

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 8785-8791
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Embedded Linux Crash Resilience for Autonomous Vehicles

Senthil Nathan Thangaraj*

Cruise Inc, USA
* Corresponding Author Email: snathan.tg@gmail.com- ORCID: 0000-0002-5887-7850

Article Info:

DOI: 10.22399/ijcesen.4302

Received : 28 September 2025

Revised : 01 November 2025

Accepted : 03 December 2025

Keywords

Embedded Linux,

Autonomous Vehicles,

Crash Resilience,

Persistent Logging,

Safety-Critical Systems

Abstract:

This article examines the implementation of persistent crash logging infrastructure for

autonomous vehicles running embedded Linux systems. It explores how proper failure

capture mechanisms can transform system crashes from dangerous incidents into

valuable learning opportunities. The article investigates the challenges of crash capture

in embedded automotive environments, detailing the implementation of the Linux

kernel's persistent storage (pstore) subsystem with the ramoops driver, and the

enhancement of diagnostic capabilities through kdump integration. Through analysis of

multiple studies and empirical data, the article demonstrates how this dual-layer

approach to crash resilience significantly improves engineering efficiency, system

reliability, and safety assurance. The paper demonstrates that a robust crash logging

infrastructure allows organizations to solve once-undiagnosable failures, speed

development cycles, and establish more cogent evidence-based safety arguments for

regulatory approval. The paper demonstrates that continuous crash logging not only

improves diagnostics for sophisticated failure modes but also delivers measurable

benefits in development speed, certification processes, and overall system dependability

in safety-critical autonomous vehicle deployments.

1. Introduction

The embedded Linux in an autonomous car

experiences a catastrophic failure while driving

through a difficult city intersection. The kernel

panics, the system reboots, and within seconds, the

backup systems for the car take over. But what

went wrong? Without adequate crash logging, that

vital data disappears like sandcastles in the sand,

and engineers must divine what failed.

This situation unfolds more frequently than we'd

care to acknowledge in the autonomous vehicle

world. Such systems are among the most

sophisticated embedded Linux deployments to have

ever been built, processing enormous sensor

streams of data and responding in a split second to

make decisions that impact lives. When things do

go wrong—and they will—having complete

diagnostic data becomes not merely useful, but

critical for safety verification and ongoing

improvement.

The work of Stolte and colleagues illuminated just

how complex these failure scenarios can be [1].

Their fault tree analysis revealed dozens of

potential failure modes across perception, planning,

and control subsystems. What struck me most about

their findings was that software components

dominated the risk landscape, with perception

system failures being particularly prevalent. Even

more concerning, a significant portion of critical

failures stemmed from kernel-level crashes that

traditionally leave behind minimal evidence of

what went wrong.

This diagnostic blind spot represents a fundamental

challenge in autonomous vehicle development. As

Abbadi and his team demonstrated in their

cybersecurity research [2], having proper diagnostic

capabilities can dramatically reduce the time

needed to resolve critical failures. Their extensive

study across automotive embedded systems showed

that comprehensive logging infrastructure could

resolve the vast majority of previously mysterious

failures. Perhaps most importantly, they found that

persistent crash logging directly supports multiple

essential cybersecurity design patterns required for

regulatory compliance.

The solution lies in a two-pronged approach:

kernel-level persistent storage through

pstore/ramoops for immediate crash context, and

comprehensive memory capture via kdump for

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

8786

deep forensic analysis. This combination has

proven transformative, providing the visibility

needed to understand and prevent future failures

while supporting the rigorous safety certification

processes that autonomous vehicles require.

2. Challenges of Crash Capture in

Embedded Linux Environments

Understanding why crash capture is so difficult in

embedded Linux environments requires grappling

with a fundamental paradox: we need the system to

record its own demise at the exact moment it's

failing catastrophically. It's like asking someone to

write their own obituary while having a heart

attack—the very mechanisms we rely on for

logging are often the first casualties of a system

crash.Arlat and his research team provided

groundbreaking insights into this challenge through

their extensive fault injection experiments [3]. By

systematically introducing thousands of faults into

kernel components, they painted a sobering picture

of kernel behavior under stress. Their findings

revealed that most kernel errors lead to crashes that

provide frustratingly little diagnostic information.

