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Abstract:

An important problem in geotechnical engineering is slope stability analysis, yet it
remains highly complex due to the nonlinear nature of failure mechanisms. The
evaluation requires determining the critical failure surface (CFS) and the minimum
factor of safety (FOS), which poses a challenging optimization problem. In this study,
the limit equilibrium method (LEM), based on the Fellenius approach, is applied to
assess slope stability under varying surcharge conditions, including surcharge intensity,
position, and width. Results show that higher surcharge intensity combined with
reduced position distance and width significantly undermines slope stability. Traditional
optimization algorithms are often inadequate for such problems, as they rely on initial
guesses and may converge only to local optima. To address this, a Multi-Parametric
Genetic Algorithm (MPGA) with a Convex Crossover (CC) operator is developed. The
CC operator parameters are calibrated using benchmark test functions, while a time-
dependent decay factor is incorporated to improve variable interaction and prevent
premature convergence. The proposed MPGA consistently identifies more accurate
critical failure surfaces and provides lower safety factors compared to conventional
approaches. Overall, the method demonstrates superior efficiency and robustness,
offering a reliable tool for slope stability optimization under surcharge conditions.

1. Introduction

or undercutting of natural slopes. The key objective
in slope stability assessment is the determination of
the critical slip surface (CFS), i.e., the slip surface

One of the most important problems in geotechnical
engineering is analyzing slope stability, as it
directly affects the safety and performance of earth
structures such as dams, embankments, and cut
slopes. This problem has attracted significant
attention from researchers because slope instability
can occur in projects involving excavation, loading,

associated with the minimum factor of safety
(FOS). This problem is often formulated using
principles derived from the calculus of variations
[1-2].

Unstable slope conditions may arise due to various
factors such as excessive surcharge loading (P),
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intense rainfall, or dynamic forces (e.g.,
earthquakes). The most widely used techniques for
slope stability assessment are the classical limit
equilibrium methods (LEM) [3-8]. These methods
are based on dividing the potential sliding mass into
a finite number of vertical slices and applying
equilibrium equations of forces and moments to
estimate the FOS. The next step involves
identifying a critical slip surface, either with a
predefined or general shape, that minimizes the
FOS. However, as noted by Fredlund [9], several
challenges arise when applying LEM, including
assumptions about inter-slice forces, the use of
predefined slip surfaces, and possible inaccuracies
in estimating FOS.

To overcome these limitations, numerical
approaches such as the finite element method
(FEM) using the strength reduction technique have
been developed [10-14]. FEM provides additional
complications, such as the need to define the stress—
strain behaviour of soils, but it does not require
assumptions about the geometry of the slip surface
like LEM does. The evaluation of slope stability
has also made extensive use of the finite difference
technique (FDM) [15]. Baker et al. [16] further
applied the calculus of variations to the equilibrium
problem and showed that the minimum FOS must
occur along slip surfaces possessing specific
geometric  properties.Traditional  trial-and-error
techniques are often inadequate because of the
complexity of the solution space and the presence
of multiple local minima [17]. The FOS is generally
a multimodal and non-smooth function, influenced
by variations in soil parameters, loading conditions,
and external forces. Under such conditions,
classical methods may converge to local minima
rather than the global minimum, leading to non-
optimal solutions. To address this, stochastic and
metaheuristic optimization methods have been
increasingly employed in slope stability analysis, as
they provide robust mechanisms for exploring
complex search spaces.

Numerous metaheuristic algorithms have been used
in recent research to address this issue.For instance,
Goh [19] used a Genetic Algorithm (GA) to locate
the CFS, demonstrating that GA can accurately
identify slip surfaces consistent with actual failure
conditions.  Similarly, Zolfaghari et al. [20]
combined GA with the Morgenstern—Price method,
showing that while the choice of slip surface shape
(circular vs. non-circular) has little effect on
homogeneous slopes, it significantly affects layered
slopes. Chen [21] applied a simulated annealing
approach, while Li et al. [22] introduced a real-
coded GA validated with case studies. Shinoda et
al. [23] used Particle Swarm Optimization (PSO),
whereas Khajehzadeh et al. [24-25] proposed a

8626

novel Gravitational Search Algorithm (GSA). Other
techniques include Tabu Search (TS) [26],
Fireworks Algorithm (FWA) [32], Black Hole
Algorithm (BHA) [33], Immense Evolutionary
Programming (IEP) [34]. Differential Evolution
(DE) [35], Biogeography-Based Optimization
(BBO) [36], Cuckoo Search (CS) [37], Improved
Radial Movement Optimization (IRMO) [38],
Genetic Programming (GP) [39], Ant Colony
Optimization (ACO) [40], Imperialistic
Competitive Algorithm(ICA) [42], as well as hybrid
approaches combining neural networks with
metaheuristics [44-47]. Fuzzy logic [48] and
probabilistic approaches such as the reliability
index method [49] have also been applied. Cheng et
al. [50] compared six metaheuristic methods and
concluded that no single algorithm consistently
outperforms the others, as each has its strengths and
limitations.

