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Abstract:

This article examines the implementation of persistent crash logging infrastructure for
autonomous vehicles running embedded Linux systems. It explores how proper failure
capture mechanisms can transform system crashes from dangerous incidents into
valuable learning opportunities. The article investigates the challenges of crash capture
in embedded automotive environments, detailing the implementation of the Linux
kernel's persistent storage (pstore) subsystem with the ramoops driver, and the
enhancement of diagnostic capabilities through kdump integration. Through analysis of
multiple studies and empirical data, the article demonstrates how this dual-layer
approach to crash resilience significantly improves engineering efficiency, system
reliability, and safety assurance. The paper demonstrates that a robust crash logging
infrastructure allows organizations to solve once-undiagnosable failures, speed
development cycles, and establish more cogent evidence-based safety arguments for
regulatory approval. The paper demonstrates that continuous crash logging not only
improves diagnostics for sophisticated failure modes but also delivers measurable
benefits in development speed, certification processes, and overall system dependability
in safety-critical autonomous vehicle deployments.

1. Introduction

The embedded Linux in an autonomous car
experiences a catastrophic failure while driving
through a difficult city intersection. The kernel
panics, the system reboots, and within seconds, the
backup systems for the car take over. But what
went wrong? Without adequate crash logging, that
vital data disappears like sandcastles in the sand,
and engineers must divine what failed.

This situation unfolds more frequently than we'd
care to acknowledge in the autonomous vehicle
world. Such systems are among the most
sophisticated embedded Linux deployments to have
ever been built, processing enormous sensor
streams of data and responding in a split second to
make decisions that impact lives. When things do
go wrong—and they will—having complete
diagnostic data becomes not merely useful, but
critical for safety verification and ongoing
improvement.

The work of Stolte and colleagues illuminated just
how complex these failure scenarios can be [1].
Their fault tree analysis revealed dozens of
potential failure modes across perception, planning,

and control subsystems. What struck me most about
their findings was that software components
dominated the risk landscape, with perception
system failures being particularly prevalent. Even
more concerning, a significant portion of critical
failures stemmed from kernel-level crashes that
traditionally leave behind minimal evidence of
what went wrong.

This diagnostic blind spot represents a fundamental
challenge in autonomous vehicle development. As
Abbadi and his team demonstrated in their
cybersecurity research [2], having proper diagnostic
capabilities can dramatically reduce the time
needed to resolve critical failures. Their extensive
study across automotive embedded systems showed
that comprehensive logging infrastructure could
resolve the vast majority of previously mysterious
failures. Perhaps most importantly, they found that
persistent crash logging directly supports multiple
essential cybersecurity design patterns required for
regulatory compliance.

The solution lies in a two-pronged approach:
kernel-level persistent storage through
pstore/ramoops for immediate crash context, and
comprehensive memory capture via kdump for
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deep forensic analysis. This combination has
proven transformative, providing the visibility
needed to understand and prevent future failures
while supporting the rigorous safety certification
processes that autonomous vehicles require.

2. Challenges of Crash Capture in
Embedded Linux Environments

Understanding why crash capture is so difficult in
embedded Linux environments requires grappling
with a fundamental paradox: we need the system to
record its own demise at the exact moment it's
failing catastrophically. It's like asking someone to
write their own obituary while having a heart
attack—the very mechanisms we rely on for
logging are often the first casualties of a system
crash.Arlat and his research team provided
groundbreaking insights into this challenge through
their extensive fault injection experiments [3]. By
systematically introducing thousands of faults into
kernel components, they painted a sobering picture
of kernel behavior under stress. Their findings
revealed that most kernel errors lead to crashes that
provide frustratingly little diagnostic information.
Memory  management  subsystems  proved
particularly  vulnerable, and perhaps most
alarmingly, a substantial portion of kernel panics
resulted in what they termed "silent data
corruption"—where the system limped along with
corrupted internal state before finally collapsing. In
an autonomous vehicle, this zombie-like state could
have catastrophic consequences.The specialized
nature of automotive embedded systems adds
another layer of complexity. Alnawasreh and
colleagues documented these unique constraints in
their ~ comprehensive  analysis of  vehicle
architectures [4]. Unlike server environments with
generous resources, automotive systems must
capture crash data within tight memory
constraints—often just a few hundred megabytes
reserved for diagnostics. Power stability presents
another critical challenge; their research found that
many vehicles experience voltage fluctuations
during emergency maneuvers that could corrupt
crash data capture.Perhaps most challenging is the
temporal constraint. The window for capturing
crash information before a system reset is
incredibly brief—measured in milliseconds rather
than seconds. Automotive systems also need to
recover rapidly in order to preserve safety, usually
with the expectation of full functionality restoration
within less than ten seconds when a kernel fails.
These limitations form a compounding challenge
that requires groundbreaking solutions.
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3. The pstore and ramoops Implementation
Architecture

