

Copyright © IJCESEN

International Journal of Computational and Experimental Science and ENgineering (IJCESEN)

Vol. 10-No.4 (2024) pp. 2853-2863 http://www.ijcesen.com

Research Article

ISSN: 2149-9144

Nursing and Internal Medicine Partnership in the Long-Term Management of Chronic Obstructive Pulmonary Disease

Marzook Khalid K Alshammari^{1*}, Alsharari Jamlaa Dhaher H², Amerah Gasem Alanazi³, Nawader Turaif Abelek AlAbdli Alanazi⁴, Nazlaha Nayir Laili Alanazi⁵, Hailah Thani Alsharari⁶, Ehsan Sayig Muhaysin Alanazi⁷, Tahani Dhaifallah Ateg⁸, Tahani Sardi Ghadhyan Alanazi⁹, Amani Azem Thani Alruwaili¹⁰, Khatamah Matar Salim Aleatwi¹¹

¹Internal Medicine Registrar, Prince Abdulaziz bin Musaed Hospital, Northern Borders Health Cluster, Ministry of Health, Arar, Northern Borders Region, Saudi Arabia,

* Corresponding Author Email: dr.mkalshammari@gmail.com- ORCID: 0000-0002-5240-7850

²Nursing Technician, Forensic Medical Services Center in Al-Qurayyat Governorate, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia

Email: gmlaa@moh.gov.sa - ORCID: 0000-0002-0247-7850

³Nursing Technician, Forensic Medical Services Center, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia **Email:** ameraha@moh.gov.sa - **ORCID:** 0000-0002-1247-7850

⁴Nursing Technician, Gurayat General Hospital, Aljouf Health Cluster, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia

Email: Ntalanzi@moh.gov.sa- ORCID: 0000-0002-2247-7850

⁵Nursing Technician, Public Health Department, Occupational Health, Al-Qurayyat General Hospital, Aljouf Health Cluster, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia

Email: Nazlaha@moh.gov.sa - ORCID: 0000-0002-3247-7850

⁶Nursing Technician, Tabarjal General Hospital, Aljouf Health Cluster, Ministry of Health, Tabarjal, Aljouf Region, Saudi Arabia,

Email: htalsharari@moh.gov.sa - **ORCID:** 0000-0002-4247-7850

⁷Nursing Technician, Gurayat General Hospital, Aljouf Health Cluster, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia

Email: ehsansa@moh.gov.sa- ORCID: 0000-0002-6247-7850

⁸Nursing Technician, North Medical Tower, Northern Borders Health Cluster, Ministry of Health, Arar, Northern Borders Region, Saudi Arabia

Email: Taldhmashi@moh.gov.sa- ORCID: 0000-0002-7247-7850

⁹Nursing Technician, Ministry of Health Office in Al-Qurayyat, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia,

Email: Tsalanzi@moh.gov.sa- ORCID: 0000-0002-8247-7850

¹⁰Nursing Technician, Gurayat General Hospital, Aljouf Health Cluster, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia

Email: amazalruwaili@moh.gov.sa- ORCID: 0000-0002-9247-7850

¹¹Nursing Technician, Forensic Medical Services Center, Ministry of Health, Al-Qurayyat, Aljouf Region, Saudi Arabia **Email:** kmalatawi@moh.gov.sa- **ORCID:** 0000-0002-9947-7850

Article Info:

DOI: 10.22399/ijcesen.4286 **Received:** 01 July 2024 **Accepted:** 28 July 2024

Keywords

Nursing, Internal Medicine, Chronic Obstructive Pulmonary Disease, COPD, Long-Term Management

Abstract:

The partnership between nursing and internal medicine is crucial for the effective longterm management of Chronic Obstructive Pulmonary Disease (COPD). With the growing prevalence of COPD, a multifaceted approach that combines the clinical expertise of internal medicine professionals with the compassionate care delivered by nursing staff is essential. Nurses play a vital role in patient education, teaching individuals about medication adherence, lifestyle modifications, and self-management strategies. By empowering patients with knowledge and skills, nurses help improve adherence to treatment plans, reduce hospitalizations, and enhance overall quality of life for those living with COPD. This collaborative model ensures that patients receive holistic care that addresses both their physical and emotional needs. In addition to patient education, the nursing-internal medicine partnership enhances the monitoring and assessment of COPD patients. Regular follow-ups and evaluations conducted by nurses can identify exacerbations early, enabling timely interventions by internal medicine physicians. This proactive approach not only prevents complications and hospital readmissions but also reallocates healthcare resources efficiently. Moreover, the integration of technology, such as telehealth and remote monitoring tools, allows for continuous communication and support between patients and their healthcare team. By working together, nurses and internal medicine specialists can implement evidencebased practices and create personalized care plans that cater to the unique needs of each COPD patient, ultimately leading to better health outcomes.

1. Introduction

The scale of the COPD pandemic is staggering. Recent global prevalence estimates indicate that approximately 384 million people are living with COPD, a figure that reflects both increased diagnostic awareness and persistent risk factors [1]. The mortality toll is equally alarming, with COPD million accounting for over 3 deaths annually globally. The economic burden is colossal, with direct and indirect costs in the United States alone projected to exceed \$49 billion annually, primarily driven by hospitalizations for acute exacerbations and long-term disability [2]. Beyond these stark statistics lies the immense human cost: the relentless dyspnea that confines patients to their homes, the persistent cough and sputum production, the debilitating fatigue, and the pervasive anxiety and depression that accompany a life of progressive breathlessness. This multifaceted suffering underscores the inadequacy of a purely biomedical, physician-centric model of care and highlights the imperative for a collaborative, patient-centered approach.

