains
difficult due to runtime generation processes [6].
Manual validation proves essential for
understanding implicit dependencies in processes.
The assessment evaluates complexity levels within
processes using cyclomatic complexity, code
measures, data source counts, and join operation
numbers. Automated ETL architecture designs
increasingly incorporate metadata-driven processes
that produce dynamic workflow designs based on
specification procedures [6].

Figure 2 below represents the layered migration
structure, illustrating systematic flow from legacy
systems through assessment, conversion,
orchestration, and finally deployment to serverless
platforms. Each level utilizes distinct tools and
approaches. Automated inventory and dependency
mapping are applied during the assessment phase.
Conversion employs Apache Spark and templates.
Orchestration uses event-based scheduling
techniques with fault tolerance facilities. Execution
relies on serverless functions with dynamic
resource provision. Monitoring and metadata
governance components span all levels.

2.2 Complexity Stratification

Workflow processes are classified systematically
according to complexity levels based on
computational requirements and transformation
sophistication. Data integration environments
involve diverse data sources ranging from
structured databases to semi-structured and
unstructured data, all presenting different
processing difficulties [7]. Simple workflows
involve basic mappings, data-type conversions, and
filter ~ processes that consume minimal
computational power, completing in seconds to
minutes. These qualify for visual development
environments.

Moderate complexity transformations
aggregation logic, lookup operations

involve
against

231

reference datasets, and multi-step cleaning
procedures. The volume of data handled by these
procedures varies between gigabytes and terabytes,
with execution times spanning minutes to hours.
Distributed computing paradigms efficiently handle
moderate data workloads via horizontal scaling and
distributed processing across different computation
nodes. Highly analytical workflows involve
complex statistical computation, machine learning
algorithm applications, and joining operations
across datasets numbering in the millions [6].
Heterogeneous data source integration adds
complexity due to structural and semantic
differences, as well as data quality variability
across disparate source systems [7].

The classification taxonomy examines other
dimensions beyond computational cost, including
data sensitivities and business criticality measures.
High-priority workflows associated with revenue
recognition, regulatory compliance reporting, or
real-time operational dashboards receive priority
treatment during migration sequencing. The
stratification process generates opportunities to
eliminate or consolidate workflows involving
redundant logic, obsolete reporting needs, or
deprecated processes. This creates opportunities for
migration scope reduction with improved
maintainability of the migrated platform [7].

2.3 Al-Enhanced Classification Mechanisms

Machine learning models extend traditional
classification method capabilities by analyzing
historical execution metadata, resource utilization
trends, and transformation complexity indicators to
predict optimal serverless configurations [4].
Supervised learning models trained on business
workflow portfolios provide accuracy levels above
manual assessment methods while operating in
shorter timeframes. Feature engineering extracts
useful variables related to metrics like cyclomatic
complexity, volume throughput rate, execution time
trends, and dependency graphs.

In a reference implementation, workflows are
labeled into three main complexity classes (simple,
moderate, advanced) and three business criticality
levels (low, medium, high) - based on expert
review of production jobs from a financial services
ETL portfolio. Feature vectors include structural
metrics (cyclomatic complexity, number of joins,
presence of window functions), runtime metrics
(median and p95 execution time, throughput), and
operational metrics (historical failure rate,
dependency depth). A gradient-boosted tree model
trained on this dataset of approximately 500 labeled
workflows (indicative value) achieved macro-
averaged F1 scores above 0.9 when distinguishing

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

simple versus advanced workflows, substantially
outperforming rule-based baselines.

The classification paradigm leverages artificial
intelligence by using an ensemble of decision trees,
random forests, and gradient boosting to classify
workflows based on various criteria
simultaneously: computational complexity, data
sensitivity, regulatory constraints, and criticality
ratings [4]. The trained models are tested using
cross-validation to ensure generalization and avoid
overfitting to legacy architecture-specific
characteristics.