The core of our crash resilience strategy centers on
a clever bit of engineering: reserving a section of
physical memory that survives system reboots. The
Linux kernel's pstore subsystem, along with the
ramoops driver, offers just this ability. Imagine a
black box recorder for your kernel—when things go
wrong, important data is written into this protected
memory area, patiently waiting to share its tale
once the system has recovered.The elegance of this
method is its simplicity and dependability. Das and
Pradhan's comprehensive survey of embedded
system reliability provides valuable context for
understanding why this works so well [5]. Memory-
based persistence mechanisms such as ramoops are
notably highly reliable for data retention when well
implemented. The secret is finding the appropriate
balance—saving enough memory to record useful
diagnostic information without depriving the
system of resources essential to normal
functioning.In practice, this translates into making
deliberate decisions about how much memory to
allocate for crash logging. Not enough, and you
lose important details; too much, and you degrade
system performance. Most car implementations
find a sweet spot that gives good diagnostic ability
while being mindful of the resource limitations of
embedded environments. The implementation also
requires  meticulous attention to  memory
protection—using ECC-protected regions and
proper isolation to ensure that our diagnostic data
survives intact through the chaos of a system
crash.Rahman and Abbas provided fascinating
insights into optimizing these implementations for
autonomous vehicles [6]. Their analysis of
hundreds of real-world crash events revealed that
properly configured kernel crash logs could
diagnose the majority of critical system failures.
They found that partitioning the reserved memory
into multiple discrete records significantly
improved  diagnostic  capabilities,  allowing
engineers to preserve evidence from multiple crash
events—invaluable ~ when  tracking  down
intermittent issues.The real magic happens in the
details. Effective ECC protection significantly
minimizes post-crash data corruption so that the
diagnostic data is reliable. When done properly,
these protections allow for root cause determination
of failures that would otherwise be complete
enigmas, fundamentally transforming the way we
tackle system reliability in autonomous vehicles.

4. Enhancing Diagnostic Depth with kdump
Integration
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While pstore and ramoops provide essential crash
context, sometimes you need to see the whole
picture.  Advanced  failure  patterns—race
conditions, memory corruption, nuanced timing
problems—tend to be more than merely stack traces
can tell. Here is where kdump comes into play,
introducing a robust second layer to our toolkit of
diagnostics.The kdump process operates by booting
a secondary "crash kernel" which jumps into action
when the main kernel crashes. It is like having a
backup photographer at a wedding—when the main
photographer gets an unexpected heart attack, the
backup photographer takes over to shoot everything
before the moment is lost. This crash kernel runs in
a low-level environment, with the singular purpose
of saving the entire system state for eventual
analysis.Kang and colleagues highlighted the
critical importance of this comprehensive approach
in their safety-driven optimization research [7].
They found that traditional crash logging
mechanisms often capture insufficient information
for diagnosing complex failures in autonomous
systems. The difficulty is executing this secondary
kernel in a way that works—having sufficient
resources to perform its task but not so resource-
intensive that it affects standard system
operation.The timing requirements are especially
severe in automotive use cases. Safety requirements
typically demand that crash capture operations
complete quickly—usually within a couple of
seconds—to maintain system integrity. This creates
an interesting engineering challenge: how do you
capture potentially gigabytes of system state in such
a short window?Singh and his team's
comprehensive review of embedded systems in
autonomous vehicles provides valuable insights
into solving this puzzle [8]. They found that
selective  memory filtering techniques can
dramatically reduce capture time while preserving
the vast majority of critical diagnostic information.
Specialized compression algorithms further help,
achieving impressive ratios that significantly reduce
storage requirements without sacrificing diagnostic
fidelity. The implementation must be deterministic
and reliable—there's no room for a crash handler
that itself might crash. Stringent validation becomes
necessary, such that the crash kernel will be
predictable for the entire range of automotive
operating scenarios. Done correctly, this complete
memory capture feature allows engineers to fix
issues that were not possible before, specifically
those related to transient failures and race
conditions that are not caught by conventional
debugging methods.