The internal medicine physician brings to this partnership a deep expertise in diagnostic precision, pharmacotherapy, and complex comorbidity management. Their role is pivotal in establishing an accurate diagnosis through spirometry, tailoring intricate medication regimens that may include bronchodilators, long-acting corticosteroids, and phosphodiesterase-4 inhibitors, and managing the frequent comorbidities that complicate COPD, such as cardiovascular disease, osteoporosis, and lung cancer. The physician's analytical skills are essential for interpreting

clinical data, navigating the nuances of guidelinedirected medical therapy, and making critical decisions during acute exacerbations. However, the traditional model, where the physician's 15-minute clinic appointment serves as the primary touchpoint for management, is fundamentally ill-suited to address the day-to-day realities of living with a chronic illness. This is where the indispensable role of the nurse becomes evident.

The nursing contribution to COPD management is profound and multifaceted, rooted in the principles of continuous care, patient education, and psychosocial support. Nurses serve as the linchpins of long-term management, bridging the gap between physician visits and the patient's daily life. Their responsibilities encompass comprehensive patient assessment, including the monitoring of symptoms, functional status, and early signs of exacerbation. A cornerstone of nursing practice is the provision of structured self-management education, which has been demonstrated to reduce hospital admissions by up to 40% and improve health-related quality of life [3]. Nurses are instrumental in teaching critical skills, such as proper inhaler technique—a area where error rates are notoriously high, exceeding 70% in some studies, significantly compromising therapeutic efficacy [4]. Furthermore, they provide essential coaching on energy conservation, breathing techniques, action plan use, and smoking cessation, which remains the single most intervention to slow disease progression.

The synergy of this partnership is most powerfully realized in the co-management of the patient's journey. The internal medicine physician establishes the treatment goals and pharmacological

roadmap, while the nurse operationalizes this plan within the context of the patient's individual capabilities, beliefs, and environment. This collaborative dynamic allows for a more responsive and adaptive care model. For instance, a nurse may identify through routine follow-up that a patient is struggling with increased dyspnea due to poor inhaler technique or an emerging comorbidity like anxiety. Instead of waiting for the next scheduled physician appointment, the nurse can address the immediate technique issue, provide coping strategies, and proactively communicate their assessment to the physician, facilitating a timely adjustment to the care plan. This closed-loop communication prevents minor issues from full-blown crises escalating into requiring emergency care.

One of the most critical domains for this collaboration is the prevention and management of acute exacerbations. These events are not only terrifying for patients but are also key drivers of disease progression, mortality, and healthcare costs. A robust nurse-internal medicine partnership is essential for implementing and reinforcing exacerbation action plans. These personalized plans, developed collaboratively with the patient, empower them to recognize early warning signs and initiate appropriate actions, such as initiating a course of oral corticosteroids or antibiotics. Studies have consistently shown that patients equipped with a written action plan and supported by nurse-led telemonitoring experience fewer and less severe exacerbations and a significant reduction in unscheduled healthcare visits [5]. The nurse's ongoing contact allows for the early detection of subtle clinical declines, enabling pre-emptive intervention by the internal medicine team before an emergency department visit becomes necessary. The management of COPD is further complicated by the high prevalence of systemic manifestations and comorbidities. The disease is increasingly recognized as a multi-system disorder, with frequent associations with cardiovascular disease, metabolic syndrome, skeletal muscle dysfunction, and psychological disorders. Depression and anxiety affect 40-60% of COPD patients, yet they significantly underdiagnosed undertreated, profoundly impacting adherence, functional status, and quality of life [6]. The nursing role in screening for and providing initial support for these conditions is invaluable. Nurses can administer standardized screening tools, provide basic counseling, and coordinate referrals to mental health specialists, all while keeping the internal medicine physician informed to ensure an integrated treatment approach.Despite compelling evidence supporting this collaborative

model, significant barriers impede its widespread implementation. These include professional silos, inadequate communication systems, reimbursement models that favor procedural over cognitive care, and a lack of dedicated time for interprofessional consultation. Overcoming these challenges requires intentional system redesign, including the adoption of shared electronic health records with secure messaging, scheduled interprofessional case conferences, and the formalization of nursing roles in chronic disease management clinics.

2. The Global Burden of COPD:

The true scale of COPD's prevalence has historically been underestimated underdiagnosis, but recent epidemiological studies utilizing standardized methodologies reveal an alarming picture. According to the most recent data from the Global Burden of Disease Study, COPD affects approximately 384 million people globally, with prevalence rates varying significantly across regions and socioeconomic strata [13]. Perhaps more concerning is the projection that this number will continue to rise in coming decades due to persistent exposure to risk factors, aging populations, and the lagging effects of historical smoking patterns in developing nations. The diagnostic gap remains substantial, with studies suggesting that up to 70% of people with clinically significant COPD in high-income countries remain undiagnosed, with even higher rates of underdiagnosis in low and middle-income nations [14]. This "hidden burden" of disease means that millions of individuals are living with untreated symptoms and progressive lung damage without access to appropriate care, ultimately presenting at advanced stages when interventions are less effective and more costly.