Despite their  effectiveness, metaheuristic
algorithms also face challenges, such as parameter
tuning and the need for large numbers of iterations.
Nonetheless, they present two key advantages: (i)
efficient information-sharing mechanisms that often
accelerate convergence, and (ii) reduced likelihood
of entrapment in local optima.

In this study, we propose the use of the Multi-
Parametric Genetic Algorithm (MPGA), based on
Convex Crossover (CC), to identify the critical
circular slip surface (CFS).(MPGA) is especially
appealing due to its straightforward implementation
and potent capacity to resolve intricate nonlinear
optimization issues.The Fellenius method—a
classical limit equilibrium approach—is adopted,
where the FOS is expressed as an objective
function to be minimized. Using benchmark
problems from the literature, the suggested
algorithm's performance is assessed. A Neural Net
Fitting model is used to further validate the
outcomes. The outcomes demonstrate that the
proposed MPGA provides superior accuracy and
robustness compared to several conventional
approaches for locating the CFS in homogeneous
soil slopes. To the best of our knowledge, the
current issue has not been tackled before in
literature.

This paper's remaining sections are organised as
follows:

The methodological foundation for
determining CFS is presented in Section 2.

Section 3 introduces the MPGA algorithm
and its operators.

Section 4 reports benchmark case studies
used to validate the approach.

Section 5 provides concluding remarks and

discusses the main findings.
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2. Methodology
2.1Slope stability analysis

Several conventional approaches can be employed
for slope stability assessment, such as numerical,
kinematic, probabilistic, limit equilibrium, and
empirical methods [52, 9]. Among these, the limit
equilibrium method (LEM) remains the most
commonly adopted analytical tool in geotechnical
engineering [24-25, 42, 9, 54], where the factor of
safety is usually determined according to Mohr—
Coulomb failure criterion and the method of slices,
which involves identifying the critical failure
surface (CFS) through a series of iterations, are
used in the current work. For circular slip surfaces,
the center coordinates C(Xo, Yo) and the radius R
are systematically varied until the configuration
corresponding to the minimum factor of safety
(FOS) is obtained. Because the soil mass above the
sliding surface is divided into vertical slices, the
equilibrium can be stated as the balance between
the driving forces acting on each slice and the
resisting shear forces. In the proposed procedure,
only plausible slip surfaces are considered, while
unrealistic configurations that yield invalid or
unreasonable FOS values are excluded from the
analysis. The general procedure for evolving and
locating the failure surface is presented in Fig. 1.

2.2Generating circular slip surface

This paper focuses solely on two-dimensional slope
stability problems, assuming a Cartesian coordinate
system as the frame of reference: OXY. The
geometry of a slope’s slip surface affects its safety
factor (FOS).A acceptable slip surface usually
stretches from the slope's top to its toe, is concave,
and has a coordinate that increases or decreases
monotonically. One classification for the slip
surface is circular, and the former is a particular
instance of the latter. In this part, we introduce a
novel approach to creating slip surfaces on slopes.
Finding the critical failure surface (CFS), or the
surface along which a soil mass is most likely to
fail, is the primary goal. The factor of safety
(FOS), which is connected to a certain possible slip
surface, measures this chance of failure. The
polyline that represents this slip surface is made up
of N points[PO,P1,...,Pn —1]. every kinematic
and geometric limitation on this function must be
met [55]. The slip surface is handled as a function
here:

FOS = F (P).

Slip surfaces are commonly classified as circular or
non-circular, with  the circular  geometry
representing a special case of the latter. The
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methodology used here is intended to find the
critical failure surface (CFS), which is the surface
along which slope failure is most likely to occur,
and to create probable slip surfaces.The likelihood
of failure is expressed by the factor of safety (FOS),
evaluated for each candidate surface. The slip
surface is modeled as a polyline consisting of N
points [P0, P1... Pn-1], subject to both kinematic
and geometric constraints [55]. In this formulation,
the slip surface is expressed as a function of the
solution vector P, such that FOS = F(P). The
positional vector matrix (P) represents the polyline
describing the candidate slip surface, while the
function F(P), as defined in Equation (1), maps the
polyline coordinates to a scalar FOS value, thereby
quantifying slope stability [50, 56].

Py = slopel(ty) = (xq , o)

Pr= ()

Py =(xy,30)

Py=(x, )

Py = (-2 ¥i-2)

[P = slope(ti-1) = (X1, Vit )
The function F(P) is generally discontinuous and
multimodal, even when all geometric and kinematic
constraints are satisfied. As shown by Chen et al.
[51], multiple local minima can exist within the
solution space. Thus, F(P) is inherently non-
smooth, corresponding to an NP-complete problem,
which justifies treating slope stability analysis as a
global optimization problem [50, 51].