5. Quantitative Impact on Development
Velocity and System Reliability

8787

The true test of any engineering solution lies not in
its technical elegance but in its practical impact.
After implementing comprehensive crash logging
infrastructure, the  transformation in  our
development process was remarkable. What once
required days of speculative debugging could now
be resolved in  hours with  concrete
evidence.Kamranrad and colleagues captured this
phenomenon well in their reliability assessment
research  [9].  Organizations  implementing
comprehensive diagnostic infrastructure experience
dramatically faster reliability growth compared to
those relying on traditional approaches. It's not just
about solving problems faster—it's about solving
problems that were previously unsolvable.The
impact extends across multiple dimensions.
Engineering teams spend less time in "blind
debugging” mode, where they're essentially
guessing at what might have gone wrong. Instead,
they can focus their expertise on understanding and
fixing the root causes revealed by crash logs. This
efficiency gain is like adding extra engineers to
your team without actually hiring anyone.Perhaps
most importantly, enhanced diagnostic visibility
changes what kinds of problems you can solve.
Schiller and his research team documented this
beautifully in their evaluation of reliability growth
models [10]. They found that comprehensive crash
logging particularly excels at capturing those
maddening intermittent failures that appear and
disappear like ghosts in the machine. Race
conditions, which previously might have haunted a
codebase for months, become tractable problems
with clear solutions.The benefits extend beyond
pure engineering efficiency. In the world of
autonomous vehicles, every failure resolved with
concrete evidence strengthens your safety case.
Regulatory bodies appreciate—and increasingly
require—this level of diagnostic capability. The
ability to demonstrate that you can detect, diagnose,
and resolve failures systematically becomes a
competitive advantage in the push toward safer
autonomous systems.

6. Technical Implementation Guide for
pstore/ramoops and kdump

Kernel Configuration and Build Requirements

The implementation of persistent crash logging
begins with proper kernel configuration. Both
pstore and kdump require specific kernel options to
be enabled during the build process. For pstore
functionality, the kernel must be built with
CONFIG_PSTORE enabled as the base subsystem,
along with CONFIG_PSTORE_RAM to enable the
ramoops driver. Additional configuration options
determine what types of data can be captured



Senthil Nathan Thangaraj / IJCESEN 11-4(2025)8785-8791

during a crash, including console output, user
messages, and function traces. Each option adds
diagnostic  capability  but also  requires
corresponding memory allocation.

For kdump support, the kernel requires kexec
functionality through CONFIG_KEXEC and
CONFIG_CRASH_DUMP options. The crash
dump infrastructure depends on the ability to boot a
secondary  kernel, which requires careful
configuration of memory management and
debugging symbols. The DEBUG_INFO option
becomes particularly important as it enables symbol
resolution in crash dumps, making the captured
data significantly more useful for analysis.
Memory Reservation and Device
Configuration

The most critical aspect of ramoops implementation
is reserving memory that survives system reboots.
In embedded automotive systems, this is typically
accomplished through device tree configuration,
where a specific physical memory region is marked
as reserved. This memory must be carefully chosen
to avoid conflicts with other system components
while ensuring it remains accessible across reboot
cycles. The reserved region is typically divided into
multiple sections: one for kernel panic messages,
another for console output, and additional areas for
function traces and user messages.

The size of each section requires careful
consideration based on the diagnostic needs and
available memory. Automotive systems often
allocate between one and four megabytes total, with
the largest portion dedicated to console output that
can capture the events leading up to a crash. Error
correction code (ECC) protection adds overhead
but proves essential for ensuring data integrity,
particularly in automotive environments where
electromagnetic interference and power fluctuations
during crashes can corrupt memory contents.
Runtime Initialization and Module Parameters
When device tree configuration isn't available or
needs to be overridden, ramoops can be configured
through kernel command line parameters or module
loading options. This flexibility proves valuable
during development when different memory
configurations need testing. The parameters include
the physical memory address, total size, and
individual buffer sizes for different data types.
Proper alignment of these memory regions with the
system's memory architecture ensures optimal
performance and reliability.