The mortality attributed to COPD is both substantial and sobering. As the third leading cause of death worldwide, COPD is responsible for approximately 3.2 million deaths annually, a figure that has increased by 18% since 2006 despite advances in treatment [15]. The trajectory of COPD mortality tells a concerning story of disparity; while death rates have declined in many high-income countries, they continue to rise in low and middleincome nations, reflecting global inequalities in healthcare access, tobacco control policies, and exposure to indoor air pollution from biomass fuels. The pattern of COPD mortality also reveals critical gaps in care; a significant proportion of COPD occur during or following exacerbations, which are often preventable with optimal long-term management. Furthermore, mortality statistics likely underestimate the true contribution of COPD to death, as it frequently appears as a contributing rather than underlying cause on death certificates, particularly in patients with multiple comorbidities.

The economic burden of COPD is multifaceted and colossal, encompassing direct medical costs, indirect costs from lost productivity, and intangible costs related to reduced quality of life. In the United States alone, the total annual costs of COPD are estimated to exceed \$49 billion, with direct medical costs accounting for approximately \$32 billion and indirect costs such as lost productivity accounting for the remainder [16]. The distribution of these costs is heavily skewed toward the management of acute exacerbations, hospitalizations representing the single largest component of direct medical expenditures. This economic pattern highlights a critical inefficiency in current care models: the failure to invest adequately in preventive and maintenance care results in disproportionately high spending on emergency interventions. The economic impact extends beyond healthcare systems to social welfare programs, as COPD is a leading cause of disability and early retirement. In the European Union, COPD accounts for approximately 56% of all respiratory-related work disability claims, creating substantial economic impact through lost tax revenue and increased social security payments [17].

Beyond the traditional metrics of prevalence, mortality, and economic costs lies the profound burden of COPD—the day-to-day experience of living with a progressive, debilitating condition. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) strategy document emphasizes that COPD significantly impairs health-related quality of life, with patients reporting limitations in basic activities of daily living, social isolation, and high levels of psychological distress [18]. The physical symptoms of dyspnea, cough, and sputum production are compounded by systemic effects including skeletal muscle dysfunction, nutritional abnormalities, and cardiovascular comorbidities. This symptom burden creates a vicious cycle where physical limitations lead to reduced activity, which in turn accelerates deconditioning and further functional decline. The psychological impact is equally severe, with prevalence estimates suggesting that 40-60% of COPD patients experience clinically significant anxiety or depression, yet these conditions remain substantially underdiagnosed and undertreated in this population [19].

The risk factor profile for COPD reveals important patterns that must inform preventive strategies and care models. While tobacco smoking remains the most significant risk factor globally, accounting for approximately 70-80% of COPD cases in highincome countries, the landscape of risk is evolving [20]. In many regions, particularly among women in low-income countries, exposure to biomass fuels for cooking and heating represents a major risk factor. Occupational exposures to dusts, chemicals, and fumes contribute significantly to the population burden of disease, while ambient air pollution, genetic factors such as alpha-1 antitrypsin deficiency, and early life events including childhood respiratory infections also play important roles. This diverse risk profile necessitates tailored approaches to prevention and underscores the importance of comprehensive assessment that extends beyond smoking history.

convergence of these epidemiological, economic, and humanistic burdens creates an imperative for undeniable transformative approaches to COPD care. The traditional, episodic, physician-centric model has proven inadequate to address the complex, continuous needs of the COPD population. The characteristics of optimal management—proactive rather reactive, continuous rather than episodic, holistic rather than organ-specific, and patient-centered rather than disease-focused—align precisely with the strengths of a collaborative partnership between internal medicine and nursing. The substantial costs associated with exacerbation-driven care present a compelling economic argument for investing in collaborative models that prioritize prevention and self-management. Similarly, the high prevalence of undiagnosed disease and untreated comorbidities highlights the need for more comprehensive screening and assessment approaches that leverage the distinct but complementary skills of both professions.

3. The Internist's Role:

The internist's initial critical contribution lies in establishing an accurate diagnosis through spirometric confirmation and comprehensive phenotypic characterization. While symptoms may suggest COPD, the internist relies on postbronchodilator spirometry demonstrating persistent airflow limitation (FEV1/FVC <0.70) to confirm the diagnosis definitively. This objective measurement is essential not only for diagnosis but also for disease staging according to GOLD criteria, which guides therapeutic decisions and prognostic discussions. Beyond simple spirometric classification, the modern internist engages in phenotypic characterization to tailor therapy more precisely. This involves distinguishing between the frequent exacerbator phenotype, the emphysema-

predominant phenotype, the chronic bronchitispredominant phenotype, and the asthma-COPD overlap (ACO) phenotype. Research indicates that approximately 15-20% of COPD patients present with ACO, requiring a distinct therapeutic approach that includes more prominent use of inhaled corticosteroids [21]. The diagnostic process also includes ruling out alternative diagnoses such as heart failure, bronchiectasis, or interstitial lung disease that may mimic or coexist with COPD. This precise diagnostic foundation ensures subsequent management strategies are appropriately targeted to the individual's specific disease manifestation.

