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Abstract:  
 

An important problem in geotechnical engineering is slope stability analysis, yet it 

remains highly complex due to the nonlinear nature of failure mechanisms. The 

evaluation requires determining the critical failure surface (CFS) and the minimum 

factor of safety (FOS), which poses a challenging optimization problem. In this study, 

the limit equilibrium method (LEM), based on the Fellenius approach, is applied to 

assess slope stability under varying surcharge conditions, including surcharge intensity, 

position, and width. Results show that higher surcharge intensity combined with 

reduced position distance and width significantly undermines slope stability. Traditional 

optimization algorithms are often inadequate for such problems, as they rely on initial 

guesses and may converge only to local optima. To address this, a Multi-Parametric 

Genetic Algorithm (MPGA) with a Convex Crossover (CC) operator is developed. The 

CC operator parameters are calibrated using benchmark test functions, while a time-

dependent decay factor is incorporated to improve variable interaction and prevent 

premature convergence. The proposed MPGA consistently identifies more accurate 

critical failure surfaces and provides lower safety factors compared to conventional 

approaches. Overall, the method demonstrates superior efficiency and robustness, 

offering a reliable tool for slope stability optimization under surcharge conditions. 

 

1. Introduction 
 

One of the most important problems in geotechnical 

engineering is analyzing slope stability, as it 

directly affects the safety and performance of earth 

structures such as dams, embankments, and cut 

slopes. This problem has attracted significant 

attention from researchers because slope instability 

can occur in projects involving excavation, loading, 

or undercutting of natural slopes. The key objective 

in slope stability assessment is the determination of 

the critical slip surface (CFS), i.e., the slip surface 

associated with the minimum factor of safety 

(FOS). This problem is often formulated using 

principles derived from the calculus of variations 

[1–2]. 

Unstable slope conditions may arise due to various 

factors such as excessive surcharge loading (P), 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
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intense rainfall, or dynamic forces (e.g., 

earthquakes). The most widely used techniques for 

slope stability assessment are the classical limit 

equilibrium methods (LEM) [3–8]. These methods 

are based on dividing the potential sliding mass into 

a finite number of vertical slices and applying 

equilibrium equations of forces and moments to 

estimate the FOS. The next step involves 

identifying a critical slip surface, either with a 

predefined or general shape, that minimizes the 

FOS. However, as noted by Fredlund [9], several 

challenges arise when applying LEM, including 

assumptions about inter-slice forces, the use of 

predefined slip surfaces, and possible inaccuracies 

in estimating FOS. 

To overcome these limitations, numerical 

approaches such as the finite element method 

(FEM) using the strength reduction technique have 

been developed [10–14]. FEM provides additional 

complications, such as the need to define the stress–

strain behaviour of soils, but it does not require 

assumptions about the geometry of the slip surface 

like LEM does.  The evaluation of slope stability 

has also made extensive use of the finite difference 

technique (FDM) [15]. Baker et al. [16] further 

applied the calculus of variations to the equilibrium 

problem and showed that the minimum FOS must 

occur along slip surfaces possessing specific 

geometric properties.Traditional trial-and-error 

techniques are often inadequate because of the 

complexity of the solution space and the presence 

of multiple local minima [17]. The FOS is generally 

a multimodal and non-smooth function, influenced 

by variations in soil parameters, loading conditions, 

and external forces. Under such conditions, 

classical methods may converge to local minima 

rather than the global minimum, leading to non-

optimal solutions. To address this, stochastic and 

metaheuristic optimization methods have been 

increasingly employed in slope stability analysis, as 

they provide robust mechanisms for exploring 

complex search spaces. 

Numerous metaheuristic algorithms have been used 

in recent research to address this issue.For instance, 

Goh [19] used a Genetic Algorithm (GA) to locate 

the CFS, demonstrating that GA can accurately 

identify slip surfaces consistent with actual failure 

conditions. Similarly, Zolfaghari et al. [20] 

combined GA with the Morgenstern–Price method, 

showing that while the choice of slip surface shape 

(circular vs. non-circular) has little effect on 

homogeneous slopes, it significantly affects layered 

slopes. Chen [21] applied a simulated annealing 

approach, while Li et al. [22] introduced a real-

coded GA validated with case studies. Shinoda et 

al. [23] used Particle Swarm Optimization (PSO), 

whereas Khajehzadeh et al. [24–25] proposed a 

novel Gravitational Search Algorithm (GSA). Other 

techniques include Tabu Search (TS) [26], 

Fireworks Algorithm (FWA) [32], Black Hole 

Algorithm (BHA) [33], Immense Evolutionary 

Programming (IEP) [34].  Differential Evolution 

(DE) [35], Biogeography-Based Optimization 

(BBO) [36], Cuckoo Search (CS) [37], Improved 

Radial Movement Optimization (IRMO) [38], 

Genetic Programming (GP) [39], Ant Colony 

Optimization (ACO) [40],  Imperialistic 

Competitive Algorithm(ICA) [42], as well as hybrid 

approaches combining neural networks with 

metaheuristics [44–47]. Fuzzy logic [48] and 

probabilistic approaches such as the reliability 

index method [49] have also been applied. Cheng et 

al. [50] compared six metaheuristic methods and 

concluded that no single algorithm consistently 

outperforms the others, as each has its strengths and 

limitations. 

Despite their effectiveness, metaheuristic 

algorithms also face challenges, such as parameter 

tuning and the need for large numbers of iterations. 

Nonetheless, they present two key advantages: (i) 

efficient information-sharing mechanisms that often 

accelerate convergence, and (ii) reduced likelihood 

of entrapment in local optima. 

