

Copyright © IJCESEN

International Journal of Computational and Experimental
Science and ENgineering
(IJCESEN)

Vol. 11-No.4 (2025) pp. 8669-8675 http://www.ijcesen.com

ISSN: 2149-9144

Research Article

The Future of Legacy Modernization: AI-Augmented Strategies in Healthcare and Finance

Sudharshan Kumar Ramayanam*

Independent Researcher, USA

* Corresponding Author Email: rsudharshank@gmail.com- ORCID: 0000-0002-5247-8850

Article Info:

DOI: 10.22399/ijcesen.4278 **Received:** 21 September 2025 **Revised:** 06 November 2025 **Accepted:** 12 November 2025

Keywords

Legacy Modernization, Artificial Intelligence, Regulatory Compliance, Cloud Transformation, Intelligent Automation

Abstract:

Healthcare and financial sectors rely on critical operations, which rely on legacy systems where critical functions, such as claims processing and patient records, are performed. Although these systems have reliability, they usually do not cope with modern needs to scale and integrate clouds. The introduction of Artificial Intelligence and machine learning into the development of modernization methods is a groundbreaking strategy that will boost its performance, workflow improvement, and the shift to cloud environments. Modernization that uses AI is used to code-analyze, refactor, migrate data, and optimize processes and guarantee regulatory adherence to standards such as HIPAA, GDPR, PCI-DSS, and SOX. In medicine, AI can detect inefficiencies in the old systems and provide predictive analytics to provide better care to patients. In finance, it is used to improve fraud detection and simplify compliance processes. Such strategic alignment between legacy knowledge and AI possibilities gives companies the ability to expand infrastructure services plus speed up the process of digital transformation, improve the decision-making process, and provide more secure services. The strategy offers a process that enables a systematic movement of old systems into smart and adaptable platforms whilst striking a balance between innovation and stability in operations.

1. Introduction

Legacy applications in the healthcare and financial industries were initially designed with an overall focus given to stability, precision, and security. Such initial systems handle mission-critical tasks such as claims handling, transaction management, and patient information administration. But these early systems increasingly find it difficult to integrate contemporary demands on real-time analytics, mobile usability, and cloud connectivity. For this reason, organizations look for creative modernization approaches that reduce operational disruption as well as ensure regulatory compliance [1].

The intersection of old modernization solutions with Artificial Intelligence and machine learning technology is a revolutionary solution. Tedious processes that require a lot of effort are automated by AI technologies, such as code analysis, system documentation, and data migration. In healthcare settings, AI-based analytics improve patient care delivery and optimize resource utilization. In

financial services, AI deployments enhance fraud detection capabilities and automate compliance processes [2].

Security and compliance with regulations are always important factors during modernization activities. AI-enhanced modernization platforms allow for ongoing system monitoring and automated compliance checks to ensure that industry regulations such as HIPAA, GDPR, and SOX are complied with. AI technologies also make interoperability possible by smartly mapping legacy data structures to contemporary cloud applications, allowing smooth and secure migrations [1].

The latest domain of the AI-enhanced legacy modernization is a combination of the trusted system reliability and the groundbreaking AI technology. Through intelligent automation and predictive analytics, organizations will be able to gain a higher level of operational efficiency, improved decision-making, and faster migrations to secure, cloud-capable platforms. This strategic solution allows businesses to deliver incremental modernization alongside innovation, compliance,

and operational continuity in highly regulated industries [2].

2. AI in Code Analysis & Transformation

Legacy system modernization is very challenging when breaking down and remaking millions of lines of code written over several decades. The typically complex codebases of healthcare and financial organizations, constructed over a number of generations of developers and technologies, with complex interdependencies, must be subtly managed during the modernization process. AIdriven tools can upgrade the process of scanning codebases automatically, duplication, detecting outdated functions, and providing rich documentation of undisclosed systems. Such smart systems can analyze massive repositories of code at scale, detecting patterns and relationships that it would be impractical to find through hand analysis. Based on cloud compliance guidelines described by Wiz, migrating legacy code to contemporary cloud environments involves systematic review to provide ongoing compliance with regulatory obligations in the course of the transformation [3]. Machine learning engines trained on codebases are able to identify patterns in code that point to potential optimization points, security weaknesses, or platform compatibility issues with contemporary systems. These engines improve their detection skills based on supervised learning, achieving better accuracy with each set of codebases they analyze.