P=[P0;PL; ..; Pn-1]=

2.3Constraints and Bounds

Initially, the slope surface is parameterized
throughout the interval from right to left [0, 1], and
as such :
n a Cartesian coordinate system (X-Y plane)
illustrated in Fig. 2, the slip surface can be
expressed as y=S(x), whereas the bedrock profile is
given by y=R(x). To ensure that a potential failure
surface satisfies both geometric and kinematic
conditions, specific constraints must be imposed so
that the system remains in equilibrium. These
constraints determine the feasible domains of the
2n—2  control  variables [57]. For the
parameterization, the slope surface is defined from
right to left within the interval [0,1]. Accordingly:

{to, ti—1lto <ti—qy €[0,1] }
Py = slope(ty) = (x¢,Y0)
Py = Slope(tn—l) = (xn—l 'yn—l)

2.3.1 Bounds for x-coordinates
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In this work, an objective function that has been

n—2 slices are produced by uniformly partitioning the faipecialtfacenedifiddis fepressateavith nthe MPGA
vertices, along the interval from Xo to X,.1. The matchinglggtriahm-dequrisenesds Ebtfhstmd dfysafety (FOS)

these slices so that:

is computed using the Fellenius method [3, 27,53],
where the corresponding expression serves as the

xi >xi|j>iVx;=123,..,n—2&x =123,...,n fitness function of the optimization procedure. In

Where :

Xn-1 — Xo
x; € (xn—lrxn—l - —)

n—2

this approach, slope failure is assumed to occur
along a circular slip surface. The interstice forces
E;, E» and Xi, Xy, illustrated in Fig. 3, are
neglected—a simplification that remalns valid

The spacing between each pair of consecutive vertices (PuRder ., Rearyisiddesticiasgeh toaiditions, including

Xn-1 — Xo
(i = Xn41) = (Kip1 — Xpy2) = ———5—

Where: i € [0,i — 1]

n—2

2.3.2 Bounds for y-coordinates

The slope height and slope base, which are readily gjetriayssh TR heshlee ggo

changes in load magnitude, position (distance from
the crest), and width. To characterize a circular slip
surface, the circle’s center C(Xo,yo) and yadius R
must be specified, which are determined at the
intersection points between the slope boundary and
the circular arc. The potential slip surface is
represented by arc AB, defined by the center O and
radius R. The entire slope mass (ABCD) is then
in Fig. 3,

immediately determine the control variables yo and yn1. E4¥hGHIRS SRHURRERCHEDOERGAE Y otal resisting
the geometry of the slip surface, the remaining 2n-2 variaplpssngeq ihRe RS ving force (Fo). Based on

{x(), (x1' yl)l ey (xil yi)l ey (xn—Z' yn—Z)'xn—l}

these values, the factor of safety (FOS) is finally
expressed in the Fellenius method as:

Will be derived according to the coordinate system used to define the slip surface. Cheng [50]
proposed that if the values of a; to X1 are defined, then the corresponding lower and upper
bounds for (y2,...,yn) can based on the slope geometry angdpgdrac prﬂle [58,59]. The bounds
on the control variables should be dynamic to ensure an admissib om ufhce. The bounds for the

Yo coordinate given by:
Yo € {(Ry,Sx)}

The vertical line x=x; is crossed at point H by the
line connecting points Pn1 and P1, with a matching
y coordinate, yn. Likewise, when the line passing
through Py and P, is extended, it intersects the line
X=X, at point G, where y coordinate yg is used to
calculate. Thus, (Y2min, Vamax) @ne be calculated
as follows:

Yomin = Max(¥g, R(x3)&Y2max = min(yy, yo(x3))

" lc'il; + Wicos(a) — Ugl)tan(@')]
Y, Wisin(a,) ¥

U
U :T'u)/whw =1 :m

In the final step, the (MPGA) algorithm is
employed to minimize the objective function.
During each iteration, the circle parameters—
namely the center coordinates C(Xo, Yo) and the
radius R—are updated until the slip surface that
yields the lowest factor of safety (FOS) is tgetected.