Memory management subsystems proved

particularly vulnerable, and perhaps most

alarmingly, a substantial portion of kernel panics

resulted in what they termed "silent data

corruption"—where the system limped along with

corrupted internal state before finally collapsing. In

an autonomous vehicle, this zombie-like state could

have catastrophic consequences.The specialized

nature of automotive embedded systems adds

another layer of complexity. Alnawasreh and

colleagues documented these unique constraints in

their comprehensive analysis of vehicle

architectures [4]. Unlike server environments with

generous resources, automotive systems must

capture crash data within tight memory

constraints—often just a few hundred megabytes

reserved for diagnostics. Power stability presents

another critical challenge; their research found that

many vehicles experience voltage fluctuations

during emergency maneuvers that could corrupt

crash data capture.Perhaps most challenging is the

temporal constraint. The window for capturing

crash information before a system reset is

incredibly brief—measured in milliseconds rather

than seconds. Automotive systems also need to

recover rapidly in order to preserve safety, usually

with the expectation of full functionality restoration

within less than ten seconds when a kernel fails.

These limitations form a compounding challenge

that requires groundbreaking solutions.

3. The pstore and ramoops Implementation

Architecture

The core of our crash resilience strategy centers on

a clever bit of engineering: reserving a section of

physical memory that survives system reboots. The

Linux kernel's pstore subsystem, along with the

ramoops driver, offers just this ability. Imagine a

black box recorder for your kernel—when things go

wrong, important data is written into this protected

memory area, patiently waiting to share its tale

once the system has recovered.The elegance of this

method is its simplicity and dependability. Das and

Pradhan's comprehensive survey of embedded

system reliability provides valuable context for

understanding why this works so well [5]. Memory-

based persistence mechanisms such as ramoops are

notably highly reliable for data retention when well

implemented. The secret is finding the appropriate

balance—saving enough memory to record useful

diagnostic information without depriving the

system of resources essential to normal

functioning.In practice, this translates into making

deliberate decisions about how much memory to

allocate for crash logging. Not enough, and you

lose important details; too much, and you degrade

system performance. Most car implementations

find a sweet spot that gives good diagnostic ability

while being mindful of the resource limitations of

embedded environments. The implementation also

requires meticulous attention to memory

protection—using ECC-protected regions and

proper isolation to ensure that our diagnostic data

survives intact through the chaos of a system

crash.Rahman and Abbas provided fascinating

insights into optimizing these implementations for

autonomous vehicles [6]. Their analysis of

hundreds of real-world crash events revealed that

properly configured kernel crash logs could

diagnose the majority of critical system failures.

They found that partitioning the reserved memory

into multiple discrete records significantly

improved diagnostic capabilities, allowing

engineers to preserve evidence from multiple crash

events—invaluable when tracking down

intermittent issues.The real magic happens in the

details. Effective ECC protection significantly

minimizes post-crash data corruption so that the

diagnostic data is reliable. When done properly,

these protections allow for root cause determination

of failures that would otherwise be complete

enigmas, fundamentally transforming the way we

tackle system reliability in autonomous vehicles.

4. Enhancing Diagnostic Depth with kdump

Integration

Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

8787

While pstore and ramoops provide essential crash

context, sometimes you need to see the whole

picture. Advanced failure patterns—race

conditions, memory corruption, nuanced timing

problems—tend to be more than merely stack traces

can tell. Here is where kdump comes into play,

introducing a robust second layer to our toolkit of

diagnostics.The kdump process operates by booting

a secondary "crash kernel" which jumps into action

when the main kernel crashes. It is like having a

backup photographer at a wedding—when the main

photographer gets an unexpected heart attack, the

backup photographer takes over to shoot everything

before the moment is lost. This crash kernel runs in

a low-level environment, with the singular purpose

of saving the entire system state for eventual

analysis.Kang and colleagues highlighted the

critical importance of this comprehensive approach

in their safety-driven optimization research [7].