AI-based code transformation tools assist automated refactoring by proposing optimizations, rewriting old programming paradigms equivalent contemporary paradigms, and assisting in migration between programming languages when required. Deep learning models inspect code structure to determine functional elements that may transformed with semantic equivalence preserved, ensuring the business logic is not compromised in the transformation process. This ability helps to minimize manual intervention while limiting human error during transformation activities. As discussed in cloud compliance standards documentation by Aquasec, the process of rewriting legacy code needs careful attention in security controls and compliance measures, especially when moving regulated workloads into cloud environments [4]. IBM's Watsonx Code Assistant for Z is a model of the AI-enabled strategy by applying natural language processing and machine learning to examine COBOL applications, extract business rules contained in legacy code, and enable modernization to contemporary languages with regulatory

compliance. These technologies make incremental strategies of modernization possible that meet the balance of innovation and operational stability and enable organizations to rank transformation efforts according to business effect and technical complexity. Smart AI technologies are capable of analyzing various transformation alternatives and suggesting optimal methods based on organizational limitations such as timeline, budget, and technical capabilities.

3. Testing & Quality Assurance with AI

Extensive testing is a challenging activity when it comes to legacy system modernization because of interdependencies intricate and poor documentation. In a controlled environment like the health care or finance sector, testing must provide assurance of not only functional correctness but also of the rigid regulatory requirements governing data protection and system integrity. The solutions to these problems are AI-based testing frameworks, which automatically produce test cases, predict potential areas of failure, and verify functional similarity between legacy and modernized systems. These frameworks utilize advanced algorithms that examine system architecture to mark critical paths that need intense validation, putting test coverage in order of business impact and regulatory importance. Machine learning algorithms look at historical patterns of system behavior from production logs and monitoring data to create clever test suites concentrating on high-risk subsystems and missioncritical business functions. Such data-driven methodology improves test efficiency by focusing verification processes on locations with previous volatility or compliance importance. In line with SentinelOne's findings from healthcare cloud security needs, good testing methodologies for transformed healthcare systems should integrate end-to-end security validation across transformation journey, especially where patient information moves between old systems and cloud environments with varying security models in place [5]. The smart test generation capabilities are constantly updated via reinforcement learning methodologies, enhancing the identification of edge cases and boundary conditions that would otherwise go undetected in standard test regimes. Quality assurance using AI can be functional testing as well as performance tuning, security vulnerability testing, and compliance testing. Complex anomaly detection systems probe the volumes of transactions, the data access patterns, and the system performance metrics in order to formulate standard operating models that are used to represent the normal functioning of the system. These smart systems continuously observe system behavior at migration stages, detecting anomalies that could signal emerging problems before reaching production environments. Inclusion of natural language processing allows automated analysis of regulatory texts to derive compliance requirements that can be converted into executable test cases for ensuring proper verification of compliance controls. As FNTS emphasizes in their regulated industry cloud solutions documentation, healthcare and finance system quality assurance processes need to ensure ongoing compliance verification throughout modernization efforts, especially when moving from on-premises legacy infrastructure to the cloud, where regulatory responsibility models change [6]. AI-facilitated test environments use automated regression verification to thoroughly test system behavior after every incremental phase of modernization, guaranteeing that system changes do not adversely affect current functionality or compliance functionality. This greatly minimizes test cycles while increasing coverage and dependability of modernized systems. The machine learning models are designed to learn more about the behavior of the system by analyzing the operational data, such that with more operational data, increasingly accurate knowledge about possible issues will be recognized before they arise as production issues. The combination of predictive testing and continuous monitoring establishes a strong structure of quality assurance, which makes it possible to introduce gradual modernization, stability of work, and compliance with regulations.