3. Conversion Methodology and Technical
Translation

3.1 Logic Modernization

Legacy procedural code is systematically refactored
into cloud-native versions using contemporary
coding paradigms and distributed processing
infrastructure. It is converted from proprietary
coding dialects (like scripting languages specific to
legacy ETL systems) into open-source dialects,
including Python, Scala, and SQL dialects
supporting serverless compute engines. Distributed
processing engines, including the Apache Spark
framework, enable holistic development platforms
combining batch processing, analytical querying,
real-time processing, and machine learning tasks
[8]. This migration strategy for modernizing legacy
code balances code maintainability improvements
against migration process efficiency, dependent
upon legacy code structure and quality.

Visual development platforms handle simple
conversions via graphic interfaces that allow users
to create executable code through drag-and-drop
actions, defining workflows. Low-code platforms
have reduced turnaround time for simple data
transfer tasks and basic data cleaning tasks. For
complex analytical tasks, custom code development
using distributed processing engines divides data
across temporary computational clusters. The
Apache Spark platform architecture enables
petabyte data handling via in-memory computation,
fault-tolerant storage, and the latest optimization
techniques, including Catalyst query optimization
and Tungsten execution engine optimizations [8].
The framework has shown the possibility of
achieving up to an order-of-magnitude performance
improvement over conventional MapReduce
implementations of iterative computations in
representative benchmarks [8], which makes it
useful for machine learning pipelines and graph
computation tasks.

The translation methodology embodies incremental
testing techniques with parallel execution of legacy

232

and modernized workflows to ensure output
equality. Row-level reconciliation identifies value
differences beyond set tolerance limits, typically

minimal variability for calculations and zero
tolerance for non-numeric data. Performance
benchmarking compares performance metrics

between legacy systems and serverless technology
regarding processing time, with optimized
workflows significantly reducing processing time.

3.2 Pattern Recognition and Reuse

Common patterns emerge during conversion
analysis, revealing repeated implementations across
workflows. The Business Process Model and
Notation modeling framework plays an important
part in ETL process design through standardized
visual representation that maps business
requirements to implementations [9]. Data
cleansing processes, such as null processing, data
format normalization, and outlier identification,
form pattern categories that repeatedly appear in

workflow portfolios. Aggregation functions,
lookups, and slowly changing dimension
processing form other high-frequency pattern
categories.

Template libraries integrate reusable transformation
components and parameterized configurations
tuned to fit specific scenarios. Relational algebra
provides a mathematical framework for describing
ETL procedures, allowing accurate modeling and
representation of data manipulation concepts such
as selection, projection, join, union, and aggregate
operations [9]. Normalized code execution ensures
consistency in transformation logic, integrating best
practices for error handling, logging, and
optimization.

Pattern catalogs record details regarding schemas,
transformation routines, and performance attributes
of every reusable software component. Metadata-
driven generation frameworks automatically
generate workflow instances based on configuration
files, speeding up deployment time. This
abstraction level enables efficient adaptation to
schema, regulatory, or business rule variations
without code rearrangement [9].

3.3 NLP-Powered Code Translation

Natural language processing application improves
legacy code understanding and translation integrity
using semantic analysis for undocumented
procedural codes. Large language models trained
on various programming languages create complete
documentation for legacy ETL processes by
identifying subtle business and transformation
requirements encoded in source code [3].

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

Documentation automation reduces execution time
for processes retained in organizational memory.
The translation engine is implemented as a
transformer-based large language model specialized
on ETL and SQL code, prompted with paired
examples of proprietary scripts and their Spark or
SQL equivalents. In the case study across various
workflows, approximately 65-75% (indicative
value) of legacy steps in low- and medium-
complexity workflows were auto-translated and
accepted after a single human review pass, with
remaining steps either edited or implemented
manually. This reduced manual code-writing effort
for target Spark jobs by an estimated 30-40%
relative to re-implementation (from-scratch)
approaches.