They found that traditional crash logging

mechanisms often capture insufficient information

for diagnosing complex failures in autonomous

systems. The difficulty is executing this secondary

kernel in a way that works—having sufficient

resources to perform its task but not so resource-

intensive that it affects standard system

operation.The timing requirements are especially

severe in automotive use cases. Safety requirements

typically demand that crash capture operations

complete quickly—usually within a couple of

seconds—to maintain system integrity. This creates

an interesting engineering challenge: how do you

capture potentially gigabytes of system state in such

a short window?Singh and his team's

comprehensive review of embedded systems in

autonomous vehicles provides valuable insights

into solving this puzzle [8]. They found that

selective memory filtering techniques can

dramatically reduce capture time while preserving

the vast majority of critical diagnostic information.

Specialized compression algorithms further help,

achieving impressive ratios that significantly reduce

storage requirements without sacrificing diagnostic

fidelity.The implementation must be deterministic

and reliable—there's no room for a crash handler

that itself might crash. Stringent validation becomes

necessary, such that the crash kernel will be

predictable for the entire range of automotive

operating scenarios. Done correctly, this complete

memory capture feature allows engineers to fix

issues that were not possible before, specifically

those related to transient failures and race

conditions that are not caught by conventional

debugging methods.

5. Quantitative Impact on Development

Velocity and System Reliability

The true test of any engineering solution lies not in

its technical elegance but in its practical impact.

After implementing comprehensive crash logging

infrastructure, the transformation in our

development process was remarkable. What once

required days of speculative debugging could now

be resolved in hours with concrete

evidence.Kamranrad and colleagues captured this

phenomenon well in their reliability assessment

research [9]. Organizations implementing

comprehensive diagnostic infrastructure experience

dramatically faster reliability growth compared to

those relying on traditional approaches. It's not just

about solving problems faster—it's about solving

problems that were previously unsolvable.The

impact extends across multiple dimensions.

Engineering teams spend less time in "blind

debugging" mode, where they're essentially

guessing at what might have gone wrong. Instead,

they can focus their expertise on understanding and

fixing the root causes revealed by crash logs. This

efficiency gain is like adding extra engineers to

your team without actually hiring anyone.Perhaps

most importantly, enhanced diagnostic visibility

changes what kinds of problems you can solve.

Schiller and his research team documented this

beautifully in their evaluation of reliability growth

models [10]. They found that comprehensive crash

logging particularly excels at capturing those

maddening intermittent failures that appear and

disappear like ghosts in the machine. Race

conditions, which previously might have haunted a

codebase for months, become tractable problems

with clear solutions.The benefits extend beyond

pure engineering efficiency. In the world of

autonomous vehicles, every failure resolved with

concrete evidence strengthens your safety case.

Regulatory bodies appreciate—and increasingly

require—this level of diagnostic capability. The

ability to demonstrate that you can detect, diagnose,

and resolve failures systematically becomes a

competitive advantage in the push toward safer

autonomous systems.

6. Technical Implementation Guide for

pstore/ramoops and kdump

Kernel Configuration and Build Requirements

The implementation of persistent crash logging

begins with proper kernel configuration. Both

pstore and kdump require specific kernel options to

be enabled during the build process. For pstore

functionality, the kernel must be built with

CONFIG_PSTORE enabled as the base subsystem,

along with CONFIG_PSTORE_RAM to enable the

ramoops driver. Additional configuration options

determine what types of data can be captured

Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

8788

during a crash, including console output, user

messages, and function traces. Each option adds

diagnostic capability but also requires

corresponding memory allocation.

For kdump support, the kernel requires kexec

functionality through CONFIG_KEXEC and

CONFIG_CRASH_DUMP options. The crash

dump infrastructure depends on the ability to boot a

secondary kernel, which requires careful

configuration of memory management and

debugging symbols. The DEBUG_INFO option

becomes particularly important as it enables symbol

resolution in crash dumps, making the captured

data significantly more useful for analysis.

Memory Reservation and Device Tree

Configuration

The most critical aspect of ramoops implementation

is reserving memory that survives system reboots.