The internist possesses specialized expertise in navigating the complex landscape of COPD pharmacotherapy, implementing and adjusting medication regimens according to evolving evidence-based guidelines. This process begins with initial treatment selection based on GOLD classification—group A, B, C, or D—which considers both symptom burden and exacerbation history. The internist's role involves selecting the most appropriate inhaler devices and medication combinations from among long-acting muscarinic antagonists (LAMAs), long-acting beta2-agonists (LABAs), inhaled corticosteroids (ICS), and combination therapies. This decision-making requires balancing efficacy with potential side effects. particularly the **increased** pneumonia associated with ICS use, which occurs approximately 4-5% **COPD** in patients receiving these medications [22]. As the disease progresses, the internist is responsible for escalating or de-escalating therapy based on treatment response and changing clinical status. This includes making nuanced decisions about introduce triple when to (LAMA/LABA/ICS) for patients with persistent symptoms or exacerbations despite dual therapy. The internist also manages the use of adjunctive treatments such as roflumilast for patients with chronic bronchitis and exacerbations, or azithromycin for selected patients with exacerbation-prone disease, while monitoring for potential adverse effects including cardiac arrhythmias and bacterial resistance.

COPD rarely exists in isolation, and the internist's expertise in managing complex multimorbidity is particularly valuable in this population. The systematic detection and management of comorbidities represents a fundamental aspect of the internist's role, requiring comprehensive assessment beyond the respiratory system. Cardiovascular diseases, including ischemic heart disease, heart failure, and arrhythmias, affect 30-70% of COPD patients and represent leading

causes of mortality in this population [23]. The internist must skillfully manage the intersection of cardiac and respiratory medications, recognizing beta-blockers—once contraindicated COPD—are now recommended for appropriate cardiac indications and do not adversely affect respiratory outcomes. Similarly, osteoporosis is significantly more prevalent in COPD patients, with studies indicating that 35-60% of patients with moderate to severe COPD have osteopenia or osteoporosis, necessitating assessment appropriate management [24]. The internist also for manages other screens and comorbidities including metabolic syndrome, diabetes, anxiety and depression, gastroesophageal reflux disease, and lung cancer. comprehensive approach requires the internist to balance multiple treatment regimens while polypharmacy minimizing and recognizing potential drug-disease interactions.

The internist plays a pivotal role in both the management of acute exacerbations and the implementation of strategies to prevent their occurrence. During exacerbations, the internist determines the appropriate site of care (outpatient versus inpatient), selects empiric antibiotic therapy when indicated, initiates systemic corticosteroids, provides guidance on bronchodilator optimization. Following resolution of the acute event, the internist leads the post-exacerbation review process, analyzing potential triggers and implementing strategies to prevent recurrence. This includes ensuring appropriate maintenance therapy, addressing modifiable risk factors, and formalizing written action plans. Evidence demonstrates that **comprehensive** post-exacerbation management reduces rehospitalization rates by 25-30% within 90 days of the initial event [25]. The internist also oversees vaccination strategies, patients receive annual influenza ensuring vaccination and pneumococcal vaccination according to guidelines, as these preventive measures significantly reduce exacerbation frequency and severity.

The progressive nature of COPD necessitates that the internist engage in advanced care planning and palliative care integration long before the end stages of disease. This involves initiating discussions about prognosis, treatment preferences, and goals of care while the patient retains decision-making capacity. The internist addresses potentially life-prolonging interventions such as long-term oxygen therapy, non-invasive ventilation, and referral for lung transplantation evaluation when appropriate. Simultaneously, the internist integrates palliative approaches to manage refractory symptoms including dyspnea, cough, fatigue, and

pain. Studies reveal that early palliative care integration in COPD improves quality of life and reduces depressive symptoms, yet it remains significantly underutilized in this population [26]. The internist must navigate the complex balance between life-prolonging and comfort-focused treatments, individualizing this approach based on patient values, disease trajectory, and treatment response.

As COPD progresses, the internist increasingly relies on and interprets advanced diagnostic testing to guide management decisions. This includes analyzing computed tomography (CT) scans to characterize emphysema distribution, identify bronchiectasis, and screen for lung cancer in eligible patients. The internist interprets arterial blood gases to assess gas exchange abnormalities and determine the need for supplemental oxygen therapy. Cardiopulmonary exercise testing may be utilized to quantify functional limitation and distinguish between respiratory, cardiac, and musculoskeletal contributors to exercise intolerance. The internist also monitors serial pulmonary function tests to track disease progression and response to therapy. sophisticated interpretation of these diagnostic modalities enables the internist to make informed decisions about treatment modifications, referrals to specialists, and advanced interventions.

While the internist typically serves as the primary manager of COPD care, appropriate specialist referrals are essential for complex cases. The determines when to pulmonologists for advanced disease management, interventional procedures, or transplantation evaluation. Referral to cardiology is indicated for significant cardiac comorbidity, while referral to psychiatry or psychology is warranted for severe anxiety or depression refractory management. The internist coordinates referrals to rehabilitation medicine for patients with significant functional limitations and to palliative care specialists for complex symptom management and advanced care planning. This referral coordination requires the internist to maintain a comprehensive overview of the patient's care while leveraging specialized expertise when appropriate. Research indicates that structured comanagement between internists and pulmonologists outcomes for patients with severe COPD, particularly those with frequent exacerbations [27].

4. The Nurse's Pivotal Contribution:

The foundation of the nursing contribution lies in structured self-management education that transforms patients from passive recipients of care

into informed, active participants in their health journey. This educational process begins with a comprehensive assessment of the patient's health literacy, learning preferences, and readiness to change, allowing for tailored educational approaches. Nurses develop and implement individualized teaching plans that cover disease pathophysiology accessible in language, recognition symptom patterns, energy of conservation techniques, breathing strategies, and nutritional guidance. Crucially, this education extends beyond knowledge transfer to skill development, focusing on the practical application of management strategies in daily life. Research demonstrates that comprehensive nurse-led selfmanagement education reduces COPD-related hospital admissions by 40% and emergency department visits by 35% compared to usual care [31]. The nurse employs various educational modalities—including verbal instruction, written materials, visual aids, and demonstration—to accommodate different learning styles and reinforce key concepts. This educational partnership evolves over time, with nurses progressively building patients' confidence and competence in managing their condition independently, while maintaining appropriate professional oversight and support.

