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Abstract:  
 

This article examines the implementation of persistent crash logging infrastructure for 

autonomous vehicles running embedded Linux systems. It explores how proper failure 

capture mechanisms can transform system crashes from dangerous incidents into 

valuable learning opportunities. The article investigates the challenges of crash capture 

in embedded automotive environments, detailing the implementation of the Linux 

kernel's persistent storage (pstore) subsystem with the ramoops driver, and the 

enhancement of diagnostic capabilities through kdump integration. Through analysis of 

multiple studies and empirical data, the article demonstrates how this dual-layer 

approach to crash resilience significantly improves engineering efficiency, system 

reliability, and safety assurance. The paper demonstrates that a robust crash logging 

infrastructure allows organizations to solve once-undiagnosable failures, speed 

development cycles, and establish more cogent evidence-based safety arguments for 

regulatory approval. The paper demonstrates that continuous crash logging not only 

improves diagnostics for sophisticated failure modes but also delivers measurable 

benefits in development speed, certification processes, and overall system dependability 

in safety-critical autonomous vehicle deployments. 

 

1. Introduction 
 

The embedded Linux in an autonomous car 

experiences a catastrophic failure while driving 

through a difficult city intersection. The kernel 

panics, the system reboots, and within seconds, the 

backup systems for the car take over. But what 

went wrong? Without adequate crash logging, that 

vital data disappears like sandcastles in the sand, 

and engineers must divine what failed. 

This situation unfolds more frequently than we'd 

care to acknowledge in the autonomous vehicle 

world. Such systems are among the most 

sophisticated embedded Linux deployments to have 

ever been built, processing enormous sensor 

streams of data and responding in a split second to 

make decisions that impact lives. When things do 

go wrong—and they will—having complete 

diagnostic data becomes not merely useful, but 

critical for safety verification and ongoing 

improvement. 

The work of Stolte and colleagues illuminated just 

how complex these failure scenarios can be [1]. 

Their fault tree analysis revealed dozens of 

potential failure modes across perception, planning, 

and control subsystems. What struck me most about 

their findings was that software components 

dominated the risk landscape, with perception 

system failures being particularly prevalent. Even 

more concerning, a significant portion of critical 

failures stemmed from kernel-level crashes that 

traditionally leave behind minimal evidence of 

what went wrong. 

This diagnostic blind spot represents a fundamental 

challenge in autonomous vehicle development. As 

Abbadi and his team demonstrated in their 

cybersecurity research [2], having proper diagnostic 

capabilities can dramatically reduce the time 

needed to resolve critical failures. Their extensive 

study across automotive embedded systems showed 

that comprehensive logging infrastructure could 

resolve the vast majority of previously mysterious 

failures. Perhaps most importantly, they found that 

persistent crash logging directly supports multiple 

essential cybersecurity design patterns required for 

regulatory compliance. 

The solution lies in a two-pronged approach: 

kernel-level persistent storage through 

pstore/ramoops for immediate crash context, and 

comprehensive memory capture via kdump for 
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deep forensic analysis. This combination has 

proven transformative, providing the visibility 

needed to understand and prevent future failures 

while supporting the rigorous safety certification 

processes that autonomous vehicles require. 

 
2. Challenges of Crash Capture in 

Embedded Linux Environments 
 

Understanding why crash capture is so difficult in 

embedded Linux environments requires grappling 

with a fundamental paradox: we need the system to 

record its own demise at the exact moment it's 

failing catastrophically. It's like asking someone to 

write their own obituary while having a heart 

attack—the very mechanisms we rely on for 

logging are often the first casualties of a system 

crash.Arlat and his research team provided 

groundbreaking insights into this challenge through 

their extensive fault injection experiments [3]. By 

systematically introducing thousands of faults into 

kernel components, they painted a sobering picture 

of kernel behavior under stress. Their findings 

revealed that most kernel errors lead to crashes that 

provide frustratingly little diagnostic information. 

Memory management subsystems proved 

particularly vulnerable, and perhaps most 

alarmingly, a substantial portion of kernel panics 

resulted in what they termed "silent data 

corruption"—where the system limped along with 

corrupted internal state before finally collapsing. In 

an autonomous vehicle, this zombie-like state could 

have catastrophic consequences.The specialized 

nature of automotive embedded systems adds 

another layer of complexity. Alnawasreh and 

colleagues documented these unique constraints in 

their comprehensive analysis of vehicle 

architectures [4]. Unlike server environments with 

generous resources, automotive systems must 

capture crash data within tight memory 

constraints—often just a few hundred megabytes 

reserved for diagnostics. Power stability presents 

another critical challenge; their research found that 

many vehicles experience voltage fluctuations 

during emergency maneuvers that could corrupt 

crash data capture.Perhaps most challenging is the 

temporal constraint. The window for capturing 

crash information before a system reset is 

incredibly brief—measured in milliseconds rather 

than seconds. Automotive systems also need to 

recover rapidly in order to preserve safety, usually 

with the expectation of full functionality restoration 

within less than ten seconds when a kernel fails. 