In embedded automotive systems, this is typically

accomplished through device tree configuration,

where a specific physical memory region is marked

as reserved. This memory must be carefully chosen

to avoid conflicts with other system components

while ensuring it remains accessible across reboot

cycles. The reserved region is typically divided into

multiple sections: one for kernel panic messages,

another for console output, and additional areas for

function traces and user messages.

The size of each section requires careful

consideration based on the diagnostic needs and

available memory. Automotive systems often

allocate between one and four megabytes total, with

the largest portion dedicated to console output that

can capture the events leading up to a crash. Error

correction code (ECC) protection adds overhead

but proves essential for ensuring data integrity,

particularly in automotive environments where

electromagnetic interference and power fluctuations

during crashes can corrupt memory contents.

Runtime Initialization and Module Parameters

When device tree configuration isn't available or

needs to be overridden, ramoops can be configured

through kernel command line parameters or module

loading options. This flexibility proves valuable

during development when different memory

configurations need testing. The parameters include

the physical memory address, total size, and

individual buffer sizes for different data types.

Proper alignment of these memory regions with the

system's memory architecture ensures optimal

performance and reliability.

The initialization process validates the memory

region accessibility and sets up the necessary data

structures. During this phase, the system also

establishes memory protection mechanisms to

prevent the reserved region from being accidentally

overwritten during normal operation. This

protection must balance security with the need for

rapid writes during a kernel panic, where normal

memory protection mechanisms may no longer

function correctly.

pstore Filesystem Interface

Once initialized, pstore creates a pseudo-filesystem

that provides user-space access to crash data. After

a system crash and subsequent reboot, this

filesystem contains files representing different

aspects of the failure. The kernel panic message

appears as a dmesg file, while console output

leading up to the crash is preserved in separate

console files. Multiple crash records can be

maintained, allowing engineers to analyze patterns

across different failure events.

The filesystem interface simplifies crash data

retrieval and management. Standard file operations

can read the crash logs, while removing files clears

the corresponding memory areas for future crashes.

This design elegantly solves the problem of

accessing low-level crash data without requiring

specialized tools or direct memory access. The

filesystem also handles proper synchronization,

ensuring that ongoing crash captures aren't

corrupted by simultaneous read operations.

Implementing Crash Handlers

Maximizing crash logging effectiveness often

requires implementing custom panic notifiers that

capture vehicle-specific state information. These

handlers execute during the kernel panic sequence,

where timing is critical and available functionality

is limited. The implementation must be extremely

robust, as any failure in the crash handler could

prevent the capture of vital diagnostic information.

Priority ordering of crash handlers ensures that the

most critical information is captured first. In

automotive systems, this typically means recording

vehicle speed, steering angle, brake status, and

other safety-critical parameters before attempting to

capture more detailed system state. The handlers

must complete quickly, as extended execution

could trigger hardware watchdogs designed to

ensure rapid system recovery.

kdump Configuration and Setup

Setting up kdump requires reserving memory for

the crash kernel that executes after a panic. This

reservation must be large enough to run a minimal

kernel and the tools needed to capture the crashed

kernel's memory, yet small enough not to impact

normal system operation. Automotive systems

typically reserve between 128 and 256 megabytes,

depending on the total system memory and

diagnostic requirements.

The crash kernel configuration requires careful

tuning to ensure reliable operation. It must boot

quickly and capture memory efficiently while

operating in a potentially corrupted system

Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

8789

environment. The configuration specifies

compression levels, network settings for remote

storage, and timeout values that ensure the system

recovers within safety-critical time bounds. For

systems with limited local storage, kdump can be

configured to stream crash dumps to remote

servers, though this adds complexity to ensure

network availability during crash scenarios.

Optimizing for Automotive Constraints

Automotive systems impose unique constraints that

require specific optimizations. The crash capture

process must complete within strict time limits,

typically under five seconds, to meet safety

requirements for system recovery. This necessitates

selective memory dumping, where only critical

regions are captured rather than the entire system

memory. Careful selection of these regions based

on empirical failure analysis ensures that diagnostic

capability isn't sacrificed for speed.

Power management during crash capture presents

another challenge. The system must ensure

sufficient power remains available to complete the

crash dump even during emergency scenarios. This

often involves coordination with the vehicle's

power management system to maintain voltage

levels during the capture process. Some

implementations include capacitor banks

specifically to provide backup power for crash

logging operations.