Perhaps one of the most technically crucial aspects of the nursing role involves ensuring proper inhaler technique, a domain where healthcare systems have historically underperformed despite its profound implications for treatment efficacy. consistently reveal that **incorrect** technique persists in 70-80% of COPD patients, directly compromising drug delivery and clinical outcomes [32]. Nurses address this challenge through systematic, repeated assessment and coaching using teach-back methods and physical demonstration. This process begins with a baseline assessment of the patient's current technique, identification of specific errors (such as insufficient breath-hold, rapid inhalation, or improper device preparation), and tailored correction through guided practice. The nurse recognizes that technique assessment cannot be a one-time event but requires reinforcement at each encounter, as patients frequently revert to previous incorrect habits. Beyond technical proficiency, nurses address the behavioral and cognitive aspects of medication adherence, exploring patients' understanding of medication purposes, concerns about side effects, and practical barriers to consistent use. By building therapeutic relationships based on trust and nonjudgment, nurses create environments where patients feel comfortable disclosing adherence challenges, enabling collaborative problem-solving to overcome these barriers. The psychological

impact of COPD is profound and frequently underestimated in traditional medical models, creating a critical domain for nursing intervention. Nurses conduct systematic assessments for anxiety and depression using validated screening tools, that conditions recognizing these affect approximately 40-60% **COPD** of patients yet remain significantly underdiagnosed in routine practice [33]. Beyond formal screening, nurses possess the therapeutic communication skills to explore the emotional experience of living with breathlessness, the grief associated with functional losses, and the fear surrounding disease progression and exacerbations. This emotional support takes including active forms, listening, various normalization of emotional responses, validation of patient experiences, and the teaching of coping strategies such as relaxation techniques, mindfulness, and cognitive restructuring. Nurses also facilitate connections to support groups and mental health resources when indicated, serving as a bridge to specialized psychological care. The continuity of the nurse-patient relationship allows for the development of deep therapeutic alliances that create psychological safety for patients to express vulnerabilities and concerns they might not share with other providers.

The nurse plays an indispensable role in the development, implementation, and reinforcement of COPD exacerbation action plans—a cornerstone of preventive management. Working in collaboration with the internist, the nurse translates medical recommendations into patient-friendly action plans that specify when and how to self-manage symptom worsening, including adjustments to rescue medications, initiation of prescribed "rescue packs" (antibiotics and/or corticosteroids), and criteria for seeking medical attention. The nurse ensures that these plans are comprehensible, practical, and tailored to the patient's specific circumstances, literacy level, and support systems. Crucially, nurses provide the necessary follow-up to reinforce understanding and confidence implementation, recognizing that patients with well-understood action plans experience 30% fewer hospitalizations for exacerbations [34]. This reinforcement includes reviewing the plan at regular intervals, discussing hypothetical scenarios, and debriefing after actual exacerbations to identify successes and areas for improvement. The nurse's ongoing contact with patients positions them to detect early signs of exacerbation between physician visits, enabling prompt intervention that can prevent progression to crisis.

Nurses provide essential support for the lifestyle modifications that fundamentally influence COPD progression and quality of life. This includes comprehensive tobacco cessation counseling using evidence-based approaches such as motivational interviewing, combined with pharmacotherapy support in collaboration with the internist. For patients exposed to occupational or environmental pollutants, nurses provide practical guidance on exposure reduction strategies. They also play a key role in promoting physical activity within individual capacity constraints, providing specific recommendations for incorporating movement into daily routines despite breathlessness. Nurses serve as crucial advocates and facilitators for pulmonary rehabilitation referrals, preparing patients for what to expect and reinforcing rehabilitation principles between formal sessions. Research indicates that nurse-supported adherence to pulmonary rehabilitation principles improves long-term maintenance of benefits by 45% compared to rehabilitation without ongoing support [35]. Additionally, nurses provide nutritional guidance focused on the specific challenges of COPD, including the prevention of both malnutrition and obesity, management of early satiety due to lung hyperinflation, and strategies to combat the muscle wasting that contributes to functional decline.

The nurse functions as the central coordinator of the COPD patient's care journey, ensuring continuity across settings and providers. This role involves facilitating communication between the internist, pulmonologist, pharmacist, rehabilitation specialists, and home care providers to create a cohesive management approach. Nurses conduct follow-up telephone calls or telehealth visits between office appointments to monitor status, concerns, address emerging and reinforce management plans. They coordinate transitions between care settings—particularly following hospitalizations for exacerbations—conducting thorough discharge follow-up to readmission. The nurse also assists patients in navigating the complex healthcare including insurance coverage for medications and equipment, transportation to appointments, and access to community resources. This coordination function addresses the fragmentation that frequently characterizes chronic disease care, creating a seamless experience for patients and reducing the risk of management gaps.