These limitations form a compounding challenge 

that requires groundbreaking solutions. 

3. The pstore and ramoops Implementation 

Architecture 
 

The core of our crash resilience strategy centers on 

a clever bit of engineering: reserving a section of 

physical memory that survives system reboots. The 

Linux kernel's pstore subsystem, along with the 

ramoops driver, offers just this ability. Imagine a 

black box recorder for your kernel—when things go 

wrong, important data is written into this protected 

memory area, patiently waiting to share its tale 

once the system has recovered.The elegance of this 

method is its simplicity and dependability. Das and 

Pradhan's comprehensive survey of embedded 

system reliability provides valuable context for 

understanding why this works so well [5]. Memory-

based persistence mechanisms such as ramoops are 

notably highly reliable for data retention when well 

implemented. The secret is finding the appropriate 

balance—saving enough memory to record useful 

diagnostic information without depriving the 

system of resources essential to normal 

functioning.In practice, this translates into making 

deliberate decisions about how much memory to 

allocate for crash logging. Not enough, and you 

lose important details; too much, and you degrade 

system performance. Most car implementations 

find a sweet spot that gives good diagnostic ability 

while being mindful of the resource limitations of 

embedded environments. The implementation also 

requires meticulous attention to memory 

protection—using ECC-protected regions and 

proper isolation to ensure that our diagnostic data 

survives intact through the chaos of a system 

crash.Rahman and Abbas provided fascinating 

insights into optimizing these implementations for 

autonomous vehicles [6]. Their analysis of 

hundreds of real-world crash events revealed that 

properly configured kernel crash logs could 

diagnose the majority of critical system failures. 

They found that partitioning the reserved memory 

into multiple discrete records significantly 

improved diagnostic capabilities, allowing 

engineers to preserve evidence from multiple crash 

events—invaluable when tracking down 

intermittent issues.The real magic happens in the 

details. Effective ECC protection significantly 

minimizes post-crash data corruption so that the 

diagnostic data is reliable. When done properly, 

these protections allow for root cause determination 

of failures that would otherwise be complete 

enigmas, fundamentally transforming the way we 

tackle system reliability in autonomous vehicles. 

4. Enhancing Diagnostic Depth with kdump 

Integration 
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While pstore and ramoops provide essential crash 

context, sometimes you need to see the whole 

picture. Advanced failure patterns—race 

conditions, memory corruption, nuanced timing 

problems—tend to be more than merely stack traces 

can tell. Here is where kdump comes into play, 

introducing a robust second layer to our toolkit of 

diagnostics.The kdump process operates by booting 

a secondary "crash kernel" which jumps into action 

when the main kernel crashes. It is like having a 

backup photographer at a wedding—when the main 

photographer gets an unexpected heart attack, the 

backup photographer takes over to shoot everything 

before the moment is lost. This crash kernel runs in 

a low-level environment, with the singular purpose 

of saving the entire system state for eventual 

analysis.Kang and colleagues highlighted the 

critical importance of this comprehensive approach 

in their safety-driven optimization research [7]. 

They found that traditional crash logging 

mechanisms often capture insufficient information 

for diagnosing complex failures in autonomous 

systems. The difficulty is executing this secondary 

kernel in a way that works—having sufficient 

resources to perform its task but not so resource-

intensive that it affects standard system 

operation.The timing requirements are especially 

severe in automotive use cases. Safety requirements 

typically demand that crash capture operations 

complete quickly—usually within a couple of 

seconds—to maintain system integrity. This creates 

an interesting engineering challenge: how do you 

capture potentially gigabytes of system state in such 

a short window?Singh and his team's 

comprehensive review of embedded systems in 

autonomous vehicles provides valuable insights 

into solving this puzzle [8]. They found that 

selective memory filtering techniques can 

dramatically reduce capture time while preserving 

the vast majority of critical diagnostic information. 

Specialized compression algorithms further help, 

achieving impressive ratios that significantly reduce 

storage requirements without sacrificing diagnostic 

fidelity.The implementation must be deterministic 

and reliable—there's no room for a crash handler 

that itself might crash. Stringent validation becomes 

necessary, such that the crash kernel will be 

predictable for the entire range of automotive 

operating scenarios. Done correctly, this complete 

memory capture feature allows engineers to fix 

issues that were not possible before, specifically 

those related to transient failures and race 

conditions that are not caught by conventional 

debugging methods. 