In this study, we propose the use of the Multi-

Parametric Genetic Algorithm (MPGA), based on 

Convex Crossover (CC), to identify the critical 

circular slip surface (CFS).(MPGA) is especially 

appealing due to its straightforward implementation 

and potent capacity to resolve intricate nonlinear 

optimization issues.The Fellenius method—a 

classical limit equilibrium approach—is adopted, 

where the FOS is expressed as an objective 

function to be minimized. Using benchmark 

problems from the literature, the suggested 

algorithm's performance is assessed.  A Neural Net 

Fitting model is used to further validate the 

outcomes. The outcomes demonstrate that the 

proposed MPGA provides superior accuracy and 

robustness compared to several conventional 

approaches for locating the CFS in homogeneous 

soil slopes. To the best of our knowledge, the 

current issue has not been tackled before in 

literature. 

This paper's remaining sections are organised as 

follows:  

 • The methodological foundation for 

determining CFS is presented in Section 2. 

 Section 3 introduces the MPGA algorithm 

and its operators. 

 Section 4 reports benchmark case studies 

used to validate the approach. 

 Section 5 provides concluding remarks and 

discusses the main findings. 
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2. Methodology  
2.1 Slope stability analysis  

Several conventional approaches can be employed 

for slope stability assessment, such as numerical, 

kinematic, probabilistic, limit equilibrium, and 

empirical methods [52, 9]. Among these, the limit 

equilibrium method (LEM) remains the most 

commonly adopted analytical tool in geotechnical 

engineering [24–25, 42, 9, 54], where the factor of 

safety is usually determined according to Mohr–

Coulomb failure criterion and the method of slices, 

which involves identifying the critical failure 

surface (CFS) through a series of iterations, are 

used in the current work. For circular slip surfaces, 

the center coordinates C(x₀, y₀) and the radius R 

are systematically varied until the configuration 

corresponding to the minimum factor of safety 

(FOS) is obtained. Because the soil mass above the 

sliding surface is divided into vertical slices, the 

equilibrium can be stated as the balance between 

the driving forces acting on each slice and the 

resisting shear forces. In the proposed procedure, 

only plausible slip surfaces are considered, while 

unrealistic configurations that yield invalid or 

unreasonable FOS values are excluded from the 

analysis. The general procedure for evolving and 

locating the failure surface is presented in Fig. 1. 

2.2 Generating circular slip surface  

This paper focuses solely on two-dimensional slope 

stability problems, assuming a Cartesian coordinate 

system as the frame of reference: OXY. The 

geometry of a slope’s slip surface affects its safety 

factor (FOS).A acceptable slip surface usually 

stretches from the slope's top to its toe, is concave, 

and has a coordinate that increases or decreases 

monotonically. One classification for the slip 

surface is circular, and the former is a particular 

instance of the latter.  In this part, we introduce a 

novel approach to creating slip surfaces on slopes. 

Finding the critical failure surface (CFS), or the 

surface along which a soil mass is most likely to 

fail, is the primary goal.  The factor of safety 

(FOS), which is connected to a certain possible slip 

surface, measures this chance of failure.  The 

polyline that represents this slip surface is made up 

of N points[𝑃0, 𝑃1, . . . , 𝑃𝑛 − 1]. every kinematic 

and geometric limitation on this function must be 

met [55].  The slip surface is handled as a function 

here: 

𝐹𝑂𝑆 = 𝐹 (𝑃). 

Slip surfaces are commonly classified as circular or 

non-circular, with the circular geometry 

representing a special case of the latter. The 

methodology used here is intended to find the 

critical failure surface (CFS), which is the surface 

along which slope failure is most likely to occur, 

and to create probable slip surfaces.The likelihood 

of failure is expressed by the factor of safety (FOS), 

evaluated for each candidate surface. The slip 

surface is modeled as a polyline consisting of N 

points [P0, P1… Pn-1], subject to both kinematic 

and geometric constraints [55]. In this formulation, 

the slip surface is expressed as a function of the 

solution vector P, such that FOS = F(P). The 

positional vector matrix (P) represents the polyline 

describing the candidate slip surface, while the 

function F(P), as defined in Equation (1), maps the 

polyline coordinates to a scalar FOS value, thereby 

quantifying slope stability [50, 56]. 

 

.1 

The function F(P) is generally discontinuous and 

multimodal, even when all geometric and kinematic 

constraints are satisfied. As shown by Chen et al. 

[51], multiple local minima can exist within the 

solution space. Thus, F(P) is inherently non-

smooth, corresponding to an NP-complete problem, 

which justifies treating slope stability analysis as a 

global optimization problem [50, 51]. 

2.3 Constraints and Bounds 

Initially, the slope surface is parameterized 

throughout the interval from right to left [0, 1], and 

as such : 

n a Cartesian coordinate system (X–Y plane) 

illustrated in Fig. 2, the slip surface can be 

expressed as y=S(x), whereas the bedrock profile is 

given by y=R(x). To ensure that a potential failure 

surface satisfies both geometric and kinematic 

conditions, specific constraints must be imposed so 

that the system remains in equilibrium. These 

constraints determine the feasible domains of the 

2n−2 control variables [57]. For the 

parameterization, the slope surface is defined from 

right to left within the interval [0,1]. Accordingly: 

{𝑡0 , 𝑡𝑖−1| 𝑡0 < 𝑡𝑖−1  ∈ [0,1]   } .2 

  

𝑃0 = 𝑠𝑙𝑜𝑝𝑒(𝑡0) = (𝑥0 , 𝑦0) .3 

  

𝑃𝑛−1 = 𝑠𝑙𝑜𝑝𝑒(𝑡𝑛−1) = (𝑥𝑛−1 , 𝑦𝑛−1) 
 