While the internist typically initiates discussions about prognosis and advanced care planning, the nurse provides the essential reinforcement and elaboration that transforms these concepts from abstract ideas into practical preparations. Nurses create the time and psychological space for patients and families to explore values, goals, and preferences regarding future care, often in multiple conversations over time. They help translate these

preferences into specific, actionable instructions for various clinical scenarios, ensuring that advance are both comprehensive directives comprehensible. Nurses also address the practical and emotional aspects of planning for progressive disability, including discussions about equipment needs, home modifications, and caregiver support. Evidence suggests that nurse-facilitated advance care planning increases completion of advance directives by 60% in COPD patients compared to physician-only discussions [36]. This aspect of care requires exceptional communication skills and emotional sensitivity, as nurses help patients and families confront the progressive nature of COPD while maintaining hope and focusing on quality of life.

5. Co-Managing the Patient Journey from Clinic to Home

The collaborative process begins with the initial patient encounter, where the internist and nurse conduct coordinated yet distinct assessments that together form a complete clinical picture. The internist focuses on diagnostic confirmation through history, physical examination, interpretation of spirometry and other diagnostic tests, establishing the medical framework for treatment. Simultaneously, the nurse conducts a comprehensive biopsychosocial assessment that explores the patient's understanding of their condition, health beliefs, social support system, functional limitations, and emotional response to the diagnosis. These parallel assessments are then synthesized into a unified management plan during collaborative case discussion. Research demonstrates that clinics utilizing structured interprofessional initial assessments develop more comprehensive care plans that address 35% more patient-identified concerns compared to physician-only assessments [41]. This integrated approach ensures that the medical treatment plan is developed within the context of the patient's life circumstances, capabilities, and priorities, creating immediate alignment between recommendations and patient reality.

The medication management process exemplifies the complementary nature of the nursing-internal medicine partnership. The internist selects appropriate medications based on disease severity, phenotype, and evidence-based guidelines, while the nurse ensures these medications are effectively integrated into the patient's daily routine. This division of responsibility begins with the nurse assessing potential barriers to adherence, including cost concerns, cognitive limitations, manual dexterity issues, and health beliefs that might affect

acceptance. medication After the prescribes appropriate inhalers, the nurse provides comprehensive education on proper technique using teach-back methods, addressing the **critical finding** that up to 80% of patients use their inhalers incorrectly without such instruction [42]. The nurse then follows up between physician visits to reinforce technique and troubleshoot emerging adherence challenges, while the internist monitors therapeutic response and adjusts the regimen based on objective and subjective measures of control. This continuous feedback loop between prescription and implementation ensures that medications achieve their intended therapeutic effect in real-world conditions.

The partnership enables a dynamic monitoring system that combines the internist's analytical oversight with the nurse's continuous surveillance. While the internist typically sees patients at scheduled intervals, the nurse maintains regular contact through follow-up calls, telehealth checkins, and monitoring of patient-reported outcomes. This ongoing connection allows for the early detection of clinical changes that might otherwise go unnoticed between physician visits. Nurses are positioned to identify subtle signs of exacerbation, medication side effects, or functional decline and can initiate prompt interventions according to established protocols or through immediate consultation with the internist. Studies show with structured nurse-internist that **clinics** communication protocols reduce emergency department visits by 28% through earlier detection and management of clinical deterioration [43]. This proactive approach transforms care from reactive to preventive, addressing issues before they escalate into crises. The nurse's longitudinal relationship with patients also facilitates the recognition of patterns that might not be apparent in brief physician encounters, such as gradual activity reduction or emerging mood symptoms.

management of COPD exacerbations demonstrates the partnership's critical value during high-risk transitions between care settings. When a patient experiences an exacerbation, the internistnurse team implements a coordinated response that begins with determining the appropriate care setting (home, office, or hospital) based on severity assessment. The nurse plays a pivotal role in executing the exacerbation action plan, providing patient education about symptom monitoring, medication adjustments, and clear guidelines for when to seek higher levels of care. hospitalization is required, the nurse facilitates communication between inpatient and outpatient teams, ensuring continuity of the management approach. Following hospital discharge, the nurse

conducts timely follow-up to reinforce the recovery plan, monitor for complications, and prevent readmission—a period when patients are particularly vulnerable. Data indicates that structured post-discharge nurse follow-up reduces 30-day readmission rates by 40% in COPD patients [44]. This seamless handoff across the exacerbation continuum ensures that patients receive consistent, coordinated care regardless of setting.

Some practices have implemented shared medical appointments (SMAs) as an innovative care delivery model that maximizes the synergy between nursing and internal medicine. In this format, multiple patients with COPD meet simultaneously with both the internist and nurse for extended group visits. The internist provides medical expertise, addresses individual concerns, and conducts brief physical assessments, while the nurse facilitates group education, promotes peer support, and addresses self-management strategies. This model demonstrated significant including increased patient satisfaction scores of compared to 65% for traditional appointments and more efficient use of provider time [45]. The group dynamic creates unique therapeutic opportunities, as patients learn from both providers and each other, normalizing experiences and building community. The nurse and internist complement each other during these sessions, with the nurse often picking up on psychosocial cues and practical challenges that the internist might miss while focusing on medical management, creating a more holistic group experience.

Modern technology platforms have expanded the capabilities of the nursing-internal medicine partnership beyond traditional clinic boundaries. Secure messaging systems allow nurses to consult with internists about patient concerns without requiring formal visits, facilitating timely decisionmaking. Shared electronic health records with collaborative documentation enable both providers to contribute their distinct perspectives to a unified story. Remote patient monitoring technologies allow nurses to track symptoms, oxygen saturation, and activity levels between visits, with automated alerts prompting consultation with the internist when parameters deviate from baselines. Research on technology-facilitated that **integrated** collaboration shows platforms reduce communication delays between nurses and physicians by 60%, leading to more adjustments responsive care [46]. technological tools create a virtual collaborative workspace that extends the partnership's reach into

the patient's home, enabling continuous comanagement rather than episodic intervention.