Similarly, the bound on the y coordinates of each point on the slig,surface, i.e., are defined as
follows{y1min, Yimaxs - ¥n-1min Yn-1max}. Shown ingfig.2_, Elf_’be determined by the
Fd
i=1

following relation:

yi € ((maX(in) ’ Yimin)' (min(sxi) ’ Yimax))

Yi-1~ Yi-2
Y- =Y, + (————
imin YVi-1 (xi—l — X,

) (X — x-1)

Yn-1— Vi-1
Yimax = Yi-1 + (xn _ l ) (X — xi-1)
n

-1 -2

2.4 Modeling of the objective function
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n[el; + (W, + P+ b)cos(a) — Ul tan(@')]

(W + P~ b)sin(oc,-)1
1

A
2.4.1 Derivation of failure surface in derms of
(X0, Yo.,R) 1

3
The fitness function is the definition of the factor of
safety (FOS) in order to use the (MPGA) method to
find the critical failure surface based on the Multi-
Parametric Convex Crossover (MPCX). The next

- -
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step is to build the objective function.The first step
is to identify where the slope boundary and the
circular path intersect. The width of the slices is
then determined by calculating the vertical distance
between the top and bottom of the circular failure
surface. Lastly, the point of intersection between
the slice's midpoint and the slip surface boundary is
calculated to determine the base angle (o) of the
slices. Let the coordinates of the sites where the
failure slip surface and the midpoints of the n
slices, arranged from the toe to the crest of the
slope, intersect be (Xu,Yy1), (X2,Y2),...,(Xn,Yn).
Suppose that the x-coordinates of the crossing
points at the slope's toe (X.) and crest (Xu) are
represented by these variables [27].The failure
circle's equation is:

(x — 202 + (v —el)?% = RZ

The formula for the slope's base is y =0 and
The equation for the top of the slope is:

X, =xy +(R?—=yp?)

Xy =x0 +J(R2—(H—y0)%) ify=H and x = X,}i =

The width of each slices is :

)

Where: n = number of slices.

X, — X
bi:(uTL

combination, which are the points where the failure
circle connects to the slope's base and peak.

tan(p) = 2
)= T MM,
Where:
_ Yo
Yo —
Mo = =X,
xO u

The weight of i"slice:
W =yh;b;

The height of the slope for i" slice:

1

_E 7

The length of the i"slice: 1

8

i A

cos(a; ) 9
Tangential force at each slice :

T = Wsin(a) = ybh sin(a) 9

Normal force at each slice : 0

For additional analysis, the angle formed by the circular M5 Sif4E & tamgeh st 4R % hterfaces

of each slice is taken into account.

|

X0 — Xumi

-1
a; = tan
Yui — Yo

3 Working principle and operators of the
proposed MGA Method 12

The coordinates (Xy;, Yy;) denote the places where the,ireplafesbifcsudachdniersadis Hipiration for

centerline of each slice, and the number of n nodes at eachRint dFERIMINGS t{gg
resolution. Tracing the sliding surface from the slope's tog, k&is cfisst Wsildsd

Xyi = xo + J(RZ +y2,) + bii

Yui = Vo + J{RZ - (J(RZ —y&) + b(ii + 0.5)}

The following is the equation for a slice's centerline:
_ (x; + Xi41)
2

X =xg+ J(Rz - yzo) + b(ii + 0.5)

The angle of inclination of the slope "p": The total
angle "B" is the angle formed by the two lines of
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AUAINOUR 368 Shathematical
RaEUPOYEapacity to generate,
encourage, improve, and remove solutions to
challenging optimisation issues. It is @ search
method for locating approximate andwers to
optimisation and search problems t&at was
developed by [60], Back [61], Michalewgcs [62],
Coello [63], Hedberg [64], Goldberg et al. [65],
Zolfaghari et al. [20], Yang et al. [66], and Nian
[67]. A subclass of evolutionary algorithids (EAs)
known as genetic algorithms (GA) use methods like
inheritance, mutation, crossover, and natural
selection that are influenced by evaeRutionary
biology. A population of abstract representations
(referred to as chromosomes) of workable solutions
(referred to as individuals) that evolve towards
better solutions to an optimization problem are
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commonly used in the implementation of genetic
algorithms. A population of utterly random
individuals is the starting point for the evolution,
which continues over many generations.

Every generation, the general fitness of the
population is evaluated. Based on their fitness,
serval individuals are randomly chosen from the
current population, and they altered by
recombination or mutation to emerge from a new
population, which becomes the current one the next
iteration. A list of parameters known as a
chromosome, which is usually expressed as a
straightforward string of data or instructions,
represents a solution to a problem. Initially, a
number of these people are selected at random from
the original population. Every generation, each
person is assessed, and a fitness function assigns a
matching fitness value. The population is then
sorted, with better solutions to the problem being
reflected in those who are more suitable. One pair
of parent organisms is chosen for breeding for
every person generated in the following generation.
The selection process is biased toward individuals
from the initial generation with higher fitness;
however, it is not exclusive that less fit individuals
are entirely excluded. By doing this, the population
is kept from prematurely convergently towards a
local or poor solution. There are several well-
known selection techniques for choosing parent
organisms, including tournament and roulette wheel
selection. After selection, the selected
chromosomes undergo the crossover process, which
recombines the organisms based on a
predetermined probability.