.4 

2.3.1 Bounds for x-coordinates  
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n−2 slices are produced by uniformly partitioning the failure surface, which is represented by n 

vertices, along the interval from x0 to xn-1.  The matching set of x-coordinates is established by 

these slices so that: 

 

𝑥𝑖 > 𝑥𝑗 | 𝑗 > 𝑖, ∀𝑥𝑖 = 1,2,3,… , 𝑛 − 2 &𝑥𝑗 = 1,2,3,… . , 𝑛 − 1 .5 

Where : 

 

 

𝑥𝑖 ∈ ( 𝑥𝑛−1, 𝑥𝑛−1 −
𝑥𝑛−1 − 𝑥0
𝑛 − 2

) .6 

The spacing between each pair of consecutive vertices (P0,P1,…,Pn-1) is identical, such that: 

 

 

 

(𝑥𝑖 − 𝑥𝑛+1) = (𝑥𝑖+1 − 𝑥𝑛+2) =
𝑥𝑛−1 − 𝑥0
𝑛 − 2

 .7 

Where: 𝑖 ∈ [0, 𝑖 − 1] 
 

2.3.2 Bounds for y-coordinates 

 

The slope height and slope base, which are readily retrieved from the slope geometry, 

immediately determine the control variables y0 and yn-1.  On the other hand, to precisely specify 

the geometry of the slip surface, the remaining 2n-2 variables need to be optimized: 

 

 

{𝑥0, (𝑥1, 𝑦1), … , (𝑥𝑖 , 𝑦𝑖), … , (𝑥𝑛−2, 𝑦𝑛−2), 𝑥𝑛−1} .8 

Will be derived according to the coordinate system used to define the slip surface. Cheng [50] 

proposed that if the values of a1 to xn-1 are defined, then the corresponding lower and upper 

bounds for (y2,…,yn) can based on the slope geometry and bedrock profile [58,59]. The bounds 

on the control variables should be dynamic to ensure an admissible surface. The bounds for the 

y0 coordinate given by: 

 

𝑦0 ∈ {(𝑅𝑥, 𝑆𝑥)} .9 

The vertical line x=x2 is crossed at point H by the 

line connecting points Pn-1 and P1, with a matching 

y coordinate, yH.  Likewise, when the line passing 

through P0 and P1 is extended, it intersects the line 

x=x2 at point G, where y coordinate yG is used to 

calculate.  Thus, (𝑦2𝑚𝑖𝑛, 𝑦2𝑚𝑎𝑥) ane be calculated 

as follows: 

𝑦2𝑚𝑖𝑛 = max (𝑦𝐺 , 𝑅(𝑥3)&𝑦2𝑚𝑎𝑥 = min (𝑦𝐻 , 𝑦0(𝑥3)) .1

0 

Similarly, the bound on the y coordinates of each point on the slip surface, i.e., are defined as 

follows{𝑦1𝑚𝑖𝑛, 𝑦1𝑚𝑎𝑥, … , 𝑦𝑛−1𝑚𝑖𝑛, 𝑦𝑛−1𝑚𝑎𝑥}. Shown in fig.2 , can be determined by the 

following relation: 

 

 

 

𝑦𝑖 ∈ ((max(𝑅𝑥𝑖) , 𝑌𝑖𝑚𝑖𝑛), (min(𝑆𝑥𝑖) , 𝑌𝑖𝑚𝑎𝑥)) .1

1 

  

𝑌𝑖𝑚𝑖𝑛 = 𝑦𝑖−1 + (
𝑦𝑖−1 − 𝑦𝑖−2
𝑥𝑖−1 − 𝑥𝑖−2

)(𝑥𝑖 − 𝑥𝑖−1) 
.1

2 

𝑌𝑖𝑚𝑎𝑥 = 𝑦𝑖−1 + (
𝑦𝑛−1 − 𝑦𝑖−1
𝑥𝑛−1 − 𝑥𝑖−2

)(𝑥𝑖 − 𝑥𝑖−1) 
.1

3 

2.4 Modeling of the objective function   

In this work, an objective function that has been 

specially modified for use with the MPGA 

algorithm is presented. The factor of safety (FOS) 

is computed using the Fellenius method [3, 27,53], 

where the corresponding expression serves as the 

fitness function of the optimization procedure. In 

this approach, slope failure is assumed to occur 

along a circular slip surface. The interstice forces 

E1, E2 and X1, X2, illustrated in Fig. 3, are 

neglected—a simplification that remains valid 

under varying surcharge conditions, including 

changes in load magnitude, position (distance from 

the crest), and width. To characterize a circular slip 

surface, the circle’s center C(x0,y0)  and radius R 

must be specified, which are determined at the 

intersection points between the slope boundary and 

the circular arc. The potential slip surface is 

represented by arc AB, defined by the center O and 

radius R. The entire slope mass (ABCD) is then 

discretized into n slices, as shown in Fig. 3, 

enabling the computation of both the total resisting 

force (Fr) and the total driving force (Fd). Based on 

these values, the factor of safety (FOS) is finally 

expressed in the Fellenius method as: 

𝑭𝑶𝑺  =∑
𝑭𝒓

𝑭𝒅

𝒏

𝒊=𝟏

=
∑ [𝒄′𝒊𝒍𝒊 + (𝑾𝒊𝒄𝒐𝒔(𝜶) − 𝑼𝒊𝒍𝒊)𝒕𝒂𝒏(∅′𝒊)]
𝒏
𝒊=𝟏

∑ 𝑾𝒊𝒔𝒊𝒏(𝜶𝒊)
𝒏
𝒊=𝟏

 

.