4. Predictive Workload Optimization in Cloud Environments

Migration from legacy infrastructure to the cloud involves sophisticated workload examination and resource optimization. For healthcare and financial institutions with strict service level requirements and compliance requirements, migration poses special challenges to sustain service levels and contain costs. Machine learning algorithms scrutinize past patterns of usage to forecast future resource needs, size instances for optimal performance, and suggest optimal cloud service alignments. These smart systems ingest run-time telemetry from older environments to construct predictive models that consider cyclical patterns, seasonal fluctuations, and growth trends. These predictive functions allow organizations to prevent over-provisioning while providing enough capacity for peak processing requirements. As CrowdStrike cloud compliance documentation points out, efficient workload optimization will need to

balance the requirements of performance with security controls to ensure continued compliance with industry regulations along the path of modernization [7].

AI-powered workload management monitor the performance of an application 24/7 in the cloud, so resource assignments are dynamically adjusted based on the needs and requirements in real-time. Machine learning models analyze performance measures, including response time, throughput, and utilization, to implement dynamic scaling policies based on application-specific demands. This elastic optimization incurs the least operational costs and maintains the level of performance during the migration process of the legacy infrastructure to cloud infrastructure. The intelligent management systems reinforcement learning methods that refine resource allocation choices progressively on the basis of observed results, producing more and more efficient configurations over time. As detailed in the cloud security guidelines for financial services by Sysdig, workload optimization techniques need to include compliance validation to guarantee that dynamic resource modifications sustain necessary security measures [8]. The software also detects interdependencies among applications to ensure optimized migration ordering and limit disturbance during transition periods. This dependency mapping facilitates strategic planning for migration that prioritizes elements by importance to the business, technical difficulty, and regulatory impact.

5. Healthcare Industry Applications

In healthcare organizations, AI-enhanced legacy modernization brings substantial enhancements in patient care delivery, operational effectiveness, and regulatory adherence. The old system of electronic health records benefits as AI-driven analytics allows it to extract priceless information of its past patients through data mining, and allows it to connect with newer telehealth systems and IoT clinical devices. The NLP functionality can transform the unstructured clinical notes into structured data elements that allow their comprehensive analysis and cross-system interoperability. Machine learning algorithms recognize patterns in patient histories that suggest possible health risks, allowing for proactive intervention plans that enhance care at lower costs. Based on Clearwater's healthcare security and compliance solutions documentation. modernization programs need to ensure ongoing protection of patient-sensitive information during transformation processes, especially when bringing legacy EHR systems to cloud-based analytics platforms [9].

Clinical decision support AI technologies enhance information processing of patients in a different legacy system, identify possible interactions across drugs, propose treatment regimens, and predict adverse events. These intelligent systems are of clinical literature, composed guidelines, and patient-specific information that is integrated in order to generate contextually relevant recommendations at the point of care. These characteristics improve patient outcomes as well as optimize resource use within health institutions. The Smart automation also eases the administrative functions like insurance checks, management, and regulatory reporting. Machine learning algorithms examine past claims data to determine patterns that speed up processing without compromising compliance with payer rules and regulatory compliance. The U.S. Department of Health & Human Services cloud computing guidance stresses that healthcare organizations need to establish strong security controls when transferring covered health information to cloud environments, necessitating full controls ensuring HIPAA compliance during the modernization process [2]. AI-based security solutions perform automated verification of compliance by providing full audit trails for reporting purposes. These smart systems continually watch for system access patterns, catching aberrations that could represent potential breaches of security before protected health information is ever affected.

6. Financial Industry Applications

The financial organizations are facing extra challenges to modernize their legacy systems due to the stringent regulatory policies and lack of tolerance for errors in the transaction process. Modernization strategies that are enhanced by AI present smart risk management as part of the transformation process and ensure continuity of businesses and enhancement of security and capabilities. Machine compliance learning processes review past incident histories to detect probable failure points along the migration cycles, allowing for proactive risk mitigation measures that ensure continuity of operations. Neural networks intricate component simulate legacy interdependences to sequence modernization for maximum efficiency while ensuring transaction integrity throughout the transformation process. Based on Sysdig's cloud security regulation analysis in financial services, modernization efforts incorporate end-to-end compliance frameworks capable of satisfying requirements from several regulatory bodies while allowing for ongoing innovation [8].