Two new kid chromosomes are created by the
crossover procedure and added to the following
generation. The genetic material of the parent
chromosomes is fused during this procedure,
usually by switching out portions of their
underlying DNA. Through this process,
advantageous features from the parents are
preserved while new variations are introduced into
the population.  Until the required number of
candidate solutions are produced for the following
generation, the crossover action is repeated using
various pairs of organisms. The newly produced
offspring must then be mutated. Mutation happens
with a fixed and extremely low probability in a
conventional genetic algorithm, typically 0.01 or
less. Random alterations are made to a young
organism's chromosome based on this chance. In
the end, these genetic processes produce a new
generation of chromosomes that is distinct from the
original population. Through the introduction of
novel features that would not be found in the
current gene pool, mutation helps preserve genetic
diversity within the population and avoids
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premature convergence. Mutation, in conjunction
with crossover and selection, helps create a new
population of chromosomes that is distinct from the
original generation. Because only the fattest
organisms from the first generation are chosen for
reproduction, this process typically results in a rise
in the population's average fitness.

This generational cycle is repeated until a
termination criterion is met, such as reaching a
maximum number of generations, hitting a minimal
fitness threshold, or not observing any appreciable
improvement over successive iterations.

3.1Encoding

The effectiveness of the method is highly
influenced by the way the coding is implemented.
Coding refers to the representation of a solution
(individual) as a string or vector, which can consist
of integers, real-coded numbers, binary digits, or
even alphabetic letters. In this study, The problem's
search space is continuous. Hence, a real-coded
modified genetic algorithm (RCMGA) is proposed.
In continuous domains, the genes are represented as
real codes (RC) for the purpose of addressing
parameter optimization problems.Therefore, a
chromosome is a vector of floating-point numbers,
with the precision depending on the machine
running the algorithm. The dimensions of the
chromosome are kept equal to the length of the
vector representing the solution to the problem. In
this way, each gene corresponds to a variable of the
problem. Effectively, for many authors, such as
Davis [68], in optimization problems where the
variables have a continuous rather than discrete
distribution in the solution space, representing the
solutions with real-coded encoding is clearly more
realistic and straightforward than using binary
encoding. This method of representation also
simplifies the implementation of the operators. For
our optimization problem, the slip surfaces
(solutions) are assumed two-dimensional arcs. Each
circular slip surface is fully defined by three
parameters: the radius and the two coordinates of
its  center. Therefore, the  chromosome
corresponding to apotential solution consists of
three genes, forming a vector of three real numbers.
This approach ensures that the chromosome,
composed of meaningful genes, does not require
decoding or repair.

Thus, a chromosome Ch; of a potential slip surface
is expressed by:

Chi

[xi, yi, Ri]

3.2Fitness function
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The effectiveness with which each chromosome
fixes the issue is then used to calculate a fitness
value. The quality of the created solutions is
measured by the fitness function. The chromosome
serves as a failure surface in the research of slope
stability, and the individual's fitness value is
established by its factor of safety. Even if a
chromosome has a very high factor of safety, it will
be eliminated from the population if it generates a
failure surface that cannot be examined. Although
it is easier to follow the paradigm where the lowest
value is optimal in all situations, it is possible to
achieve a high fitness value by reversing the safety
factor. According to the Fellenius estimate, the
fitness function is selected as the factor of safety
[03].

3.3Generation of the initial population

The first step in the optimization process is to
generate a set of preliminary, workable solutions,
which make up the initial population. This
population consists of NPop randomly generated
individuals, each representing a possible circular
failure surface. To guarantee adequate diversity, the
population size must be sufficiently large, allowing
for the identification of the optimum solution.
Generating an individual involves determining its
three parameters within predefined intervals, as
mentioned earlier. These intervals are typically
defined by the analyst based on reasonable
conditions and the slope boundary. That’s to say:
xmin < Xi < xmax ; ymin < Yi < ymax
Rmin < Ri £ Rmax

Figure 5 displays the outcome of this stage as an
example of the initial population formation.
Following the creation of the initial population,
each person's fitness is assessed. The following
actions are then carried out in response to these
assessments.

3.4Crossover process

By changing the three variables in a chromosome,
one can change the location features of a slip
surface, perhaps creating a new slip surface with a
lower factor of safety. This modification is achieved
through crossover and mutation operators. The
crossover process begins by selecting pairs of
parents from the current population to create a list
of candidate parents [29].The size of this list:

N_list int((N_Pop * T_cx)/2)

Where:int() is the integer function
(Npop: population size, Tcx: Crossover rate).
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The more fit a chromosome is, the more likely it is
to produce offspring, since the likelihood of an
individual being chosen is directly correlated with
its fitness. For each individual, the selection
probability is calculated using a rank-based method.
As previously stated, the suggested algorithm's
operators have been changed to improve search
effectiveness. To accomplish this enhancement, a
novel Multi-Parametric Convex Crossover (MPCX)
is used.By adding a local search mechanism, the
suggested crossover operator stands out. By
altering the convex combination parameter A, this
manifests in the creation of many child
chromosomes.After that, Crossover takes the
subsequent actions:

3.5 Mutation process
This operator plays a secondary role by preserving
diversity within the population pool and helping the
search escape local optima. It involves introducing
minimal ~ changes to  some individuals'
chromosomes. Mutation is applied at a small rate,
affecting just a tiny percentage of the populace.The
goal of this process is to displace a slip surface by
perturbing the genes of a chromosome. First, some
individuals are chosen at random from the existing
population [29]. Then, for each selected individual,
a simple uniform mutation is applied as follows:
Ch'[i] = Chlilfori=1to3

4 Numerical experiments
3

This section applies several friction angles
documented in the literature to solve a numerical
benchmark problem in order to assess the validity
and effectiveness of the proposed method. The
technique uses the Fellenius method as the fitness
function for these issues, which require
homogeneous soil slopes. The grid search (GS)
approach is first used to estimate the factor of
safety (FOS), in which the center of each possible
failure surface is limited to a predetermined
rectangular region. Sound engineering judgment is
used to identify this area's location. Within this
grid, every point varies within a given range and
corresponds to the center of a circular slip surface
(c). Lastly, to determine the lowest value for the
entire search region, the factor of safety is
computed at each grid point [69, 70]. Similarly, the
Multi-Parametric Genetic Algorithm (MPGA) is
used to validate the methodology. Each member of
the population is represented by a rdal-coded
chromosome in this method, which is matfixed with
its variable (X, y) and R.
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Within the search space, every chromosome in the
population represented a potential solution. To
minimize the fitness function, the selected
chromosome is assessed and evolves throughout the
course of succeeding generations.By applying
crossover and mutation operations, the performance
of the algorithm is progressively improved.The
final step in implementing techniques in the
literature by Aniruddha et al. [27].The critical
failure surface (CFS) linked to the optimal factor of
safety (FOS) is found in the stage using the
(MPGA) algorithm. In comparison to conventional
techniques, The findings indicate that the MPGA
algorithm effectively determines the lowest factor
of safety (min FOS), exhibiting faster convergence
and better performance.

4.1case 1

The study conducted by Yamagami and Ueta [71]
is the source of the geometryof the homogeneous
soil slope depicted in Fig.8. Slope height H = 10 m,
cohesiveness ¢’ = 9.8 kPa, friction angle ¢ = 10°,
unit weight y = 17.64 kN/m3, and pore pressure ru
= 0 are the soil's geotechnical characteristicsshows
in fig 8. Different numbers of slices are employed
for the slope stability study; in this instance, n=20
slices are used. R is considered a random variable,
as are the boundary variables (Xo, Yo). With load
intensity g varying from 0 to 1000 KN/m2, the
number of slices varied from n=4 to 20. The load
width was also adjusted according to the number of
slices. The performance of the critical failure
surfaces (CFS) obtained using the genetic algorithm
(GA) based on the Multi-Parametric Convex
Crossover (MPCX) is displayed in Figure 9. The
algorithm's ~ tuning  settings,  which  were
meticulously identified as the optimal configuration
for modifying the results, are shown in Table 2.
These parameters were adjusted by varying the
associated values within fixed intervals(Npop €
[100 — 1000])and(Mpop € [100 —

1000]),(T_Cx € [0.5:0.05:0.8]) and mutation as
(T_mu € [0.001:0.0001: 0.002]to get the best
objective function. Table 3 displays the minimal
Factor of Safety (FOS) values that were obtained
from the slope analysis. The FOS values reported
by other researchers are also included in Table 3 for
comparison. The MPGA technique yielded crucial
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slip surface values for the minimum factor of safety
(min FOS) that closely match the previously
determined values, according to the caBparative
results of the current method and earliel research,
which are compiled in table 3.