1

4 

𝑈 = 𝑟𝑢𝛾𝑤ℎ𝑤 ⟹ 𝑟𝑢 =
𝑈

𝛾𝑤ℎ𝑤
 

.

1

5 

In the final step, the (MPGA) algorithm is 

employed to minimize the objective function. 

During each iteration, the circle parameters—

namely the center coordinates C(x0, y0) and the 

radius R—are updated until the slip surface that 

yields the lowest factor of safety (FOS) is detected. 

𝑭𝑶𝑺  =∑
𝑭𝒓

𝑭𝒅

𝒏

𝒊=𝟏

=
∑ [𝒄′𝒊𝒍𝒊 + (𝑾𝒊 + 𝑷 ∗ 𝒃)𝒄𝒐𝒔(𝜶) − 𝑼𝒊𝒍𝒊)𝒕𝒂𝒏(∅′𝒊)]
𝒏
𝒊=𝟏

∑ (𝑾𝒊 +𝑷 ∗ 𝒃)𝒔𝒊𝒏(𝜶𝒊)
𝒏
𝒊=𝟏

 

.

1

6 

  

  

2.4.1 Derivation of failure surface in terms of 

(x0, y0 ,R) 

The fitness function is the definition of the factor of 

safety (FOS) in order to use the (MPGA) method to 

find the critical failure surface based on the Multi-

Parametric Convex Crossover (MPCX).   The next 
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step is to build the objective function.The first step 

is to identify where the slope boundary and the 

circular path intersect.  The width of the slices is 

then determined by calculating the vertical distance 

between the top and bottom of the circular failure 

surface.  Lastly, the point of intersection between 

the slice's midpoint and the slip surface boundary is 

calculated to determine the base angle (α) of the 

slices.  Let the coordinates of the sites where the 

failure slip surface and the midpoints of the n 

slices, arranged from the toe to the crest of the 

slope, intersect be (x1,y1), (x2,y2),…,(xn,yn).  

Suppose that the x-coordinates of the crossing 

points at the slope's toe (XL) and crest (XU) are 

represented by these variables [27].The failure 

circle's equation is: 

 

 
.1

7 

The formula for the slope's base is y = 0 and 

The equation for the top of the slope is: 
 

𝑋𝐿 = 𝑥0  + √(𝑅
2 − 𝑦0

2) 
.1

8 

𝑋𝑢 = 𝑥0  + √(𝑅
2 − (𝐻 − 𝑦0)

2)   𝑖𝑓 𝑦 = 𝐻  𝑎𝑛𝑑  𝑥 = 𝑋𝑢  
.1

9 

 

The width of each slices is :  

 

 

𝑏𝑖 = (
𝑋𝑢 − 𝑋𝐿 

𝑛
) 

.2

0 

  

Where:  n = number of slices. 

 

For additional analysis, the angle formed by the circular slip surface's tangents at the interfaces 

of each slice is taken into account. 

 

 

𝛼𝑖 = 𝑡𝑎𝑛
−1 [

𝑥0 − 𝑋𝑀𝑖
𝑌𝑀𝑖 − 𝑦0

] 
.2

1 

The coordinates (XMi,  YMi) denote the places where the circular slip surface intersects the 

centerline of each slice, and the number of n nodes at each point determines the sliding surface's 

resolution.  Tracing the sliding surface from the slope's toe to its crest yields these points. 

 

 

𝑋𝑀𝑖 = 𝑥0 + √(𝑅
2 + 𝑦20) + 𝑏𝑖𝑖 

.2

2 

𝑌𝑀𝑖 = 𝑦0 +√{𝑅
2 − (√(𝑅2 − 𝑦0

2) + 𝑏(𝑖𝑖 + 0.5)} 
.2

3 

The following is the equation for a slice's centerline:  

𝑥 =
(𝑥𝑖 + 𝑥𝑖+1)

2
 

.2

4 

  

𝑥 = 𝑥0 +√(𝑅
2 − 𝑦20) + 𝑏(𝑖𝑖 + 0.5)       

.2

5 

The angle of inclination of the slope "β": The total 

angle "β" is the angle formed by the two lines of 

combination, which are the points where the failure 

circle connects to the slope's base and peak. 

𝑡𝑎𝑛(𝛽) =
𝑀1 −𝑀1
1 +𝑀1𝑀2

 
.2

6 

Where: 

𝑀1 =
𝑦0

𝑥0 − 𝑋𝐿 
 

.2

7 

𝑀2 =
𝑦0 −𝐻

𝑥0 − 𝑋𝑢
 

.2

8 

The weight of ith slice: 

𝑊 = 𝛾ℎ𝑖𝑏𝑖 
.2

9 

The height of the slope for ith slice: 

ℎ𝑖 =
𝛽

10
𝑅    

.3

0 

The length of the ith slice: 

𝑙𝑖 =
𝑏𝑖

𝑐𝑜𝑠(𝛼𝑖  )
 

.3

1 

 

Tangential force at each slice : 
 

𝑇 = 𝑊𝑠𝑖𝑛(𝛼) =   𝛾𝑏ℎ 𝑠𝑖𝑛(𝛼) 
.3

2 

Normal force at each slice : 

 

 

 

𝑁 = 𝑊𝑐𝑜𝑠(𝛼) =   𝛾𝑏ℎ 𝑐𝑜𝑠(𝛼) 
.3

3 

3 Working principle and operators of the 

proposed MGA Method 

Natural genetics serves as the inspiration for 

genetic algorithms (GAs), which are mathematical 

models that mimic nature's capacity to generate, 

encourage, improve, and remove solutions to 

challenging optimisation issues.  It is a search 

method for locating approximate answers to 

optimisation and search problems that was 

developed by [60], Back [61], Michalewics [62], 

Coello [63], Hedberg [64], Goldberg et al. [65], 

Zolfaghari et al. [20], Yang et al. [66], and Nian 

[67].  A subclass of evolutionary algorithms (EAs) 

known as genetic algorithms (GA) use methods like 

inheritance, mutation, crossover, and natural 

selection that are influenced by evolutionary 

biology.  A population of abstract representations 

(referred to as chromosomes) of workable solutions 

(referred to as individuals) that evolve towards 

better solutions to an optimization problem are 
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commonly used in the implementation of genetic 

algorithms.  A population of utterly random 

individuals is the starting point for the evolution, 

which continues over many generations. 