Code translation engines utilize natural language
processing to establish semantic equivalency
between proprietary scripting languages and cloud-
native code versions, aligning business logic while
synchronizing code for serverless environments [3].
Code transformation engines based on transformers
consider the structure and naming conventions of
variables and control flow to infer transformation
logic and suggest optimal implementation
approaches through cloud-native distributed
processing engines. Code transformation accuracy
is influenced by code complexity and semantic
ambiguity associated with business rule definitions.

4. Architecture and Control of Execution
4.1 Event-Driven Scheduling

Serverless orchestration introduces new
methodologies, replacing traditional time-based
scheduling with event-driven executions based on
dynamic responses to system state changes. Event-
driven systems reduce wait times associated with

data readiness before initiating processes,
performing significantly better than traditional
fixed-interval time-based systems. Enterprise

integration patterns are essential for designing
decoupled communication systems based on
message passing to facilitate asynchronous
processing tasks in dynamic orchestration systems
[10]. Triggering events can be based on file
receipts, database changes, message queues, or
completed upstream tasks. Event-driven systems
pursue optimal resource use efficiency by
eliminating speculative polling along with idle
processing cycles.

The orchestration framework assesses trigger
conditions according to defined rules, triggering
workflow execution only when prerequisite
conditions are fulfilled. Complex event processing
engines allow several events to be correlated,

233

enabling scenarios needing data from diverse
sources. Conditional branching logic enables
dynamic workflows to choose data routes based on
characteristics, time windows, or business rule
outcomes. Pattern integration architectures identify
service-oriented patterns emphasizing interface
standardization, and message-oriented patterns
entailing asynchronous communication and
temporal decoupling [10].

4.2 Resilience Engineering

Orchestration frameworks include efficient fault
tolerance mechanisms integrating retry logic,
backoff strategies, and circuit breaker designs to
address transient failures effectively. Retry
strategies enable users to define retry limits and
backoff delay times that grow exponentially from
initial values to maximum backoff times, avoiding
system overload during degraded operations.
Distributed database systems require strong fault
tolerance mechanisms to manage consistency and
availability requirements over geographically
diverse sites that may experience network partitions
or hardware failures [11].

Alerting mechanisms offer real-time alerts across
various channels once failure numbers breach retry
limits and performance metrics vary from baselines.
Service level agreements monitor execution time,
success rates, and data freshness indicators against
specified objectives, providing automated reports
highlighting compliance percentages. Distributed
designs leverage replication techniques, consensus
algorithms, and automatic failover solutions to
remain operational regardless of individual
component failures [11]. Event-driven serverless
architecture in ETL application execution shows
superior fault-tolerance abilities with dynamic
scalability to handle changing workload demands
[12].

4.3 Dependency Management

In complex workflows, subtle dependency
management is achieved using directed acyclic
graphs. Dependency analysis in directed acyclic
graphs is used in scheduling engines to search for
parallelisms in different workflow branches,
executing them simultaneously. In parallel
execution plans, the total time required to process
complex workflows comprising multiple
independently executed transitions is drastically
reduced. Dynamic branching enables variable
conditional processing dependencies ranging from
intermediate processing stage result characteristics
to business rule evaluation results. Checkpointing
mechanisms enable transformation processing by
saving intermediate data at predefined periodic

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

intervals, allowing restarts from anywhere in the
pipeline [11].

5. Limitations
5.1 Metadata Completeness Challenges

Legacy systems often lack complete metadata and
technical documentation, including clear data
lineage descriptions [13], which complicates
migration. Business logic is frequently embedded
only in procedural code and institutional memory,
creating interpretation challenges during
translation.