Integration with Vehicle Safety Systems

The crash logging infrastructure must seamlessly

integrate with existing vehicle safety monitoring

systems. This integration ensures that crash data

capture doesn't interfere with safety-critical

functions while maximizing the diagnostic

information available. The implementation

typically involves hooks into the vehicle's fault

detection systems, allowing crash logging to begin

even before a complete kernel panic occurs.

Coordination with watchdog timers requires

particular attention. These safety mechanisms

ensure system recovery within bounded time, but

they can interrupt crash data capture if not properly

managed. The implementation must reset

watchdogs during crash capture while ensuring that

a failed capture attempt doesn't leave the system in

an unsafe state. This delicate balance often requires

hardware-level coordination between the crash

logging system and safety monitors.

Validation and Testing

Systematic testing ensures the crash logging

infrastructure operates reliably under all conditions.

This includes deliberate crash injection to verify

data capture, recovery time measurements to ensure

safety requirements are met, and stress testing

under various system loads. The testing must cover

edge cases such as crashes during boot, multiple

rapid crashes, and failures in the crash handling

code itself.

Environmental testing proves particularly important

for automotive systems. The crash logging must

function correctly across the full automotive

temperature range, under vibration, and with

marginal power supplies. Electromagnetic

compatibility testing ensures that the crash capture

process doesn't generate interference that could

affect other vehicle systems. Long-term reliability

testing validates that the reserved memory regions

maintain their integrity over the vehicle's lifetime.

Performance Considerations

Memory bandwidth during crash capture often

becomes the limiting factor for completion time.

The implementation must carefully balance the

comprehensiveness of captured data with available

memory bandwidth. Direct memory access (DMA)

controllers can significantly accelerate memory

copying, but their configuration must account for

the degraded system state during a crash. Multiple

DMA channels operating in parallel can reduce

capture time, though this increases complexity and

potential failure modes.

The choice of compression algorithms significantly

impacts both capture time and storage

requirements. While higher compression ratios

reduce storage needs, they require more CPU time

that may not be available during a crash.

Automotive implementations often use lightweight

compression that provides reasonable size reduction

with minimal computational overhead. The

compression must also be deterministic to ensure

consistent timing behavior across different crash

scenarios.

Table 1: Diagnostic Challenges in Autonomous Vehicle Kernel Crash Analysis [3, 4]

Challenge Category Severity Level

Kernel errors leading to crashes with minimal diagnostic information High

Memory management subsystem vulnerabilities in kernel crashes Moderate

Kernel panics resulting in silent data corruption Low to Moderate

Faults identified by conventional error detection mechanisms Moderate

Vehicles experiencing voltage fluctuations during emergency braking High

Automotive systems requiring functionality restoration within minimal timeframe Very High

Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

8790

Table 2: Reliability Metrics for Persistent Memory-Based Crash Capture Systems [5, 6]

Metric Effectiveness

Data corruption reduction with ECC-protected memory Very High

Prevention of memory region overwrites with proper isolation Very High

Critical failures diagnosable through kernel crash logs Moderately High

Post-crash data corruption reduction with ECC protection Very High

Root cause identification for previously undiagnosable failures High

Table 3: Diagnostic Capabilities and Reliability Metrics of Memory Dump Implementations [7, 8]

Metric Performance Level

Diagnostic sufficiency of traditional logging for complex failures Low to Moderate

Diagnostic capability increases with memory dumps vs. stack traces Very High

Success rate of optimized kdump implementations Very High

Success rate of traditional logging approaches Low

Capture time reduction with selective memory filtering Moderate

Critical diagnostic information retention with filtering Very High

Systems with non-deterministic behavior under boundary conditions Low

Previously undiagnosable failures resolved with memory dumps Very High

Table 4: Impact of Persistent Crash Logging on Development Metrics [9, 10]

Metric Impact Level

Reduction in average triage time for kernel-level failures Moderate

The mean time to repair (MTTR) decreases Moderate

Failure mode resolution with diagnostic capabilities Very High

Failure mode resolution without diagnostic capabilities High

Intermittent failure resolution rate before implementation Moderate

Intermittent failure resolution rate after implementation Very High

Race condition resolution rate after implementation Very High

Memory corruption resolution rate before implementation Moderate

Memory corruption resolution rate after implementation Very High

Failure rate reduction with comprehensive diagnostics High

Failure rate reduction without comprehensive diagnostics Low to Moderate

Certification time reduction Low to Moderate

7. Conclusions

In this section conclusions of work should be given.