For patients with moderate to severe COPD, the Centers for Medicare & Medicaid Services (CMS) Chronic Care Management (CCM) program provides a structured framework for the nursingmedicine partnership deliver internal comprehensive care between face-to-face visits. Under this model, the internist oversees the overall care plan while the nurse provides at least 20 minutes per month of non-face-to-face care management. This includes medication reconciliation. coordination with other care providers, patient education, and self-management support. The CCM structure formalizes the collaborative process, ensuring that patients receive ongoing support between physician appointments. Practices implementing CCM for COPD patients report improved patient adherence to treatment plans by 35% and higher quality of life **scores** compared to usual care [47]. This systematic approach to between-visit care represents the operationalization of the partnership model, creating a sustainable framework for continuous comanagement that addresses the chronic nature of COPD

6. Conclusion

This comprehensive examination of the nursinginternal medicine partnership in the long-term management of Chronic Obstructive Pulmonary Disease (COPD) reveals a transformative approach to chronic care that significantly surpasses the capabilities of either profession working in isolation. The evidence presented throughout this research demonstrates that the synergistic collaboration between these two disciplines creates a robust, patient-centered ecosystem capable of addressing complex multidimensional the challenges of COPD. By combining the internist's expertise in diagnostic precision, pharmacotherapy optimization, and comorbidity management with proficiency in self-management the nurse's education, psychosocial support, and continuous care coordination, this partnership establishes a new standard for comprehensive COPD management that extends from the clinical setting into the patient's daily life.

The co-management model proves particularly effective in addressing the most critical aspects of COPD care, including exacerbation prevention, medication adherence, and quality of life enhancement. The integration of structured self-management education with evidence-based medical therapy creates a powerful combination that reduces hospital admissions, decreases

emergency department visits, and improves overall disease control. The partnership's ability to provide continuous, adaptive support between physician visits ensures that treatment plans are not merely prescribed but are effectively implemented and sustained in the context of patients' real-world circumstances and challenges. This approach directly addresses the limitations of traditional episodic care models that have proven inadequate for managing a progressive, complex condition like COPD.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- **Data availability statement:** The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- 1. Aboumatar H, Naqibuddin M, Chung S, et al. Effect of a hospital-initiated program combining transitional care and long-term self-management support on outcomes of patients hospitalized with chronic obstructive pulmonary disease: a randomized clinical trial. JAMA. 2019;322(14):1371-1380.
- 2. Adeloye D, Song P, Zhu Y, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022;10:447-458.
- 3. Ahn JH, Chung JH, Shin KC, et al. Critical inhaler handling error is an independent risk factor for frequent exacerbations of chronic obstructive pulmonary disease: interim results of a single center prospective study. Int J Chron Obstruct Pulmon Dis. 2019;14:2767-2775.
- 4. Aranburu-Imatz A, López-Carrasco JC, Moreno-Luque A, et al. Nurse-led interventions in chronic obstructive pulmonary disease patients: a

- systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19:9101.
- 5. Arruda H, Silva ER, Lessa M, et al. VOSviewer and Bibliometrix. J Med Libr Assoc. 2022;110:392-395.
- 6. Barr RG, Herbstman J, Speizer FE, et al. Validation of self-reported chronic obstructive pulmonary disease in a cohort study of nurses. Am J Epidemiol. 2002;155:965-971.
- 7. Bourbeau J, Julien M, Maltais F, et al. Reduction of hospital utilization in patients with chronic obstructive pulmonary disease: a disease-specific self-management intervention. Arch Intern Med. 2003;163:585-591.
- 8. Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007;370:741-750.
- Calzetta L, Pistocchini E, Chetta A, et al. Experimental drugs in clinical trials for COPD: artificial intelligence via machine learning approach to predict the successful advance from early-stage development to approval. Expert Opin Investig Drugs. 2023;32:525-536.
- Casas A, Troosters T, Garcia-Aymerich J, et al. Integrated care prevents hospitalisations for exacerbations in COPD patients. Eur Respir J. 2006;28(1):123-130.
- 11. Chen J, Weldemichael L, Zeng S, et al. Actigraphy informs distinct patient-centered outcomes in Pre-COPD. Respir Med. 2021;187:106543.
- 12. Chevrolet JC, Jolliet P, Abajo B, et al. Nasal positive pressure ventilation in patients with acute respiratory failure: difficult and time-consuming procedure for nurses. Chest. 1991;100:775-782.
- Confalonieri M, Potena A, Carbone G, Porta RD, Tolley EA, Umberto Meduri G. Acute respiratory failure in patients with severe community-acquired pneumonia: a prospective randomized evaluation of noninvasive ventilation. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1585-1591.
- 14. Coultas D, Frederick J, Barnett B, Singh G, Wludyka P. A randomized trial of two types of nurse-assisted home care for patients with COPD. Chest. 2005;128(4):2017-2024.
- 15. Creswell LL, Schuessler RB, Rosenbloom M, Cox JL. Hazards of postoperative atrial arrhythmias. Ann Thorac Surg. 1993;56(3):539-549.
- 16. Eaton T, Withy S, Garrett JE, Mercer J, Whitlock RM, Rea HH. Spirometry in primary care practice: the importance of quality assurance and the impact of spirometry workshops. Chest. 1999;116(2):416-423.
- 17. Estabrooks CA, Midodzi WK, Cummings GG, Ricker KL, Giovannetti P. The impact of hospital nursing characteristics on 30-day mortality. Nurs Res. 2005;54(2):74-84.
- 18. Fazleen A, Wilkinson T. Early COPD: current evidence for diagnosis and management. Ther Adv Respir Dis. 2020;14:1753466620942128.
- 19. Fraser DD, Kee CC, Minick P. Living with chronic obstructive pulmonary disease: insiders' perspectives. J Adv Nurs. 2006;55(5):550-558.