Automated metadata extraction system success
rates vary based on code complexity and
documentation standards. Static analysis identifies
direct dependencies, but faces challenges analyzing
runtime-adjusted SQL queries, dynamic file paths,
and decision-driven execution paths. Manual
analysis time represents a significant portion of the
entire migration process for less documented
projects, extending timelines beyond initial
estimates. Missing metadata about data quality
business rule implementations, error handling
processes, and change-over-time justification
makes migration tougher, requiring stakeholder
interviews and archaeological analysis of deployed
environments to rebuild working knowledge.
Business intelligence migration projects for cloud-
native platforms encounter severe obstacles
adapting legacy reporting models, business logic
computations, and analytics embedding to new
architecture paradigms [13].

5.2 Explanation of Fidelity

Translating legacy logic into serverless
programming can introduce potential semantic drift
where refactored code produces different semantic
functionality — despite working syntactically.
Complex business rules may not transition cleanly
into declarative or distributed computing paradigms
for operations depending upon iterative
mathematics, stateful transformations, or order-
dependent operations. Validation testing is needed
to detect equivalent functionality across various
data examples and legacy events for the specific
code being refactored.

Data provenance tracing becomes highly relevant
during migration validation to maintain
transformation integrity and traceability during the
transition process. Data provenance systems trace
total lineage details about how various data artifacts
derive from inputs at various processing stages,
from inputs through transformed outputs [14].
Organizations report validation processes involve

234

considerable migration project resources regarding
disparity identification during various test scenarios
through reconciliation processes. Numerical
differences occur due to computation precision
differences between legacy and modern
computation engines in multi-step transforms.
Legacy systems with deprecated functions or
proprietary algorithms and calculation methods are
especially challenging for transformation, requiring
new transformation implementation methods [14].

5.3 Operational and Al-Related Risks

Cold starts on serverless functions affect time-
sensitive workflows requiring sub-second latencies.
Wait times on initial function calls for interpreted
language environments cause unacceptable
processing latencies. Recent developments in
optimal serverless environment usage include
utilizing pre-warming, connection pooling, and
caching algorithms responsible for reducing cold
start latencies [16]. Simultaneous processing
capabilities on serverless environments are limited,
restricting processing capabilities within specified
time limits on function executions per region.
Memory processing capability limitations restrict
large data processing in single-function executions,
prompting data partition usage within multi-stage
processing frameworks [13].

Artificial intelligence integration risks pose
challenges needing active addressing. Biased
syntax can appear in code translation models
trained on limited programming language corpora,
leading to confusion when understanding domain-
related business logic or internal scripting
expressions [15]. Semantic drifting in machine
learning workflow classification can arise when
model training corpora fail to capture typical
organization-related ETL process patterns.
Explainability challenges in artificial intelligence
migration decisions pose validation process
difficulties, as administrators struggle
understanding reasoning behind these decisions
[15].Mitigation techniques include validation
frameworks with human verification loops in
critical workflow migrations, varied training
datasets ~ covering multiple organizational
environments, and transparent artificial intelligence
techniques explaining decisions. Model retraining
with evolving workflow migration outcomes
prevents classification drift. Various ensemble
techniques using different artificial intelligence
methods make models resistant to individual
artificial intelligence weaknesses [15].

6. Comparison and Validation of Frameworks

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

6.1 Comparative Analysis with Existing
Frameworks
This framework's uniqueness over existing

serverless ETL migration models derives from
numerous architectural and methodological
breakthroughs. Conventional cloud-native data
engineering platforms consider only infrastructure
migration without incorporating intelligent
automation or artificial intelligence optimization
concepts [17]. Past serverless migration models
dealt only with code modernization through
containerization patterns without considering
legacy-related code-level issues for ETL platform
migration [5].

The proposed framework advances beyond earlier
approaches through artificial intelligence tool
integration at different transformation process
levels, ranging from natural language processing to
automate code documentation and translation,
machine learning to enable smart workflow
classification, and pattern recognition to develop
reusable templates [3,4]. Comparative assessments
prove migration process efficiency through reduced
manual analysis, accurate classification through
machine learning evaluation, and quality
improvement through Business Process Model and
Notation standardization [9].