AI technology revolutionizes fraud detection through the examination of transaction patterns across several legacy systems, the detection of anomalies in real-time, and the adjustment of detection algorithms to new threat vectors. These smarter systems integrate information from various sources to create behavioral baselines, allowing for accurate identification of malicious activity without interrupting legitimate transactions. These functions effectively reduce false positives because they increase the rate of detection of advanced fraud cases. Other compliance processes that are automated by intelligent automation include KYC authentication, AML filtering, and regulatory filings. The functionality of natural language processing determines significant information in the regulation document, whereby requirements are automatically converted into actionable controls to ensure that compliance is maintained at the time of modernization processes. Financial data security integrated demands protection during modernization activities. Under FINRA's regulatory aspects of cloud computing, financial entities have a mandate to establish strong security controls when moving sensitive financial information to cloud systems, with emphasis on data safeguarding, access control, and third-party risk [1]. AI-based security architectures deliver real-time monitoring and automated threat response features superior to conventional security methods. These advanced systems monitor access patterns, identify possible insider threats, and provide real-time assurance of continuous compliance with PCI-DSS, SOX, and other financial regulations through real-time validation of security controls.

7. Security and Compliance Framework

The issue of regulatory compliance is a significant factor to consider in the course of conducting the work of modernizing the legacy in healthcare and financial organizations. AI-based compliance systems have built-in real-time monitoring capabilities to automatically verify system settings against rules, identify possible non-compliance, and create a detailed audit trail to support regulatory reporting. The AI systems can read the regulation documents using natural language processing and identify the exact control requirements, which are converted into actionable rules of verification that allow ensuring real-time compliance during the process of modernization. Machine learning patterns recognize processes in system potential configurations that could suggest compliance loopholes, allowing proactive

correction prior to official audits. Smart systems evolve to keep up with developing regulations by integrating new requirements into automated compliance checks, ensuring that modernization projects remain compliant with contemporary standards throughout implementation stages. According to CrowdStrike cloud compliance documentation, efficient security frameworks need to utilize continuous verification capabilities addressing industry-related demands as well as adapting to changing threat environments [10].

The protection of secure data during the modernization process requires comprehensive protection against external and internal threats. The AI-based security solutions constantly analyze the trends of access to the system, the network, and the transfer of data to identify any possible security violations. These smart systems create behavioral baselines for typical system behavior, allowing

accurate identification of abnormal activities that could signal security breaches. Deep neural networks examine intricate patterns of interaction in order to detect subtle attack channels that could bypass conventional security controls. These smart systems utilize anomaly detection algorithms that detect unusual patterns of activity signaling potential security breaches before severe damage is done. As per Wiz's Cloud Compliance guide, organizations need to deploy end-to-end security controls that cater to the targeted needs of regulated domains without compromising on operational efficiency, especially when upgrading from legacy to cloud environments where security paradigms fundamentally [3]. AI-based security frameworks allow dynamic protection that adjusts against evolving threat vectors while upholding continuous compliance validation during modernization campaigns.

 Table 1: AI-Driven Code Transformation: Features and Organizational Benefits [3, 4]

Feature	Description	Benefit
Automated Code Analysis	AI tools scan legacy codebases to identify redundancies and outdated functions	Reduces manual analysis time by up to 60%
Documentation Generation	Machine learning creates comprehensive documentation for undocumented systems	Preserves institutional knowledge and facilitates maintenance
Pattern Recognition	AI algorithms identify optimization opportunities and security vulnerabilities	Improves code quality while maintaining compliance
Automated Refactoring	Deep learning models suggest optimizations and paradigm modernization	Minimizes human error during transformation
Business Logic	AI ensures semantic equivalence	Maintains critical functionality
Preservation	during transformation	throughout modernization
Regulatory Compliance	AI frameworks verify adherence to industry regulations	Ensures continuous compliance during transformation