Every generation, the general fitness of the 

population is evaluated.  Based on their fitness, 

serval individuals are randomly chosen from the 

current population, and they altered by 

recombination or mutation to emerge from a new 

population, which becomes the current one the next 

iteration.   A list of parameters known as a 

chromosome, which is usually expressed as a 

straightforward string of data or instructions, 

represents a solution to a problem.  Initially, a 

number of these people are selected at random from 

the original population.  Every generation, each 

person is assessed, and a fitness function assigns a 

matching fitness value.  The population is then 

sorted, with better solutions to the problem being 

reflected in those who are more suitable.  One pair 

of parent organisms is chosen for breeding for 

every person generated in the following generation.  

The selection process is biased toward individuals 

from the initial generation with higher fitness; 

however, it is not exclusive that less fit individuals 

are entirely excluded.  By doing this, the population 

is kept from prematurely convergently towards a 

local or poor solution.  There are several well-

known selection techniques for choosing parent 

organisms, including tournament and roulette wheel 

selection.  After selection, the selected 

chromosomes undergo the crossover process, which 

recombines the organisms based on a 

predetermined probability. 

Two new kid chromosomes are created by the 

crossover procedure and added to the following 

generation.  The genetic material of the parent 

chromosomes is fused during this procedure, 

usually by switching out portions of their 

underlying DNA.  Through this process, 

advantageous features from the parents are 

preserved while new variations are introduced into 

the population.  Until the required number of 

candidate solutions are produced for the following 

generation, the crossover action is repeated using 

various pairs of organisms.  The newly produced 

offspring must then be mutated.  Mutation happens 

with a fixed and extremely low probability in a 

conventional genetic algorithm, typically 0.01 or 

less.  Random alterations are made to a young 

organism's chromosome based on this chance.  In 

the end, these genetic processes produce a new 

generation of chromosomes that is distinct from the 

original population. Through the introduction of 

novel features that would not be found in the 

current gene pool, mutation helps preserve genetic 

diversity within the population and avoids 

premature convergence.  Mutation, in conjunction 

with crossover and selection, helps create a new 

population of chromosomes that is distinct from the 

original generation.   Because only the fattest 

organisms from the first generation are chosen for 

reproduction, this process typically results in a rise 

in the population's average fitness. 

This generational cycle is repeated until a 

termination criterion is met, such as reaching a 

maximum number of generations, hitting a minimal 

fitness threshold, or not observing any appreciable 

improvement over successive iterations. 

 

3.1 Encoding  

 

The effectiveness of the method is highly 

influenced by the way the coding is implemented. 

Coding refers to the representation of a solution 

(individual) as a string or vector, which can consist 

of integers, real-coded numbers, binary digits, or 

even alphabetic letters. In this study, The problem's 

search space is continuous. Hence, a real-coded 

modified genetic algorithm (RCMGA) is proposed. 

In continuous domains, the genes are represented as 

real codes (RC) for the purpose of addressing 

parameter optimization problems.Therefore, a 

chromosome is a vector of floating-point numbers, 

with the precision depending on the machine 

running the algorithm. The dimensions of the 

chromosome are kept equal to the length of the 

vector representing the solution to the problem. In 

this way, each gene corresponds to a variable of the 

problem. Effectively, for many authors, such as 

Davis [68], in optimization problems where the 

variables have a continuous rather than discrete 

distribution in the solution space, representing the 

solutions with real-coded encoding is clearly more 

realistic and straightforward than using binary 

encoding. This method of representation also 

simplifies the implementation of the operators. For 

our optimization problem, the slip surfaces 

(solutions) are assumed two-dimensional arcs. Each 

circular slip surface is fully defined by three 

parameters: the radius and the two coordinates of 

its center. Therefore, the chromosome 

corresponding to apotential solution consists of 

three genes, forming a vector of three real numbers. 

This approach ensures that the chromosome, 

composed of meaningful genes, does not require 

decoding or repair. 

Thus, a chromosome Chi of a potential slip surface 

is expressed by: 

𝐶ℎ𝑖 =  [𝑥𝑖, 𝑦𝑖, 𝑅𝑖] 
.3

4 

 

3.2 Fitness function 
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The effectiveness with which each chromosome 

fixes the issue is then used to calculate a fitness 

value.  The quality of the created solutions is 

measured by the fitness function.  The chromosome 

serves as a failure surface in the research of slope 

stability, and the individual's fitness value is 

established by its factor of safety.  Even if a 

chromosome has a very high factor of safety, it will 

be eliminated from the population if it generates a 

failure surface that cannot be examined.  Although 

it is easier to follow the paradigm where the lowest 

value is optimal in all situations, it is possible to 

achieve a high fitness value by reversing the safety 

factor.  According to the Fellenius estimate, the 

fitness function is selected as the factor of safety 

[03]. 