Existing methods typically cover workflow
orchestration or code translation, but not complete
task sets including comprehensive assessment,
intelligent transfer, event-driven orchestration, and
validation as a single process [17]. Metadata-driven
generation tool and automated dependency
mapping mechanism utilization differentiate the
proposed approach from existing manual migration
practices, mostly dependent on institutional
experiences and expert opinions.

6.2 Case Study: Enterprise Financial Services
ETL Migration

In an anonymized financial services firm, legacy
ETL infrastructure for regulatory reporting and risk
analysis was migrated to serverless cloud
architecture using the proposed framework. The
legacy infrastructure handled daily transaction
reconciliations, monthly regulatory reports, and
quarterly risk analysis determinations through batch
processing systems in distributed data centers. The
pre-migration environment used fixed-capacity
servers handling multiple ETL jobs ranging from
straightforward data transfer to complex analysis
tasks. The infrastructure showed large
underutilization patterns during the idle periods,
requiring manual handling. Failed workflow
handling required manual efforts. Processing times

235

for crucial task batches exceeded allocated time
slots.

There was a substantial reduction in infrastructure
cost due to the consumption-based pricing model,
which eliminated idle capacity. The total processing
time decreased significantly due to parallel
processing and elastic scaling that matched
resources to workload demand. The workflow
success rate improved markedly due to automated
retry logic and standardized failure-handling
patterns that reduced the need for human
intervention. Elastic resource allocation handled
volume peaks during quarter-end processing
operations without infrastructure changes. The
serverless concept allowed sub-hour processing for
time-sensitive regulatory operation requirements,
which was challenging under batch processing
operation model limitations. These results bear
testimony to the benefits observed in this case study
implementation.

The migration strategy used artificial intelligence-
enforced classifications for workflow evaluation,
modernized code translations utilizing Apache
Spark, and event-based orchestration with robust
fault tolerance mechanisms [12]. Natural language
processing accelerated documentation creation for
undocumented legacy workflows previously
requiring extensive reverse engineering processes
[3]. Serverless architecture enabled elastic scaling
during peak processing periods and optimized
resource expenditure during off-peak periods
through granular billing mechanisms [2]. Overall
inventory analysis and automated dependency
mappings established end-to-end workflow
documentation. Parallel validation testing ensured
functional equality between legacy and modernized
workflow versions. The incremental migration plan
strategy emphasized high-value workflows
associated with critical business functions and
ensured coordination among data engineering
groups and platform operations [1].

6.3 Quantitative Evaluation

In the anonymized financial services environment,
the proposed framework was evaluated over a
portfolio of several hundred production ETL
workflows spanning regulatory reporting,
reconciliations, and risk analytics. The evaluation
focused on three dimensions: Al model quality,
migration productivity, and operational outcomes
after go-live.

For workflow classification, the supervised
machine learning ensemble correctly predicted
expert-assigned complexity and priority labels in
the majority of cases, with accuracy and macro-F1
consistently above 0.9 for primary classes.

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

Misclassifications were primarily observed at
boundaries between moderate and advanced
analytical workloads and were caught by human
review gates.

For code translation, the natural language
processing-based engine produced compilable
target code for most simple and moderate
transformations, reducing manual implementation
effort by roughly one-third when measured in
engineering hours per migrated job. Complex
analytical jobs still required significant human
design but benefited from Al-generated
documentation and partial code skeletons.

From an operational perspective, the migrated
serverless architecture reduced median daily batch
window duration by a substantial margin, as
indicated in the case study observations, and
lowered infrastructure expenditure due to pay-per-
use pricing and elastic scaling. Workflow failure
rates also decreased, driven by standardized
patterns, automated retry logic, and enhanced
observability. These results, although organization-
specific and indicative of this particular
implementation, offer evidence of the benefits of
combining Al-driven analysis with serverless
execution.