Table 2: AI-Enhanced Quality Assurance: Methods and Outcomes for Legacy Modernization [5, 6]

AI Testing Method	Application	Primary Benefit
Automated Test Generation	Creates comprehensive test cases	Reduces test planning time while
	based on system architecture	improving coverage
Predictive Failure Analysis	Identifies potential failure points	Minimizes production incidents during
	before they occur	modernization
Functional Equivalence	Verifies consistency between legacy	Ensures business continuity throughout
Validation	and modernized systems	the transition
Anomaly Detection	Monitors system behavior to identify	Detects potential issues before they
	unusual patterns	impact operations
Compliance Verification	Translates regulatory requirements	Maintains continuous regulatory
	into executable test cases	compliance
Automated Regression	Validates system behavior after each	Prevents unintended consequences from
Testing	modernization phase	changes

Table 3: AI-Driven Cloud Resource Optimization for Regulated Industries [7, 8]

Optimization Feature	Implementation	Business Impact
Predictive Resource	AI analyzes historical usage patterns to	Prevents over-provisioning while ensuring
Allocation	forecast future needs	capacity for peak demands
Dynamic Scaling	ML monitors performance metrics to	Reduces operational costs while

	adjust resources in real-time	maintaining performance standards
Workload Analysis	AI examines operational telemetry to	Accounts for cyclical demands, seasonal
	build predictive models	variations, and growth trends
Compliance Integration	Security controls verification during	Maintains regulatory compliance
	resource adjustments	throughout optimization
Application	AI identifies connections between	Optimizes migration sequencing to
Interdependency Mapping	systems	minimize disruption
Reinforcement Learning	Systems improve resource allocation	Creates increasingly efficient
	based on observed outcomes	configurations over time

Table 4: AI Applications in Healthcare Legacy System Modernization [9, 10]

Application Area	AI Implementation	Healthcare Outcome
Electronic Health Records	AI analytics extract insights from historical patient data	Facilitates integration with modern telehealth and IoT medical devices
Clinical Notes Processing	Natural language processing converts unstructured notes to structured data	Enhances cross-system interoperability and comprehensive analysis
Predictive Health Risk	ML identifies patterns in patient histories indicating potential health risks	Enables proactive intervention strategies, improving outcomes
Clinical Decision Support	AI analyzes data across disparate systems for treatment recommendations	Provides contextually relevant recommendations at the point of care
Administrative Workflow	Intelligent automation streamlines insurance verification and claims	Expedites processing while maintaining compliance with regulations
Security Monitoring	AI-driven security monitors access patterns for anomalies	Detects potential breaches before protected health information is compromised

8. Conclusions

AI-enhanced modernization of legacy is a revolutionary solution that can be used by healthcare and financial institutions to use available investments and, at the same time, adopt new technology potentials. Integrating the certainty of proven systems with smart AI technologies, companies will be able to enact gradual modernization policies that reduce risk at minimal business value. The implementation of AI into the process of modernization allows automating complicated operations, streamlining resources, and improving security capabilities. Healthcare organizations enjoy an opportunity to gain better patient care delivery and administrative workflow streamlining, whereas financial institutions experience better detection of fraud and automated compliance. With the development of AI technologies, its usage in legacy modernization will widen to cover more advanced features, such as autonomous structures that continuously streamline performance, adapt to new demands, and anticipate the negative effects of new threats. With tactical application of these strategies, healthcare and financial institutions can be able to turn the legacies of constraints into a competitive advantage by maintaining the highly regarded business logic and improving technical functionality, to place themselves in a position of long-term growth and innovation in polishing the continuously digitalizing markets as well as ensuring that critical business functions remain stable. AI is studied and reported in the literature [10-23].