The implementation of persistent crash logging

infrastructure represents a critical advancement in

enhancing the safety and reliability of autonomous

vehicles operating on embedded Linux platforms.

By combining kernel-level persistent storage

through pstore/ramoops with comprehensive

memory capture via kdump, organizations can

transform system failures from diagnostic blind

spots into valuable learning opportunities. This

dual-layer approach has demonstrated significant

benefits across multiple dimensions, including

substantial reductions in triage and resolution times,

dramatically improved diagnosis rates for complex

failure categories, and accelerated reliability

Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

8791

growth. The article establishes that properly

configured crash resilience mechanisms overcome

the unique constraints of automotive environments

while providing the diagnostic depth necessary to

resolve previously intractable issues such as race

conditions, memory corruption, and timing-

dependent failures. Most importantly, quantifiable

benefits in development time and system reliability

are directly translated into higher safety assurance

and more efficient certification processes,

ultimately creating the trust that autonomous

vehicle deployment is predicated upon. As

autonomous systems begin to play more significant

roles in transportation, recalcitrant crash

infrastructure must be considered not as a

diagnostic tool but as an integral part of safety-

critical system design.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Kuan Ting Chen et al., "Where Failures May Occur

in Automated Driving: A Fault Tree Analysis

Approach," ResearchGate, August 2022.

https://www.researchgate.net/publication/36253945

5_Where_Failures_May_Occur_in_Automated_Dri

ving_A_Fault_Tree_Analysis_Approach

[2] Jürgen Dobaj et al., "Cybersecurity Threat Analysis,

Risk Assessment, and Design Patterns for

Automotive Networked Embedded Systems: A

Case Study," ResearchGate, August 2021. [Online].

Available:

https://www.researchgate.net/publication/35419222

5_Cybersecurity_Threat_Analysis_Risk_Assessme

nt_and_Design_Patterns_for_Automotive_Network

ed_Embedded_Systems_A_Case_Study

[3] Weining Gu et al., "Characterization of Linux kernel

behavior under errors," ResearchGate, July 2003,

Available:

https://www.researchgate.net/publication/4021632_

Characterization_of_Linux_kernel_behavior_under

_errors

[4] Francesco Tusa et al., "Microservices and serverless

functions—lifecycle, performance, and resource

utilisation of edge-based real-time IoT analytics,"

Science Direct, June 2024. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S

0167739X24000529

[5] Ryan Aalund & Vincent Philip Paglioni, "Enhancing

Reliability in Embedded Systems Hardware: A

Literature Survey," ResearchGate, 2022. [Online].

Available:

https://www.researchgate.net/publication/38837738

4_Enhancing_Reliability_in_Embedded_Systems_

Hardware_A_Literature_Survey/fulltext/6794b336

8311ce680c350f3f/Enhancing-Reliability-in-

Embedded-Systems-Hardware-A-Literature-

Survey.pdf

[6] Hengrui Chen et al., "Exploring the Mechanism of

Crashes with Autonomous Vehicles Using Machine

Learning," ResearchGate, February 2021. [Online].

Available:

https://www.researchgate.net/publication/34967384

8_Exploring_the_Mechanism_of_Crashes_with_A

utonomous_Vehicles_Using_Machine_Learning

[7] Slim Dhouibi et al., "Safety Driven Optimization

Approach for Automotive Systems," ResearchGate,

January 2015. [Online]. Available:

https://www.researchgate.net/publication/27880752

1_Safety_Driven_Optimization_Approach_for_Aut

omotive_Systems

[8] Sedat Sonko et al., "A comprehensive review of

embedded systems in autonomous vehicles: Trends,

challenges, and future directions," ResearchGate,

January 2024. [Online]. Available:

https://www.researchgate.net/publication/37780764

6_A_comprehensive_review_of_embedded_system

s_in_autonomous_vehicles_Trends_challenges_and

_future_directions

[9] Jonas Freiderich & Sanja Lazarova-Molnar,

"Reliability assessment of manufacturing systems:

A comprehensive overview, challenges, and

opportunities," ResearchGate, February 2024.