5. Quantitative Impact on Development 

Velocity and System Reliability 

The true test of any engineering solution lies not in 

its technical elegance but in its practical impact. 

After implementing comprehensive crash logging 

infrastructure, the transformation in our 

development process was remarkable. What once 

required days of speculative debugging could now 

be resolved in hours with concrete 

evidence.Kamranrad and colleagues captured this 

phenomenon well in their reliability assessment 

research [9]. Organizations implementing 

comprehensive diagnostic infrastructure experience 

dramatically faster reliability growth compared to 

those relying on traditional approaches. It's not just 

about solving problems faster—it's about solving 

problems that were previously unsolvable.The 

impact extends across multiple dimensions. 

Engineering teams spend less time in "blind 

debugging" mode, where they're essentially 

guessing at what might have gone wrong. Instead, 

they can focus their expertise on understanding and 

fixing the root causes revealed by crash logs. This 

efficiency gain is like adding extra engineers to 

your team without actually hiring anyone.Perhaps 

most importantly, enhanced diagnostic visibility 

changes what kinds of problems you can solve. 

Schiller and his research team documented this 

beautifully in their evaluation of reliability growth 

models [10]. They found that comprehensive crash 

logging particularly excels at capturing those 

maddening intermittent failures that appear and 

disappear like ghosts in the machine. Race 

conditions, which previously might have haunted a 

codebase for months, become tractable problems 

with clear solutions.The benefits extend beyond 

pure engineering efficiency. In the world of 

autonomous vehicles, every failure resolved with 

concrete evidence strengthens your safety case. 

Regulatory bodies appreciate—and increasingly 

require—this level of diagnostic capability. The 

ability to demonstrate that you can detect, diagnose, 

and resolve failures systematically becomes a 

competitive advantage in the push toward safer 

autonomous systems. 

6. Technical Implementation Guide for 

pstore/ramoops and kdump 
 

Kernel Configuration and Build Requirements 

The implementation of persistent crash logging 

begins with proper kernel configuration. Both 

pstore and kdump require specific kernel options to 

be enabled during the build process. For pstore 

functionality, the kernel must be built with 

CONFIG_PSTORE enabled as the base subsystem, 

along with CONFIG_PSTORE_RAM to enable the 

ramoops driver. Additional configuration options 

determine what types of data can be captured 
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during a crash, including console output, user 

messages, and function traces. Each option adds 

diagnostic capability but also requires 

corresponding memory allocation. 

For kdump support, the kernel requires kexec 

functionality through CONFIG_KEXEC and 

CONFIG_CRASH_DUMP options. The crash 

dump infrastructure depends on the ability to boot a 

secondary kernel, which requires careful 

configuration of memory management and 

debugging symbols. The DEBUG_INFO option 

becomes particularly important as it enables symbol 

resolution in crash dumps, making the captured 

data significantly more useful for analysis. 

Memory Reservation and Device Tree 

Configuration 

The most critical aspect of ramoops implementation 

is reserving memory that survives system reboots. 

In embedded automotive systems, this is typically 

accomplished through device tree configuration, 

where a specific physical memory region is marked 

as reserved. This memory must be carefully chosen 

to avoid conflicts with other system components 

while ensuring it remains accessible across reboot 

cycles. The reserved region is typically divided into 

multiple sections: one for kernel panic messages, 

another for console output, and additional areas for 

function traces and user messages. 

The size of each section requires careful 

consideration based on the diagnostic needs and 

available memory. Automotive systems often 

allocate between one and four megabytes total, with 

the largest portion dedicated to console output that 

can capture the events leading up to a crash. Error 

correction code (ECC) protection adds overhead 

but proves essential for ensuring data integrity, 

particularly in automotive environments where 

electromagnetic interference and power fluctuations 

during crashes can corrupt memory contents. 

Runtime Initialization and Module Parameters 

When device tree configuration isn't available or 

needs to be overridden, ramoops can be configured 

through kernel command line parameters or module 

loading options. This flexibility proves valuable 

during development when different memory 

configurations need testing. The parameters include 

the physical memory address, total size, and 

individual buffer sizes for different data types. 

Proper alignment of these memory regions with the 

system's memory architecture ensures optimal 

performance and reliability. 