Serverless Cloud ETL framework

Workflow assessment and
dlassification

- Inventory

- Metadata

- Lineage

- Complexity stratification

Al-Enhanced:

- ML (asslification

- Automated Discovery
- Pattern Recognition

Logic modernization and
conversion

- Code translation

- Spark processing
- Pattern libraries

Al-Enhancec:

- NLP Code Transiation
- LLM Documentation
- Semantic Analysis

Orchestration and Resilience and
execution control compliance
- Event - SLA monitoring
- DAG scheduling - Provenance tracking
- Fault tolerance - Regulatory control
Technologies: Observability:
- Apache Alrflow - CloudWatch
- Step Functions - Lineage Tracking
« EventBridge - Compliance Reports

Figure 1: 4-Pillar Serverless Cloud ETL Framework [1-4]

Layer 1: Legacy ETL systems
Monolithic workflows | Scheduled batch processing | Static infrastructure
Manual capacity planning | Proprietary scripts | Limited documentation

+

Layer 2: Workflow assessment and classification
Automated inventory | Data lineage mapping | Complexity stratification
Metadata extraction | Dependency graph analysis | Priority classification

v

Layer 3: Conversion and technical classification
Code modernization | Pattern recognition | Apache Spark/PySpark
Visual low-code tools | Template libraries | Parallel testing and validation

i

Layer 4: Event-driven orchestration
Apache AirFlow | AWS step functions | Event triggers | DAG management
Retry logic | Circuit breakers | SLA monitoring | Fault tolerance

!

Layer 5: Serverless Cloud Platforms
AWS Glue/Lambda | Azure functions | Dynamic resource allocation
Consumption-based pricing | Auto-scaling | Distributed storage (S3/Blob)

Figure 2: Serverless ETL Migration Framework Architecture [6-11]

Table 1: ETL Workflow Classification Framework and Complexity Dimensions [6,7]

Workflow Attribute

Description

Simple transformations

Basic field mappings, type conversions

Moderate complexity

Aggregation, lookup operations

Advanced analytical

Statistical calculations, ML applications

Data sources

Structured, semi-structured, unstructured

236

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

Execution time range Seconds to hours

Data volume processing Gigabytes to terabytes

Schema challenges Heterogeneity, semantic inconsistencies
Metadata-driven generation Dynamic workflow configuration
Consolidation opportunities Redundant and deprecated processes
Priority criteria Business criticality, compliance

Table 2: Technical translation components and distributed processing capabilities [3,8,9]

Technology Component Capability

Apache Spark framework Unified batch, streaming, ML processing

Performance improvement

Up to an order of magnitude in representative

workloads
Dataset scale support Petabyte-scale processing
Computation model In-memory distributed processing
Catalyst optimization Advanced query planning

Tungsten engine

Execution enhancements

BPMN modeling

Visual ETL process representation

Relational algebra Formal transformation specification

Low-code platforms Drag-and-drop workflow generation

NLP translation

Automated code modernization

Testing strategy

Parallel legacy-modern execution

Table 3: Event-driven orchestration architecture and fault tolerance framework [10-12]

Orchestration Element Implementation
Trigger mechanisms File arrival, CDC events, message queues
Event processing Multiple stream correlation
Integration patterns Service-oriented, message-oriented
Retry policy configuration Exponential backoff strategies

Fault tolerance

Circuit breaker patterns

SLA monitoring

Duration, success rates, data freshness

Replication strategies Distributed node consistency

Consensus protocols Automated failover mechanisms

Dependency repre

sentation Directed acyclic graphs

Checkpointing intervals Configurable state persistence

Table 4: Critical limitations, validation challenges, and mitigation strategies [13-16]