4.2case 2

According to the study, Fredlund and Krahn [09]
use the geometry of the uniform soil slope depicted
in Fig. 10. Slope height H=10 m, cohesiveness
c¢'=29 kPa, friction angle ¢=20° unit weight
v=18.85 kN/m3, and pore pressure ru=0 are the
soil's geotechnical characteristics. Different
numbers of slices are employed for the slope
stability study; in this instance, n=20 slices are
used. R is considered a random variable, as are the
boundary variables (Xo, Yo). With load intensity g
varying from 0 to 1000 KN/m2, the number of
slices varied from n=4 to 20. The load width was
also adjusted according to the number of slices.
Figure 11 shows how well the Multi-Parametric
Convex Crossover (MPCX), a proposed genetic
method, predicts the critical failure surfaces' (CFS)
effectiveness.  The results are shown in the
algorithm  tuning parameters, which  were
meticulously identified as the ideal configuration
for fine-tuning Table 2. These parameters were
adjusted by varying the associated values within
fixed intervals(Npop € [100 — 1000])
and(Mpop € [100 — 1000]),(T_Cx €
[0.5:0.05:0.8]) and mutation as (T_mu €
[0.001:0.0001:0.002] to get the best objective
function. Table 4 shows the minimal Factor of
Safety (FOS) values that were obtained from the
slope analysis. The (FOS) values reported by other
studies are also included in Table 4 for comparison.
The minimum safety factor (FOS)-related essential
slip surfaceobtained using the (MPFA) method
closely resembles the previously calculated values,
according to Table 4, which highlights the
comparative  results  between the current
methodology and past research. As a result, all
required terms have been computed. One may
calculate the factor of safety (FOS) associated with
a specific failure surface by replacing each slice in
eq. 14 with these terms. The pseudocode for
determining the slope's factor of safety is shown in
Algorithm A.
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Table 1 Presentation of ranges associated to variables

Applications Variables Range Number of slices

1 [Xo, Yo, R]" [(x, x+20), (H, H+10), (0, 50)] T 20

+x =H * cot (,3) * n: totalnumberofslicesused,* b: wideofeach slice,y ,,: Unit weight of water = 10kN/m?3
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Figure 1. Slope stability analysis workflow diagram.
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Figure 2 The control variables that define the admissible slip surface are
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Figure 3. Slip surface comprising finite vertical slices

Algorithm 1: pseudocode for deriving factor of safety (FOS)of slip

Inputs :
1. Constant parameters : Cohesion (C’); Friction angle (®’); Unit Weight(W); surcharge intensity(P)

2. Varying parameters : Centre points(x0,y0) and radius (R)
Result : Factor of safety (FOS) for failure surface

Step 1: Initialize slope surface geometry.
Step 2: Derive the slip surface in the terms (Xo,yo) and R
while slip surface =valide surface do
2.1 Randomaly select (Xo,Yo) and R for slip surface
2.2Find intersection points (x.,y.) and (Xu,yu) between slope boundary surface and slip circle
2.3 Divide the slope mass into n finite slices
2.4 Derive all n points [ P1(X1,Y1), P2(X2,Y2), ..., Pa(Xn,¥n)] that define in n-2 slices of failure slip surface
end

Step 3:
for i=0 : n-2 tel que n-2 number of slices
3.1 Derive width (b) , Angle of slice base (o), Tangential force of slice, Normal force on the slice
3.2 Calculate (FOS) for i slice

end

Step 4 :Stop

Figure 4. Pseudo code for deriving factor of safety (FOS)

Qe[0,1000] Kn

Y"'\\\k\\\%@ N ; —
il e

NO shces: n=4-20

— ¥=R®

X
Figure 5 An illustrative example of randomly generated initial population (NPop = 100)
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Determination of the algorithm’s parameters by
the analyst:
Npop: population size
Nyen: no. of generations
Too crossover rate
Twa: mutation rate
Tinit period of new individual's reinjection
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population randomly
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Figure 6. The suggested Multi-Parametric Genetic Algorithm flowchart.

Fseudocode I0r Lrossover operanons i Mfr A

Step 1: For i =1 1o M) talz @ pair of cheomosomes from the orossover salacted list, thess chromosomss e bonown 23 parents; hatsav By and B
Step X zenerak at random a rzal mmber L betwean [0 1] with vniform distrbotion;

Step:3For i=1 1o 3, Caloulate the tow children:

Ch[]="P1[1]<{1-L*Pl and

Chl]-1=*B2[]={1-1* Bl

Step 4 then 2o to Step 2;

Step ;& From retum the two best childoen chromosomes a3 offspring of the tow parents.

Figure 7 Pseudocode for Crossover operations in MPG
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Y=17,64 KN/m3
C=9,8 Kpa
®=10°
Ru=0
Water surface=/

Figure 8. The geometry and geotechnical properties of the slope model used in case study 1

Table 2. Parameters of the MPGA

Population size 1000
Iterations 1000
Mutation Probability 0.002
Crossover probability 0.75
Crossover Tow point
—=&—FOS0
' Phi=10 o FOSS0
1,45 - —A—F0S100
l v FO0S200
1,40 "
] . —4 FOS300
1,354 FOS500
] —»— FOS800
1,30 —e— F0S1000
n i
o 1,25
e l
1,20 o
115+ A a
1,10
] -~ —V
1,05 - — S
]  ——
1,00 T : T T T T T T
0 5 6

Figure 9 Performance of the proposed MPGAfor estimation of (FOS)with different loads appliedfor case study 1

Table 3 Comparative of analysis factor of safety summary results for case study 1