The initialization process validates the memory 

region accessibility and sets up the necessary data 

structures. During this phase, the system also 

establishes memory protection mechanisms to 

prevent the reserved region from being accidentally 

overwritten during normal operation. This 

protection must balance security with the need for 

rapid writes during a kernel panic, where normal 

memory protection mechanisms may no longer 

function correctly. 

pstore Filesystem Interface 

Once initialized, pstore creates a pseudo-filesystem 

that provides user-space access to crash data. After 

a system crash and subsequent reboot, this 

filesystem contains files representing different 

aspects of the failure. The kernel panic message 

appears as a dmesg file, while console output 

leading up to the crash is preserved in separate 

console files. Multiple crash records can be 

maintained, allowing engineers to analyze patterns 

across different failure events. 

The filesystem interface simplifies crash data 

retrieval and management. Standard file operations 

can read the crash logs, while removing files clears 

the corresponding memory areas for future crashes. 

This design elegantly solves the problem of 

accessing low-level crash data without requiring 

specialized tools or direct memory access. The 

filesystem also handles proper synchronization, 

ensuring that ongoing crash captures aren't 

corrupted by simultaneous read operations. 

Implementing Crash Handlers 

Maximizing crash logging effectiveness often 

requires implementing custom panic notifiers that 

capture vehicle-specific state information. These 

handlers execute during the kernel panic sequence, 

where timing is critical and available functionality 

is limited. The implementation must be extremely 

robust, as any failure in the crash handler could 

prevent the capture of vital diagnostic information. 

Priority ordering of crash handlers ensures that the 

most critical information is captured first. In 

automotive systems, this typically means recording 

vehicle speed, steering angle, brake status, and 

other safety-critical parameters before attempting to 

capture more detailed system state. The handlers 

must complete quickly, as extended execution 

could trigger hardware watchdogs designed to 

ensure rapid system recovery. 

kdump Configuration and Setup 

Setting up kdump requires reserving memory for 

the crash kernel that executes after a panic. This 

reservation must be large enough to run a minimal 

kernel and the tools needed to capture the crashed 

kernel's memory, yet small enough not to impact 

normal system operation. Automotive systems 

typically reserve between 128 and 256 megabytes, 

depending on the total system memory and 

diagnostic requirements. 

The crash kernel configuration requires careful 

tuning to ensure reliable operation. It must boot 

quickly and capture memory efficiently while 

operating in a potentially corrupted system 
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environment. The configuration specifies 

compression levels, network settings for remote 

storage, and timeout values that ensure the system 

recovers within safety-critical time bounds. For 

systems with limited local storage, kdump can be 

configured to stream crash dumps to remote 

servers, though this adds complexity to ensure 

network availability during crash scenarios. 

Optimizing for Automotive Constraints 

Automotive systems impose unique constraints that 

require specific optimizations. The crash capture 

process must complete within strict time limits, 

typically under five seconds, to meet safety 

requirements for system recovery. This necessitates 

selective memory dumping, where only critical 

regions are captured rather than the entire system 

memory. Careful selection of these regions based 

on empirical failure analysis ensures that diagnostic 

capability isn't sacrificed for speed. 

Power management during crash capture presents 

another challenge. The system must ensure 

sufficient power remains available to complete the 

crash dump even during emergency scenarios. This 

often involves coordination with the vehicle's 

power management system to maintain voltage 

levels during the capture process. Some 

implementations include capacitor banks 

specifically to provide backup power for crash 

logging operations. 

Integration with Vehicle Safety Systems 

The crash logging infrastructure must seamlessly 

integrate with existing vehicle safety monitoring 

systems. This integration ensures that crash data 

capture doesn't interfere with safety-critical 

functions while maximizing the diagnostic 

information available. The implementation 

typically involves hooks into the vehicle's fault 

detection systems, allowing crash logging to begin 

even before a complete kernel panic occurs. 

Coordination with watchdog timers requires 

particular attention. These safety mechanisms 

ensure system recovery within bounded time, but 

they can interrupt crash data capture if not properly 

managed. The implementation must reset 

watchdogs during crash capture while ensuring that 

a failed capture attempt doesn't leave the system in 

an unsafe state. This delicate balance often requires 

hardware-level coordination between the crash 

logging system and safety monitors. 

Validation and Testing 

Systematic testing ensures the crash logging 

infrastructure operates reliably under all conditions. 

This includes deliberate crash injection to verify 

data capture, recovery time measurements to ensure 

safety requirements are met, and stress testing 

under various system loads. The testing must cover 

edge cases such as crashes during boot, multiple 

rapid crashes, and failures in the crash handling 

code itself. 

Environmental testing proves particularly important 

for automotive systems. The crash logging must 

function correctly across the full automotive 

temperature range, under vibration, and with 

marginal power supplies. Electromagnetic 

compatibility testing ensures that the crash capture 

process doesn't generate interference that could 

affect other vehicle systems. Long-term reliability 

testing validates that the reserved memory regions 

maintain their integrity over the vehicle's lifetime. 