[Online]. Available:

https://www.researchgate.net/publication/37738332

2_Reliability_assessment_of_manufacturing_syste

ms_A_comprehensive_overview_challenges_and_o

pportunities

[10] Rakesh Rana et al., "Evaluation of Standard

Reliability Growth Models in the Context of

Automotive Software Systems," ResearchGate,

June 2013. [Online]. Available:

https://www.researchgate.net/publication/27407991

5_Evaluation_of_Standard_Reliability_Growth_M

odels_in_the_Context_of_Automotive_Software_S

ystems

https://www.researchgate.net/publication/362539455_Where_Failures_May_Occur_in_Automated_Driving_A_Fault_Tree_Analysis_Approach
https://www.researchgate.net/publication/362539455_Where_Failures_May_Occur_in_Automated_Driving_A_Fault_Tree_Analysis_Approach
https://www.researchgate.net/publication/362539455_Where_Failures_May_Occur_in_Automated_Driving_A_Fault_Tree_Analysis_Approach
https://www.researchgate.net/publication/362539455_Where_Failures_May_Occur_in_Automated_Driving_A_Fault_Tree_Analysis_Approach
https://www.researchgate.net/publication/362539455_Where_Failures_May_Occur_in_Automated_Driving_A_Fault_Tree_Analysis_Approach
https://www.researchgate.net/publication/354192225_Cybersecurity_Threat_Analysis_Risk_Assessment_and_Design_Patterns_for_Automotive_Networked_Embedded_Systems_A_Case_Study
https://www.researchgate.net/publication/354192225_Cybersecurity_Threat_Analysis_Risk_Assessment_and_Design_Patterns_for_Automotive_Networked_Embedded_Systems_A_Case_Study
https://www.researchgate.net/publication/354192225_Cybersecurity_Threat_Analysis_Risk_Assessment_and_Design_Patterns_for_Automotive_Networked_Embedded_Systems_A_Case_Study
https://www.researchgate.net/publication/354192225_Cybersecurity_Threat_Analysis_Risk_Assessment_and_Design_Patterns_for_Automotive_Networked_Embedded_Systems_A_Case_Study
https://www.researchgate.net/publication/354192225_Cybersecurity_Threat_Analysis_Risk_Assessment_and_Design_Patterns_for_Automotive_Networked_Embedded_Systems_A_Case_Study
https://www.researchgate.net/publication/354192225_Cybersecurity_Threat_Analysis_Risk_Assessment_and_Design_Patterns_for_Automotive_Networked_Embedded_Systems_A_Case_Study
https://www.researchgate.net/publication/4021632_Characterization_of_Linux_kernel_behavior_under_errors
https://www.researchgate.net/publication/4021632_Characterization_of_Linux_kernel_behavior_under_errors
https://www.researchgate.net/publication/4021632_Characterization_of_Linux_kernel_behavior_under_errors
https://www.researchgate.net/publication/4021632_Characterization_of_Linux_kernel_behavior_under_errors
https://www.researchgate.net/publication/4021632_Characterization_of_Linux_kernel_behavior_under_errors
https://www.sciencedirect.com/science/article/pii/S0167739X24000529
https://www.sciencedirect.com/science/article/pii/S0167739X24000529
https://www.sciencedirect.com/science/article/pii/S0167739X24000529
https://www.sciencedirect.com/science/article/pii/S0167739X24000529
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/388377384_Enhancing_Reliability_in_Embedded_Systems_Hardware_A_Literature_Survey/fulltext/6794b3368311ce680c350f3f/Enhancing-Reliability-in-Embedded-Systems-Hardware-A-Literature-Survey.pdf
https://www.researchgate.net/publication/349673848_Exploring_the_Mechanism_of_Crashes_with_Autonomous_Vehicles_Using_Machine_Learning
https://www.researchgate.net/publication/349673848_Exploring_the_Mechanism_of_Crashes_with_Autonomous_Vehicles_Using_Machine_Learning
https://www.researchgate.net/publication/349673848_Exploring_the_Mechanism_of_Crashes_with_Autonomous_Vehicles_Using_Machine_Learning