Sources Optimization Method Minimum FOS
Yamagami and Ueta [71] Broyden Fletcher Goldfarb Shanno (BFGS) 1,338
Yamagami and Ueta [71] Simlpex Method 1,339

Cheng et al. [50] Particle Swarm Optimization (PSO) 1,329
Cheng et al. [50] Modified Particle Swarm Optimization (MPSO) 1,326
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Chengetal. [72] Modified Harmony Search (MHS) 1,322
Jianping et al [73] Genetic Algorithm (GA)+line 1,324
Jianping et al [73] Genetic Algorithm (GA)+Spline 1,321
Kahatadeniya et al. [74] Ant Colony Optimization (ACO) 1,311-2,966
Khajehzadeh et al. [75] Modified Particle Swarm Optimization (MPSO) 1,308
Kang et al.[76] Artificial bee colony optimization (ABO) 1,321
Jayraj Singh [36] Grid search method 1,237
Jayraj Singh [36] Biogeography based optimization 1,224
Present study MPGA (P=0) 1,066-1,221
Present study MPGA (P=50) 1,036-1,163
Present study MPGA (P=100) 1,024-1,076
Present study MPGA (P=200) 1,015-1,047
Present study MPGA (P=300) 1,01-1,033
Present study MPGA (P=500) 1,0072-1,027
Present study MPGA (P=800) 1,0047-1,016
Present study MPGA (P=1000) 1,0047-1,014

0=0-1000KN/m*

Y'=18,85 KN/m3
C=29 Kpa
0=20°
Ru=0
Water surface=/

60

30

Figure 10. The slope model utilized geometry and geotechnical characteristics in case study 2

Table 4. Comparative overview of case study 2 of the factor of safety findings

Sources Optimization Method Minimum FOS
Fredlund and Krahn [09] Fellenius method 1,928
Fredlund and Krahn [09] Simplified Bishop method 2,08
Fredlund and Krahn [09] Spencer method 2,073
Fredlund and Krahn [09] Janbu Simplified method 2,041
Fredlund and Krahn [09] Janbu Rigorous method 2,008
Fredlund and Krahn [09] MP method 2,076

Baker .R [1] Spencer method 1,98
Jayraj Singh [36] Grid search method 1,923
Present study MPGA (P=0) 1,074-1,36
Present study MPGA (P=50) 1,036-1,213
Present study MPGA (P=100) 1,025-1,13
Present study MPGA (P=200) 1,015-1,10
Present study MPGA (P=300) 1,011-1,065
Present study MPGA (P=500) 1,0076-1,048
Present study MPGA (P=800) 1,0053-1,029
Present study MPGA (P=1000) 1,0039-1,021
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Figure 11. Performance of the proposed MPGAfor estimation of FOS with different loads appliedfor case study 2

4. Conclusions

This research employed the Multi-Parametric
Genetic Algorithmic (MPGA) to solve a nonlinear
geotechnical problem by finding the critical failure
surface (CFS) and evaluating the factor of safety
(FOS). Using the Felleunis Method and Multi-
Parametric Convex Crossover (MPCX), a computer
program was created to determine the critical
failure surface (CFS) and estimated factor of safety
(FOS). In comparison to other crossover operators,
the results indicate that the MPCX operator
improves the real-coding modified Genetic
Algorithm's (RCMGA) performance. As a point of
comparison, the MPGA s effectively used to deal
with the slope stability problem inan example
where the friction angle varies between 10° and
20°.  According to the case study, the algorithm
performs favorably to other evolutionary algorithms
that have previously encountered similar
circumstances and yields excellent results, making
it robust. Compared to other optimization
techniques, the MPGA requires less or equivalent
fitness function evaluations. The present work
shows that the fitness function successfully
converges to the global minimum and requires
fewer parameters to be changed than some other
bio-inspired  algorithms. The  MPGA's
comparatively  straightforward mathematical
structure—which only requires the crossover and
mutation of two parameters—is one of its main
advantages over other well-known algorithms.
Consequently, the proposed method may explore
solutions utilizing a variety of control variable
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combinations and has greater search capabilities
than (GS).

The (MPGA) can escape local minima more
successfully than its GS equivalent thanks to this
technique. According to the results of numerical
experiments, the solutions generated by MPGA and
BBO have lower standard deviations than those
generated by other optimization methods. This
implies that researchers and practitioners can use
the current study's findings to choose the best
metaheuristic approaches for their particular
applications. The recommended method
disregards Pore water pressure's impactbecause all
case studies are evaluated at fry conditions, or zero
pore water pressure. Furthermore, there is no
discussion of how to assess slope stability in
seismic circumstances. The quantity of slices
ranges from four to twenty, we investigated in this
article the impact of various stresses on the breadth
slope. We saw how the safety factor (FOS) was
impacted by the quantity of slices’ n’ in each load
scenario.
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