 

3.3 Generation of the initial population 

 

The first step in the optimization process is to 

generate a set of preliminary, workable solutions, 

which make up the initial population. This 

population consists of NPop randomly generated 

individuals, each representing a possible circular 

failure surface. To guarantee adequate diversity, the 

population size must be sufficiently large, allowing 

for the identification of the optimum solution. 

Generating an individual involves determining its 

three parameters within predefined intervals, as 

mentioned earlier. These intervals are typically 

defined by the analyst based on reasonable 

conditions and the slope boundary. That’s to say: 

𝑥𝑚𝑖𝑛 ≤ 𝑋𝑖 ≤  𝑥𝑚𝑎𝑥  ;  𝑦𝑚𝑖𝑛 ≤  𝑌𝑖 ≤  𝑦𝑚𝑎𝑥   
𝑅𝑚𝑖𝑛 ≤  𝑅𝑖 ≤  𝑅𝑚𝑎𝑥 

.3

5 

 

Figure 5 displays the outcome of this stage as an 

example of the initial population formation.  

Following the creation of the initial population, 

each person's fitness is assessed.  The following 

actions are then carried out in response to these 

assessments. 

 

3.4 Crossover process 

 

By changing the three variables in a chromosome, 

one can change the location features of a slip 

surface, perhaps creating a new slip surface with a 

lower factor of safety.This modification is achieved 

through crossover and mutation operators. The 

crossover process begins by selecting pairs of 

parents from the current population to create a list 

of candidate parents [29].The size of this list: 

𝑁_𝑙𝑖𝑠𝑡 =  𝑖𝑛𝑡((𝑁_𝑃𝑜𝑝 ∗ 𝑇_𝑐𝑥)/2)    
.3

6 

Where:𝑖𝑛𝑡() is the integer function 

(NPop: population size, Tcx: crossover rate). 

The more fit a chromosome is, the more likely it is 

to produce offspring, since the likelihood of an 

individual being chosen is directly correlated with 

its fitness.  For each individual, the selection 

probability is calculated using a rank-based method.  

As previously stated, the suggested algorithm's 

operators have been changed to improve search 

effectiveness.  To accomplish this enhancement, a 

novel Multi-Parametric Convex Crossover (MPCX) 

is used.By adding a local search mechanism, the 

suggested crossover operator stands out.  By 

altering the convex combination parameter λ, this 

manifests in the creation of many child 

chromosomes.After that, Crossover takes the 

subsequent actions: 

 

3.5 Mutation process  

 

This operator plays a secondary role by preserving 

diversity within the population pool and helping the 

search escape local optima. It involves introducing 

minimal changes to some individuals' 

chromosomes. Mutation is applied at a small rate, 

affecting just a tiny percentage of the populace.The 

goal of this process is to displace a slip surface by 

perturbing the genes of a chromosome. First, some 

individuals are chosen at random from the existing 

population [29]. Then, for each selected individual, 

a simple uniform mutation is applied as follows: 
𝐶ℎ’[𝑖] =  𝐶ℎ[𝑖]𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 3   .37 

4 Numerical experiments 

This section applies several friction angles 

documented in the literature to solve a numerical 

benchmark problem in order to assess the validity 

and effectiveness of the proposed method.  The 

technique uses the Fellenius method as the fitness 

function for these issues, which require 

homogeneous soil slopes.  The grid search (GS) 

approach is first used to estimate the factor of 

safety (FOS), in which the center of each possible 

failure surface is limited to a predetermined 

rectangular region.  Sound engineering judgment is 

used to identify this area's location.  Within this 

grid, every point varies within a given range and 

corresponds to the center of a circular slip surface 

(c).  Lastly, to determine the lowest value for the 

entire search region, the factor of safety is 

computed at each grid point [69, 70].  Similarly, the 

Multi-Parametric Genetic Algorithm (MPGA) is 

used to validate the methodology.  Each member of 

the population is represented by a real-coded 

chromosome in this method, which is matrixed with 

its variable (x, y) and R. 
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 𝑀𝑝𝑜𝑝 =

(

 
 

𝑥1          𝑦1       𝑅1
𝑥2            𝑦2           𝑅2
𝑥𝑖           𝑦𝑖        𝑅𝑖
……………………
𝑥𝑛           𝑦𝑛         𝑅𝑛 )

 
 

 

 

.3

8 

Within the search space, every chromosome in the 

population represented a potential solution.  To 

minimize the fitness function, the selected 

chromosome is assessed and evolves throughout the 

course of succeeding generations.By applying 

crossover and mutation operations, the performance 

of the algorithm is progressively improved.The 

final step in implementing techniques in the 

literature by Aniruddha et al. [27].The critical 

failure surface (CFS) linked to the optimal factor of 

safety (FOS) is found in the stage using the 

(MPGA) algorithm. In comparison to conventional 

techniques, The findings indicate that the MPGA 

algorithm effectively determines the lowest factor 

of safety (min FOS), exhibiting faster convergence 

and better performance. 

 

4.1 case 1 

 

The study conducted by Yamagami and Ueta [71] 

is the source of the geometryof the homogeneous 

soil slope depicted in Fig.8. Slope height H = 10 m, 

cohesiveness c′ = 9.8 kPa, friction angle ϕ = 10°, 

unit weight γ = 17.64 kN/m3, and pore pressure ru 

= 0 are the soil's geotechnical characteristicsshows 

in fig 8.  Different numbers of slices are employed 

for the slope stability study; in this instance, n=20 

slices are used.  R is considered a random variable, 

as are the boundary variables (x0, y0).  With load 

intensity q varying from 0 to 1000 KN/m2, the 

number of slices varied from n=4 to 20. The load 

width was also adjusted according to the number of 

slices.  The performance of the critical failure 

surfaces (CFS) obtained using the genetic algorithm 

(GA) based on the Multi-Parametric Convex 

Crossover (MPCX) is displayed in Figure 9.  The 

algorithm's tuning settings, which were 

meticulously identified as the optimal configuration 

for modifying the results, are shown in Table 2. 