https://www.researchgate.net/publication/349673848_Exploring_the_Mechanism_of_Crashes_with_Autonomous_Vehicles_Using_Machine_Learning
https://www.researchgate.net/publication/349673848_Exploring_the_Mechanism_of_Crashes_with_Autonomous_Vehicles_Using_Machine_Learning
https://www.researchgate.net/publication/278807521_Safety_Driven_Optimization_Approach_for_Automotive_Systems
https://www.researchgate.net/publication/278807521_Safety_Driven_Optimization_Approach_for_Automotive_Systems
https://www.researchgate.net/publication/278807521_Safety_Driven_Optimization_Approach_for_Automotive_Systems
https://www.researchgate.net/publication/278807521_Safety_Driven_Optimization_Approach_for_Automotive_Systems
https://www.researchgate.net/publication/278807521_Safety_Driven_Optimization_Approach_for_Automotive_Systems
https://www.researchgate.net/publication/377807646_A_comprehensive_review_of_embedded_systems_in_autonomous_vehicles_Trends_challenges_and_future_directions
https://www.researchgate.net/publication/377807646_A_comprehensive_review_of_embedded_systems_in_autonomous_vehicles_Trends_challenges_and_future_directions
https://www.researchgate.net/publication/377807646_A_comprehensive_review_of_embedded_systems_in_autonomous_vehicles_Trends_challenges_and_future_directions
https://www.researchgate.net/publication/377807646_A_comprehensive_review_of_embedded_systems_in_autonomous_vehicles_Trends_challenges_and_future_directions
https://www.researchgate.net/publication/377807646_A_comprehensive_review_of_embedded_systems_in_autonomous_vehicles_Trends_challenges_and_future_directions
https://www.researchgate.net/publication/377807646_A_comprehensive_review_of_embedded_systems_in_autonomous_vehicles_Trends_challenges_and_future_directions
https://www.researchgate.net/publication/377383322_Reliability_assessment_of_manufacturing_systems_A_comprehensive_overview_challenges_and_opportunities
https://www.researchgate.net/publication/377383322_Reliability_assessment_of_manufacturing_systems_A_comprehensive_overview_challenges_and_opportunities
https://www.researchgate.net/publication/377383322_Reliability_assessment_of_manufacturing_systems_A_comprehensive_overview_challenges_and_opportunities
https://www.researchgate.net/publication/377383322_Reliability_assessment_of_manufacturing_systems_A_comprehensive_overview_challenges_and_opportunities
https://www.researchgate.net/publication/377383322_Reliability_assessment_of_manufacturing_systems_A_comprehensive_overview_challenges_and_opportunities
https://www.researchgate.net/publication/377383322_Reliability_assessment_of_manufacturing_systems_A_comprehensive_overview_challenges_and_opportunities
https://www.researchgate.net/publication/274079915_Evaluation_of_Standard_Reliability_Growth_Models_in_the_Context_of_Automotive_Software_Systems
https://www.researchgate.net/publication/274079915_Evaluation_of_Standard_Reliability_Growth_Models_in_the_Context_of_Automotive_Software_Systems
https://www.researchgate.net/publication/274079915_Evaluation_of_Standard_Reliability_Growth_Models_in_the_Context_of_Automotive_Software_Systems
https://www.researchgate.net/publication/274079915_Evaluation_of_Standard_Reliability_Growth_Models_in_the_Context_of_Automotive_Software_Systems
https://www.researchgate.net/publication/274079915_Evaluation_of_Standard_Reliability_Growth_Models_in_the_Context_of_Automotive_Software_Systems
https://www.researchgate.net/publication/274079915_Evaluation_of_Standard_Reliability_Growth_Models_in_the_Context_of_Automotive_Software_Systems