Challenge Category Impact Mitigation Strategy
Documentation deficiencies Incomplete technical specifications Automated NLP extraction
Business rule embedding Procedural code without documentation LLM documentation generation
Reverse engineering effort Extensive manual code inspection Al-assisted pattern recognition
Static code analysis Dynamic SQL generation struggles Runtime profiling tools
Semantic drift risk Functional divergence in translation Parallel validation testing
Provenance tracking Complete lineage documentation Automated tracking systems
Valldatlor_] resource Substantial project effort Al-powered test generation
consumption
N_umerlcal precision Rounding variation accumulation Precision threshold monitoring
differences
Cold start latencies Sub-second response impact Pre-warming optimization
Memory allocation limits Dataset partitioning requirements Intelligent data sharding
Al translation bias Misinterpretation of domain logic Diverse training datasets
Classification drift Suboptimal C(_)nflguratlon Regular model retraining

recommendations

4. Conclusions

combining event-driven execution, elastic scaling,
and consumption-based pricing with distributed

Legacy ETL process migration to serverless cloud ~ Processing engines. The proposed framework
p|atf0rms enables organizations to overcome contributes a structured, Al-enabled lifecycle

traditional batch infrastructure

limitations by covering inventory assessment, workflow

237

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

stratification, NLP-assisted documentation and
translation, pattern-driven implementation, and
event-based orchestration with built-in resilience.
The case study and quantitative observations
illustrate that this approach can reduce batch
windows, lower infrastructure costs, and increase
workflow success rates while decreasing manual
effort for classification and code migration. The
framework explicitly addresses metadata gaps,
semantic drift, and Al-related bias through
provenance tracking, human-in-the-loop validation,
and model governance practices. Future directions
include incorporating artificial intelligence-driven
code translation tools for improved automation
accuracy, developing schema evolution frameworks
supporting zero-downtime migrations, and
extending support for real-time streaming
architectures with self-learning algorithms that
continuously optimize performance based on
operational patterns [18]. The framework provides
replicable methodologies for financial services,
healthcare, telecommunications, and data-intensive

industries seeking scalable, cost-efficient,
compliant data platform architectures supporting
agile development and real-time analytics
capabilities.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

e Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

o Disclaimer: This work represents the author's
views and does not reflect the policies or
positions of HCL America Inc.

References

[1] O. Ogunwole et al., "Modernizing Legacy Systems:
A Scalable Approach to Next-Generation Data
Architectures and Seamless Integration”,

238

International Journal of Multidisciplinary
Research and Growth Evaluation, 2023. [Online].
DOl:
https://doi.org/10.54660/.1IJMRGE.2023.4.1.901-
909

[2] N. Syeda et al., "Analysis of cost-efficiency of
serverless approaches”, arXiv, Jun. 2025. [Online].
DOI: https://doi.org/10.48550/arXiv.2506.05836

[3] D. Chanda, "Automated ETL Pipelines for Modern
Data Warehousing: Architectures, Challenges, and
Emerging Solutions”, The Eastasouth Journal of
Information Systems and Computer Science, 2024.
[Online]. DOI: doi.org/10.58812/esiscs.v1i03.523

[4] .M. Putrama and P. Martinek, "Heterogeneous data
integration: Challenges and opportunities”,
ScienceDirect, 2024, [Online]. DOl:
https://doi.org/10.1016/j.dib.2024.110853

[5] M. Zaharia et al., "Apache Spark: A unified engine
for big data processing”, ACM Digital Library,
2016. [Online]. DOl:
https://doi.org/10.1145/2934664

[6] J. Awiti et al., "Design and implementation of ETL
processes using BPMN and relational algebra”,
ScienceDirect, 2020. [Online]. DOl:
https://doi.org/10.1016/j.datak.2020.101837

[7]1 S. Aier and R. Winter, "Fundamental Patterns for
Enterprise Integration Services", 1Gl Global
Scientific Publishing, 2010. [Online]. DOI:
https://doi.org/10.4018/jssmet.2010010103

[8] S.R. Chigurupati, "Distributed Database Systems for
Scalable Enterprise Applications: A New
Paradigm”, 1JSAT, Mar. 2025. [Online]. DOI:
https://doi.org/10.71097/IJSAT.v16.i1.2795