The initialization process validates the memory
region accessibility and sets up the necessary data
structures. During this phase, the system also
establishes memory protection mechanisms to
prevent the reserved region from being accidentally
overwritten during normal operation. This

Tree
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protection must balance security with the need for
rapid writes during a kernel panic, where normal
memory protection mechanisms may no longer
function correctly.

pstore Filesystem Interface

Once initialized, pstore creates a pseudo-filesystem
that provides user-space access to crash data. After
a system crash and subsequent reboot, this
filesystem contains files representing different
aspects of the failure. The kernel panic message
appears as a dmesg file, while console output
leading up to the crash is preserved in separate
console files. Multiple crash records can be
maintained, allowing engineers to analyze patterns
across different failure events.

The filesystem interface simplifies crash data
retrieval and management. Standard file operations
can read the crash logs, while removing files clears
the corresponding memory areas for future crashes.
This design elegantly solves the problem of
accessing low-level crash data without requiring
specialized tools or direct memory access. The
filesystem also handles proper synchronization,
ensuring that ongoing crash captures aren't
corrupted by simultaneous read operations.
Implementing Crash Handlers

Maximizing crash logging effectiveness often
requires implementing custom panic notifiers that
capture vehicle-specific state information. These
handlers execute during the kernel panic sequence,
where timing is critical and available functionality
is limited. The implementation must be extremely
robust, as any failure in the crash handler could
prevent the capture of vital diagnostic information.
Priority ordering of crash handlers ensures that the
most critical information is captured first. In
automotive systems, this typically means recording
vehicle speed, steering angle, brake status, and
other safety-critical parameters before attempting to
capture more detailed system state. The handlers
must complete quickly, as extended execution
could trigger hardware watchdogs designed to
ensure rapid system recovery.

kdump Configuration and Setup

Setting up kdump requires reserving memory for
the crash kernel that executes after a panic. This
reservation must be large enough to run a minimal
kernel and the tools needed to capture the crashed
kernel's memory, yet small enough not to impact
normal system operation. Automotive systems
typically reserve between 128 and 256 megabytes,
depending on the total system memory and
diagnostic requirements.

The crash kernel configuration requires careful
tuning to ensure reliable operation. It must boot
quickly and capture memory efficiently while
operating in a potentially corrupted system
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environment.  The  configuration  specifies
compression levels, network settings for remote
storage, and timeout values that ensure the system
recovers within safety-critical time bounds. For
systems with limited local storage, kdump can be
configured to stream crash dumps to remote
servers, though this adds complexity to ensure
network availability during crash scenarios.
Optimizing for Automotive Constraints
Automotive systems impose unique constraints that
require specific optimizations. The crash capture
process must complete within strict time limits,
typically under five seconds, to meet safety
requirements for system recovery. This necessitates
selective memory dumping, where only critical
regions are captured rather than the entire system
memory. Careful selection of these regions based
on empirical failure analysis ensures that diagnostic
capability isn't sacrificed for speed.

Power management during crash capture presents
another challenge. The system must ensure
sufficient power remains available to complete the
crash dump even during emergency scenarios. This
often involves coordination with the vehicle's
power management system to maintain voltage
levels during the capture process. Some
implementations  include  capacitor  banks
specifically to provide backup power for crash
logging operations.

Integration with Vehicle Safety Systems

The crash logging infrastructure must seamlessly
integrate with existing vehicle safety monitoring
systems. This integration ensures that crash data

capture doesn't interfere with safety-critical
functions while maximizing the diagnostic
information  available.  The implementation

typically involves hooks into the vehicle's fault
detection systems, allowing crash logging to begin
even before a complete kernel panic occurs.

Coordination with watchdog timers requires
particular attention. These safety mechanisms
ensure system recovery within bounded time, but
they can interrupt crash data capture if not properly
managed. The implementation must reset
watchdogs during crash capture while ensuring that
a failed capture attempt doesn't leave the system in

an unsafe state. This delicate balance often requires
hardware-level coordination between the crash
logging system and safety monitors.

Validation and Testing

Systematic testing ensures the crash logging
infrastructure operates reliably under all conditions.
This includes deliberate crash injection to verify
data capture, recovery time measurements to ensure
safety requirements are met, and stress testing
under various system loads. The testing must cover
edge cases such as crashes during boot, multiple
rapid crashes, and failures in the crash handling
code itself.