Performance Considerations 

Memory bandwidth during crash capture often 

becomes the limiting factor for completion time. 

The implementation must carefully balance the 

comprehensiveness of captured data with available 

memory bandwidth. Direct memory access (DMA) 

controllers can significantly accelerate memory 

copying, but their configuration must account for 

the degraded system state during a crash. Multiple 

DMA channels operating in parallel can reduce 

capture time, though this increases complexity and 

potential failure modes. 

The choice of compression algorithms significantly 

impacts both capture time and storage 

requirements. While higher compression ratios 

reduce storage needs, they require more CPU time 

that may not be available during a crash. 

Automotive implementations often use lightweight 

compression that provides reasonable size reduction 

with minimal computational overhead. The 

compression must also be deterministic to ensure 

consistent timing behavior across different crash 

scenarios. 
 

Table 1: Diagnostic Challenges in Autonomous Vehicle Kernel Crash Analysis [3, 4] 

Challenge Category Severity Level 

Kernel errors leading to crashes with minimal diagnostic information High 

Memory management subsystem vulnerabilities in kernel crashes Moderate 

Kernel panics resulting in silent data corruption Low to Moderate 

Faults identified by conventional error detection mechanisms Moderate 

Vehicles experiencing voltage fluctuations during emergency braking High 

Automotive systems requiring functionality restoration within minimal timeframe Very High 
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Table 2: Reliability Metrics for Persistent Memory-Based Crash Capture Systems [5, 6] 

Metric Effectiveness 

Data corruption reduction with ECC-protected memory Very High 

Prevention of memory region overwrites with proper isolation Very High 

Critical failures diagnosable through kernel crash logs Moderately High 

Post-crash data corruption reduction with ECC protection Very High 

Root cause identification for previously undiagnosable failures High 

 

Table 3: Diagnostic Capabilities and Reliability Metrics of Memory Dump Implementations [7, 8] 

Metric Performance Level 

Diagnostic sufficiency of traditional logging for complex failures Low to Moderate 

Diagnostic capability increases with memory dumps vs. stack traces Very High 

Success rate of optimized kdump implementations Very High 

Success rate of traditional logging approaches Low 

Capture time reduction with selective memory filtering Moderate 

Critical diagnostic information retention with filtering Very High 

Systems with non-deterministic behavior under boundary conditions Low 

Previously undiagnosable failures resolved with memory dumps Very High 

 

Table 4: Impact of Persistent Crash Logging on Development Metrics [9, 10] 

Metric Impact Level 

Reduction in average triage time for kernel-level failures Moderate 

The mean time to repair (MTTR) decreases Moderate 

Failure mode resolution with diagnostic capabilities Very High 

Failure mode resolution without diagnostic capabilities High 

Intermittent failure resolution rate before implementation Moderate 

Intermittent failure resolution rate after implementation Very High 

Race condition resolution rate after implementation Very High 

Memory corruption resolution rate before implementation Moderate 

Memory corruption resolution rate after implementation Very High 

Failure rate reduction with comprehensive diagnostics High 

Failure rate reduction without comprehensive diagnostics Low to Moderate 

Certification time reduction Low to Moderate 

 

7. Conclusions 

 
In this section conclusions of work should be given. 

The implementation of persistent crash logging 

infrastructure represents a critical advancement in 

enhancing the safety and reliability of autonomous 

vehicles operating on embedded Linux platforms. 

By combining kernel-level persistent storage 

through pstore/ramoops with comprehensive 

memory capture via kdump, organizations can 

transform system failures from diagnostic blind 

spots into valuable learning opportunities. This 

dual-layer approach has demonstrated significant 

benefits across multiple dimensions, including 

substantial reductions in triage and resolution times, 

dramatically improved diagnosis rates for complex 

failure categories, and accelerated reliability 
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growth. The article establishes that properly 

configured crash resilience mechanisms overcome 

the unique constraints of automotive environments 

while providing the diagnostic depth necessary to 

resolve previously intractable issues such as race 

conditions, memory corruption, and timing-

dependent failures. Most importantly, quantifiable 

benefits in development time and system reliability 

are directly translated into higher safety assurance 

and more efficient certification processes, 

ultimately creating the trust that autonomous 

vehicle deployment is predicated upon. As 

autonomous systems begin to play more significant 

roles in transportation, recalcitrant crash 

infrastructure must be considered not as a 

diagnostic tool but as an integral part of safety-

critical system design. 
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