[9] T.T. Bukhari et al., "Cloud-Native Business
Intelligence Transformation: Migrating Legacy
Systems to Modern Analytics Stacks for Scalable
Decision-Making", IJSRHSS, 2024. [Online]. DOI:

https://doi.org/10.32628/IJSRSSH242763

[10] M.M. Alam and W. Wang, "A Comprehensive
Survey on the State-of-the-art Data Provenance
Approaches for Security Enforcement”, arXiv,
2021. [Online]. DOl:
https://doi.org/10.48550/arXiv.2107.01678

[11] C. Diggs et al., "Leveraging LLMs for Legacy Code
Modernization: Challenges and Opportunities for

LLM-Generated documentation”, arXiv, 2024.
[Online]. DOl:
https://doi.org/10.48550/arXiv.2411.14971

[12] A. Awasthi and A. Vaidya, "ETL Pipeline

Integration for Machine Learning-Based Product
Classification: a Comprehensive Guide", IJARET,
Mar.-Apr. 2025. [Online]. DOI:
https://doi.org/10.34218/IJARET_16_02_006

[13] R. Krasniqi et al., "SE Perspective on LLMs: Biases
in Code Generation, Code Interpretability, and
Code Security Risks", ACM Digital Library, 4th
Dec. 2025. [Online]. DOl:
https://doi.org/10.1145/3774324

[14] S. Metla, "Powering America's Digital Future: Big
Data Migration and ETL Modernization for
Scalable Intelligence”, Sarcouncil Journal of
Engineering and Computer Sciences - Zenodo, Jul.

https://doi.org/10.54660/.IJMRGE.2023.4.1.901-909
https://doi.org/10.54660/.IJMRGE.2023.4.1.901-909
https://doi.org/10.48550/arXiv.2506.05836
http://doi.org/10.58812/esiscs.v1i03.523
https://doi.org/10.1016/j.dib.2024.110853
https://doi.org/10.1145/2934664
https://doi.org/10.1016/j.datak.2020.101837
https://doi.org/10.4018/jssmet.2010010103
https://doi.org/10.71097/IJSAT.v16.i1.2795
https://doi.org/10.32628/IJSRSSH242763
https://doi.org/10.48550/arXiv.2107.01678
https://doi.org/10.48550/arXiv.2411.14971
https://doi.org/10.34218/IJARET_16_02_006
https://doi.org/10.1145/3774324

Thananjayan Kasi / IJCESEN 12-1(2026)229-239

2025. [Online]. DOI:
https://doi.org/10.5281/zen0do.15870392

[15] S.K. Rai, "Demystifying Cloud-Native Data
Engineering Architectures”, 1JITMIS, Mar.-Apr.
2025. [Online]. DOI:
https://doi.org/10.34218/1JITMIS 16 02 062

[16] A. Pogiatzis and G. Samakovitis, "An Event-Driven
Serverless ETL Pipeline on AWS," MDPI, 2020.
[Online]. DOl:
https://doi.org/10.3390/app11010191

[17] C. Lou et al., "HydraServe: Minimizing Cold Start
Latency for Serverless LLM Serving in Public
Clouds", arXiv, Sep. 2025. [Online]. DOI:
https://doi.org/10.48550/arXiv.2502.15524

[18] S. Singamsetty, "Accelerating data engineering
efficiency with self-learning Al algorithms”,
International Journal of Computing and Artificial
Intelligence, Feb. 2025. [Online]. DOL:
https://doi.org/10.33545/27076571.2025.v6.i1c.154

239

https://doi.org/10.5281/zenodo.15870392
https://doi.org/10.34218/IJITMIS_16_02_062
https://doi.org/10.3390/app11010191
https://doi.org/10.48550/arXiv.2502.15524
https://doi.org/10.33545/27076571.2025.v6.i1c.154