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- **Data availability statement:** The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

- [1] FINRA, "Regulatory considerations for cloud computing,". [Online]. Available: https://www.finra.org/rules-guidance/key-topics/fintech/report/cloud-computing/regulatory-considerations
- [2] U.S. Department of Health & Human Services,
 "Guidance on HIPAA & Cloud Computing,".
 [Online]. Available:
 https://www.hhs.gov/hipaa/for-professionals/special-topics/health-information-technology/cloud-computing/index.html
- [3] Wiz, "Cloud Compliance 101: Regulations and Best Practices," 2025. [Online]. Available: https://www.wiz.io/academy/cloud-compliance-fast-track-guide
- [4] Aquasec, "8 Cloud Compliance Standards & 7 Steps to Achieving Compliance," 2023. [Online]. Available: https://www.aquasec.com/cloud-native-academy/cloud-compliance/
- [5] SentinelOne, "Cloud Security in Healthcare Industry," 2025. [Online]. Available: https://www.sentinelone.com/cybersecurity-101/cloud-security/cloud-security-in-healthcare/
- [6] FNTS, "Secure, Compliant Cloud for Finance & Healthcare,". [Online]. Available: https://www.fnts.com/distributed-systems/regulated-industries
- [7] CrowdStrike, "A Starter Guide to Cloud Compliance" 2024. [Online]. Available: https://www.crowdstrike.com/en-us/cybersecurity-101/cloud-security/cloud-compliance/
- [8] Rayna Stamboliyska, "Cloud Security Regulations in Financial Services," Sysdig, 2024. [Online]. Available: https://www.sysdig.com/blog/cloud-security-regulations-in-financial-services
- [9] Clearwater, "Healthcare Secure, Compliant, Resilient,". [Online]. Available: https://clearwatersecurity.com/
- [10]Fabiano de Abreu Agrela Rodrigues, Flavio Henrique dos Santos Nascimento, André Di Francesco Longo, & Adriel Pereira da Silva. (2025). Genetic study of gifted individuals reveals individual variation in genetic contribution to intelligence. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.25
- [11] Chui, K. T. (2025). Artificial Intelligence in Energy Sustainability: Predicting, Analyzing, and Optimizing Consumption Trends. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.1
- [12]Fabiano de Abreu Agrela Rodrigues. (2025). Related Hormonal Deficiencies and Their Association with Neurodegenerative Diseases. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.5
- [13]García, R. (2025). Optimization in the Geometric Design of Solar Collectors Using Generative AI Models (GANs). International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.32
- [14]Fabiano de Abreu Agrela Rodrigues, & Flávio Henrique dos Santos Nascimento. (2025).

- Neurobiology of perfectionism. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.6
- [15]Nadya Vázquez Segura, Felipe de Jesús Vilchis Mora, García Lirios, C., Enrique Martínez Muñoz, Paulette Valenzuela Rincón, Jorge Hernández Valdés, ... Oscar Igor Carreón Valencia. (2025). The Declaration of Helsinki: Advancing the Evolution of Ethics in Medical Research within the Framework of the Sustainable Development Goals. International Journal of Natural-Applied Sciences and Engineering, 3(1). https://doi.org/10.22399/ijnasen.26
- [16] García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.22
- [17] Attia Hussien Gomaa. (2025). From TQM to TQM 4.0: A Digital Framework for Advancing Quality Excellence through Industry 4.0 Technologies. International Journal of Natural-Applied Sciences and Engineering, 3(1). https://doi.org/10.22399/ijnasen.21
- [18] Kumari, S. (2025). Machine Learning Applications in Cryptocurrency: Detection, Prediction, and Behavioral Analysis of Bitcoin Market and Scam Activities in the USA. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.8
- [19] Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.19
- [20] Soyal, H., & Canpolat, M. (2025). Intersections of Ergonomics and Radiation Safety in Interventional Radiology. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.12
- [21]Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.18
- [22]Vishwanath Pradeep Bodduluri. (2025). Social Media Addiction and Its Overlay with Mental Disorders: A Neurobiological Approach to the Brain Subregions Involved. International Journal of Sustainable Science and Technology, 3(1). https://doi.org/10.22399/ijsusat.3
- [23]Harsha Patil, Vikas Mahandule, Rutuja Katale, & Shamal Ambalkar. (2025). Leveraging Machine Learning Analytics for Intelligent Transport System Optimization in Smart Cities. International Journal of Applied Sciences and Radiation Research, 2(1). https://doi.org/10.22399/ijasrar.38