These parameters were adjusted by varying the 

associated values within fixed intervals(Npop ∈
[100 − 1000])and(Mpop ∈ [100 −
1000]),(𝑇_𝐶𝑥 ∈ [0.5: 0.05: 0.8]) and mutation as 

(𝑇_𝑚𝑢 ∈ [0.001: 0.0001: 0.002]to get the best 

objective function.   Table 3 displays the minimal 

Factor of Safety (FOS) values that were obtained 

from the slope analysis.  The FOS values reported 

by other researchers are also included in Table 3 for 

comparison.  The MPGA technique yielded crucial 

slip surface values for the minimum factor of safety 

(min FOS) that closely match the previously 

determined values, according to the comparative 

results of the current method and earlier research, 

which are compiled in table 3. 

 

4.2 case 2 

 

According to the study, Fredlund and Krahn [09] 

use the geometry of the uniform soil slope depicted 

in Fig. 10.  Slope height H=10 m, cohesiveness 

c′=29 kPa, friction angle ϕ=20°, unit weight 

γ=18.85 kN/m3, and pore pressure ru=0 are the 

soil's geotechnical characteristics.  Different 

numbers of slices are employed for the slope 

stability study; in this instance, n=20 slices are 

used.  R is considered a random variable, as are the 

boundary variables (x0, y0).  With load intensity q 

varying from 0 to 1000 KN/m2, the number of 

slices varied from n=4 to 20. The load width was 

also adjusted according to the number of slices.  

Figure 11 shows how well the Multi-Parametric 

Convex Crossover (MPCX), a proposed genetic 

method, predicts the critical failure surfaces' (CFS) 

effectiveness.  The results are shown in the 

algorithm tuning parameters, which were 

meticulously identified as the ideal configuration 

for fine-tuning Table 2.  These parameters were 

adjusted by varying the associated values within 

fixed intervals(Npop ∈ [100 − 1000]) 

and(Mpop ∈ [100 − 1000]),(𝑇_𝐶𝑥 ∈

[0.5: 0.05: 0.8]) and mutation as (𝑇_𝑚𝑢 ∈

[0.001: 0.0001: 0.002] to get the best objective 

function. Table 4 shows the minimal Factor of 

Safety (FOS) values that were obtained from the 

slope analysis.  The (FOS) values reported by other 

studies are also included in Table 4 for comparison.  

The minimum safety factor (FOS)-related essential 

slip surfaceobtained using the (MPFA) method 

closely resembles the previously calculated values, 

according to Table 4, which highlights the 

comparative results between the current 

methodology and past research. As a result, all 

required terms have been computed.  One may 

calculate the factor of safety (FOS) associated with 

a specific failure surface by replacing each slice in 

eq. 14 with these terms.  The pseudocode for 

determining the slope's factor of safety is shown in 

Algorithm A. 
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Table 1 Presentation of ranges associated to variables 

Applications Variables Range Number of slices 

1 [x0, y0, R]T [(x,  x+20), (H,  H+10), (0,  50)] T  20 

∗ 𝑥 = 𝐻 ∗ 𝑐𝑜𝑡 (𝛽) ∗ 𝑛: 𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑙𝑖𝑐𝑒𝑠𝑢𝑠𝑒𝑑,∗ 𝑏: 𝑤𝑖𝑑𝑒𝑜𝑓𝑒𝑎𝑐ℎ 𝑠𝑙𝑖𝑐𝑒,𝜸𝒘: Unit weight of water = 10kN/m
3 

 
Figure 1. Slope stability analysis workflow diagram. 
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Figure 2 The control variables that define the admissible slip surface are 
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Figure 3. Slip surface comprising finite vertical slices 

 

 

Algorithm 1: pseudocode for deriving factor of safety (FOS)of slip 

Inputs : 

1. Constant parameters : Cohesion (C ); Friction angle (Φ ); Unit Weight(W); surcharge intensity(P)

2. Varying parameters : Centre points(x0,y0) and radius (R)
Result : Factor of safety (FOS) for failure surface

Step 1: Initialize slope surface geometry.

Step 2: Derive the slip surface  in the terms (x0,y0) and R

while slip surface =valide surface do

      2.1 Randomaly select  (x0,y0) and R for slip surface 

      2.2Find intersection points (xL,yL) and (xU,yU) between slope boundary surface and slip circle 

      2.3 Divide the slope mass into n finite slices 

      2.4 Derive all n points [ P1(x1,y1), P2(x2,y2),  , Pn(xn,yn)] that define in n-2 slices of failure slip surface  

      end

Step 3:

     for i=0 : n-2  tel que n-2 number of slices 

      3.1 Derive width (b) , Angle of slice base (α), Tangential force of slice, Normal force on the  slice 

      3.2 Calculate (FOS) for ith slice 

 end

 Step 4 :Stop

 

 

Figure 4. Pseudo code for deriving factor of safety (FOS) 

 
Figure 5 An illustrative example of randomly generated initial population (𝑁𝑃𝑜𝑝 = 100) 



Amor Mennaai, Samir Djireb, Abdallah Zatar, Djamal Hamadi/ IJCESEN 11-4(2025)8625-8641 

 

8635 

 

 
Figure 6. The suggested Multi-Parametric Genetic Algorithm flowchart. 