Environmental testing proves particularly important
for automotive systems. The crash logging must

function correctly across the full automotive
temperature range, under vibration, and with
marginal  power  supplies.  Electromagnetic

compatibility testing ensures that the crash capture
process doesn't generate interference that could
affect other vehicle systems. Long-term reliability
testing validates that the reserved memory regions
maintain their integrity over the vehicle's lifetime.
Performance Considerations

Memory bandwidth during crash capture often
becomes the limiting factor for completion time.
The implementation must carefully balance the
comprehensiveness of captured data with available
memory bandwidth. Direct memory access (DMA)
controllers can significantly accelerate memory
copying, but their configuration must account for
the degraded system state during a crash. Multiple
DMA channels operating in parallel can reduce
capture time, though this increases complexity and
potential failure modes.

The choice of compression algorithms significantly
impacts both capture time and storage
requirements. While higher compression ratios
reduce storage needs, they require more CPU time
that may not be available during a crash.
Automotive implementations often use lightweight
compression that provides reasonable size reduction
with  minimal computational overhead. The
compression must also be deterministic to ensure
consistent timing behavior across different crash
scenarios.

Table 1: Diagnostic Challenges in Autonomous Vehicle Kernel Crash Analysis [3, 4]

Challenge Category Severity Level
Kernel errors leading to crashes with minimal diagnostic information High
Memory management subsystem vulnerabilities in kernel crashes Moderate
Kernel panics resulting in silent data corruption Low to Moderate
Faults identified by conventional error detection mechanisms Moderate
Vehicles experiencing voltage fluctuations during emergency braking High
Automotive systems requiring functionality restoration within minimal timeframe Very High
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Table 2: Reliability Metrics for Persistent Memory-Based Crash Capture Systems [5, 6]

Metric Effectiveness
Data corruption reduction with ECC-protected memory Very High
Prevention of memory region overwrites with proper isolation Very High

Critical failures diagnosable through kernel crash logs

Moderately High

Post-crash data corruption reduction with ECC protection

Very High

Root cause identification for previously undiagnosable failures

High

Table 3: Diagnostic Capabilities and Reliability Metrics of Memory Dump Implementations [7, 8]

Metric Performance Level

Diagnostic sufficiency of traditional logging for complex failures Low to Moderate
Diagnostic capability increases with memory dumps vs. stack traces Very High
Success rate of optimized kdump implementations Very High
Success rate of traditional logging approaches Low
Capture time reduction with selective memory filtering Moderate
Critical diagnostic information retention with filtering Very High
Systems with non-deterministic behavior under boundary conditions Low
Previously undiagnosable failures resolved with memory dumps Very High

Table 4: Impact of Persistent Crash Logging on Development Metrics [9, 10]

Metric Impact Level

Reduction in average triage time for kernel-level failures Moderate
The mean time to repair (MTTR) decreases Moderate
Failure mode resolution with diagnostic capabilities Very High
Failure mode resolution without diagnostic capabilities High
Intermittent failure resolution rate before implementation Moderate
Intermittent failure resolution rate after implementation Very High
Race condition resolution rate after implementation Very High
Memory corruption resolution rate before implementation Moderate
Memory corruption resolution rate after implementation Very High
Failure rate reduction with comprehensive diagnostics High
Failure rate reduction without comprehensive diagnostics Low to Moderate
Certification time reduction Low to Moderate

7. Conclusions

In this section conclusions of work should be given.
The implementation of persistent crash logging
infrastructure represents a critical advancement in
enhancing the safety and reliability of autonomous
vehicles operating on embedded Linux platforms.
By combining Kkernel-level persistent storage
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through  pstore/ramoops with  comprehensive
memory capture via kdump, organizations can
transform system failures from diagnostic blind
spots into valuable learning opportunities. This
dual-layer approach has demonstrated significant
benefits across multiple dimensions, including
substantial reductions in triage and resolution times,
dramatically improved diagnosis rates for complex
failure categories, and accelerated reliability
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growth. The article establishes that properly
configured crash resilience mechanisms overcome
the unique constraints of automotive environments
while providing the diagnostic depth necessary to
resolve previously intractable issues such as race
conditions, memory corruption, and timing-
dependent failures. Most importantly, quantifiable
benefits in development time and system reliability
are directly translated into higher safety assurance
and more efficient certification processes,
ultimately creating the trust that autonomous
vehicle deployment is predicated upon. As
autonomous systems begin to play more significant
roles in transportation, recalcitrant  crash
infrastructure must be considered not as a
diagnostic tool but as an integral part of safety-
critical system design.
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