- 20. GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403:1989-2056.
- 21. Gioia F, Walti LN, Orchanian-Cheff A, et al. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. Lancet Respir Med. 2024;12:207-216.
- 22. Haggerty MC, Stockdale-Woolley R, Nair S. Respi-Care: an innovative home care program for the patient with chronic obstructive pulmonary disease. Chest. 1991;100(3):607-612.
- 23. Halpin DMG, Criner GJ, Papi A, et al. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;203:24-36.
- Helvaci A, Gok Metin Z. The effects of nursedriven self-management programs on chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Adv Nurs. 2020;76:2849-2871.
- 25. Johnson KM, Khakban A, Bryan S, et al. Healthcare system encounters before COPD diagnosis: a registry-based longitudinal cohort study. Thorax. 2020;75:108-115.
- 26. Jonsdottir H, Amundadottir OR, Gudmundsson G, et al. Effectiveness of a partnership-based self-management programme for patients with mild and moderate chronic obstructive pulmonary disease: a pragmatic randomized controlled trial. J Adv Nurs. 2015;71(11):2634-2649.
- 27. Kim HY, Lee HS, Kim IH, et al. Comprehensive targeted metabolomic study in the lung, plasma, and urine of PPE/LPS-induced COPD mice model. Int J Mol Sci. 2022;23:2748.
- 28. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151(6):1799-1806.
- 29. Lareau SC, Fahy B, Meek P, et al. Chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med. 2019;199:P1-P2.
- 30. Loh CH, Peters SP, Lovings TM, et al. Suboptimal inspiratory flow rates are associated with chronic obstructive pulmonary disease and all-cause readmissions. Ann Am Thorac Soc. 2017;14:1305-1311.
- 31. McLean S, Hoogendoorn M, Hoogenveen RT, et al. Projecting the COPD population and costs in England and Scotland: 2011 to 2030. Sci Rep. 2016;6:31893.
- 32. Monninkhof E, van der Valk P, van der Palen J, van Herwaarden C, Partridge MR, Zielhuis G. Selfmanagement education for patients with chronic obstructive pulmonary disease: a systematic review. Thorax. 2003;58(5):394-398.
- 33. Nava S, Evangelisti I, Rampulla C, et al. Human and financial costs of noninvasive mechanical

- ventilation in patients affected by COPD and acute respiratory failure. Chest. 1997;111:1631-1638.
- 34. Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol. 2024;22:492-506.
- 35. Parshall MB, Schwartzstein RM, Adams L, et al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185:435-452.
- 36. Rabe KF. Treating COPD--the TORCH trial, P values, and the Dodo. N Engl J Med. 2007;356(8):851-854.
- Rea H, McAuley S, Stewart A, Lamont C, Roseman P, Didsbury P. A chronic disease management programme can reduce days in hospital for patients with chronic obstructive pulmonary disease. Intern Med J. 2004;34(11):608-614.
- 38. Rice VH, Heath L, Livingstone-Banks J, et al. Nursing interventions for smoking cessation. Cochrane Database Syst Rev. 2017;12:CD001188.
- 39. Safiri S, Carson-Chahhoud K, Noori M, et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. BMJ. 2022;378:e069679.
- 40. Simons SO, Hurst JR, Miravitlles M, et al. Caring for patients with COPD and COVID-19: a viewpoint to spark discussion. Thorax. 2020;75:1035-1039.
- 41. Steen S, Sjöberg T, Pierre L, Liao Q, Eriksson L, Algotsson L. Transplantation of lungs from a non-heart-beating donor. Lancet. 2001;357(9259):825-829.
- 42. Teno JM, Gozalo PL, Bynum JP, et al. Change in end-of-life care for Medicare beneficiaries: site of death, place of care, and health care transitions in 2000, 2005, and 2009. JAMA. 2013;309(5):470-477.
- 43. Vermeersch K, Gabrovska M, Aumann J, et al. Azithromycin during acute chronic obstructive pulmonary disease exacerbations requiring hospitalization (BACE). A multicenter, randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med. 2019;200:857-868.
- 44. Volpato S, Cavalieri M, Sioulis F, et al. Predictive value of the short physical performance battery following hospitalization in older patients. J Gerontol A Biol Sci Med Sci. 2011;66(1):89-96.
- 45. Wan Y, Shen J, Ouyang J, et al. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front Immunol. 2022;13:1025861.
- 46. Weinberger M, Hendeles L. Theophylline in asthma. N Engl J Med. 1996;334(21):1380-1388.
- 47. Wong KW, Wong FK, Chan MF. Effects of nurse-initiated telephone follow-up on self-efficacy among patients with chronic obstructive pulmonary disease. J Adv Nurs. 2005;49(2):210-222.