 

Figure 7 Pseudocode for Crossover operations in MPG 
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q=0-1000KN/m2

ϒ=17,64 KN/m3

C=9,8 Kpa

Φ=10°

Ru=0

Water surface=/

10

5

 

Figure 8. The geometry and geotechnical properties of the slope model used in case study 1 

 

Table 2. Parameters of the MPGA 

Population  size 1000 

Iterations 1000 

Mutation Probability 0.002 

Crossover    probability 0.75 

Crossover  Tow point 

 
Figure 9 Performance of the proposed MPGAfor estimation of (FOS)with different loads appliedfor case study 1 

 
Table 3 Comparative of analysis factor of safety summary results for case study 1 

Sources Optimization Method Minimum FOS 

Yamagami and Ueta [71] Broyden Fletcher Goldfarb Shanno (BFGS) 1,338 

Yamagami and Ueta [71] Simlpex Method  1,339 

Cheng et al. [50] Particle Swarm Optimization (PSO) 1,329 

Cheng et al. [50]  Modified Particle Swarm Optimization (MPSO) 1,326 
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Cheng et al. [72 ] Modified Harmony Search (MHS) 1,322 

Jianping et al [73] Genetic Algorithm (GA)+line 1,324 

Jianping et al [73] Genetic Algorithm (GA)+Spline 1,321 

Kahatadeniya et al. [74] Ant Colony Optimization (ACO) 1,311-2,966 

Khajehzadeh et al. [75] Modified Particle Swarm Optimization (MPSO) 1,308 

Kang et al.[76] Artificial bee colony optimization (ABO) 1,321 

Jayraj Singh [36] Grid search method 1,237 

Jayraj Singh [36] Biogeography based optimization 1,224 

Present study  MPGA (P=0) 1,066-1,221 

Present study  MPGA (P=50) 1,036-1,163 

Present study  MPGA (P=100) 1,024-1,076 

Present study  MPGA (P=200) 1,015-1,047 

Present study  MPGA (P=300) 1,01-1,033 

Present study  MPGA (P=500) 1,0072-1,027 

Present study  MPGA (P=800) 1,0047-1,016 

Present study  MPGA (P=1000) 1,0047-1,014 

 

q=0-1000KN/m2

ϒ=18,85 KN/m3

C=29 Kpa

Φ=20°

Ru=0

Water surface=/

60

30

 
Figure 10. The slope model utilized geometry and geotechnical characteristics in case study 2 

 

Table 4. Comparative overview of case study 2 of the factor of safety findings 

Sources Optimization Method Minimum FOS 

Fredlund and Krahn [09] Fellenius method  1,928 

Fredlund and Krahn [09] Simplified Bishop method  2,08 

Fredlund and Krahn [09] Spencer method  2,073 

Fredlund and Krahn [09] Janbu Simplified method   2,041 

Fredlund and Krahn [09] Janbu Rigorous method   2,008 

Fredlund and Krahn [09] MP method  2,076 

Baker .R [1] Spencer method 1,98 

Jayraj Singh [36] Grid search method 1,923 

Present study  MPGA (P=0) 1,074-1,36 

Present study  MPGA (P=50) 1,036-1,213 

Present study  MPGA (P=100) 1,025-1,13 

Present study  MPGA (P=200) 1,015-1,10 

Present study  MPGA (P=300) 1,011-1,065 

Present study  MPGA (P=500) 1,0076-1,048 

Present study  MPGA (P=800) 1,0053-1,029 

Present study  MPGA (P=1000) 1,0039-1,021 
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Figure 11. Performance of the proposed MPGAfor estimation of FOS with different loads appliedfor case study 2 

 

4. Conclusions 

 
This research employed the Multi-Parametric 

Genetic Algorithmic (MPGA) to solve a nonlinear 

geotechnical problem by finding the critical failure 

surface (CFS) and evaluating the factor of safety 

(FOS).  Using the Felleunis Method and Multi-

Parametric Convex Crossover (MPCX), a computer 

program was created to determine the critical 

failure surface (CFS) and estimated factor of safety 

(FOS).  In comparison to other crossover operators, 

the results indicate that the MPCX operator 

improves the real-coding modified Genetic 

Algorithm's (RCMGA) performance.  As a point of 

comparison, the MPGA is effectively used to deal 

with the slope stability problem inan example 

where the friction angle varies between 10° and 

20°.  According to the case study, the algorithm 

performs favorably to other evolutionary algorithms 

that have previously encountered similar 

circumstances and yields excellent results, making 

it robust.  Compared to other optimization 

techniques, the MPGA requires less or equivalent 

fitness function evaluations.  The present work 

shows that the fitness function successfully 

converges to the global minimum and requires 

fewer parameters to be changed than some other 

bio-inspired algorithms.  The MPGA's 

comparatively straightforward mathematical 

structure—which only requires the crossover and 

mutation of two parameters—is one of its main 

advantages over other well-known algorithms.  

Consequently, the proposed method may explore 

solutions utilizing a variety of control variable 

combinations and has greater search capabilities 

than (GS). 

The (MPGA) can escape local minima more 

successfully than its GS equivalent thanks to this 

technique.  According to the results of numerical 

experiments, the solutions generated by MPGA and 

BBO have lower standard deviations than those 

generated by other optimization methods. This 

implies that researchers and practitioners can use 

the current study's findings to choose the best 

metaheuristic approaches for their particular 

applications.   The recommended method 

disregards Pore water pressure's impactbecause all 

case studies are evaluated at fry conditions, or zero 

pore water pressure.  Furthermore, there is no 

discussion of how to assess slope stability in 

seismic circumstances.  The quantity of slices 

ranges from four to twenty, we investigated in this 

article the impact of various stresses on the breadth 

slope.  We saw how the safety factor (FOS)  was 

impacted by the quantity of slices’ n’ in each load 

scenario. 
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