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Abstract:  
 

The growing complexity and speed of trading activities in capital markets have 

rendered rule-based anomaly detection systems incapable of following real-time 

monitoring. The paper examines the model of integrating graph-based modeling and 

stream processing architecture on financial transactions as an effective framework to 

detect anomalous behaviors of financial transactions. Via the representation of the 

market entities and their relations as dynamic graphs and the application of the machine 

learning model, leveraging a graph neural network to them, it is possible to detect 

market anomalies, like fraud, market manipulation, and insider trading, with a more in-

depth understanding of the context and a faster pace. Stream processing engines (e.g., 

Apache Kafka, Flink) facilitate large-scale throughput, low-latency data ingestion, 

whereas graph forms describe non-linear as well as dynamic relationships between 

brokers, traders, and instruments. In the paper, architectural, machine-learning, and 

compliance-based deployment criteria needed to operationalize such systems are 

discussed. It also covers more complex subjects, such as cross-market graph correlation, 

federated learning, and explainability in high-stakes settings. Results indicate that 

graph-based real-time anomaly detection systems bring a dramatic improvement in 

scalability, accuracy, and compliance, as well as represent the first essential step 

towards proactive financial market surveillance. 

 

1. Introduction: The Need for Real-Time Graph 

Intelligence in Capital Markets 

Capital markets in the modern, hyper-connected, 

algorithmically driven financial landscape are fast, 

complicated, and extremely large in terms of their 

transaction volumes. Billions of financial trades, 

including equities, derivatives, forex, and fixed 

income instruments, take place every day on 

decentralized networks consisting of brokers, 

exchanges, institutional traders, and automated 

market makers. These trades are completed with 

millisecond latency, producing an environment in 

which market manipulation, fraud, and systemic 

risk can propagate much more quickly than is 

possible with prior systems of risk management or 

post-trade surveillance [1][2].In the past, financial 

surveillance networks were dependent on rule-

based analysis and threshold anomaly detection, 

where a pattern like front-running or wash trading 

was detected by checking possible patterns against 

pre-defined behavioral models. Nevertheless, this 

practice is becoming inadequate. Market abuse 

methods as they are used now are flexible, 

interconnected, and disguised by a variety of 

accounts or routes, as well as through complex 

algorithm methods. They are likely to avoid fixed 

detection policies through pretending to be normal, 

as well as using fragmented liquidity across 

exchanges [3][4]. This requires a paradigm change 

in anomaly detection, one that can mingle real-time 

responsiveness with context-awareness. The graph-

based models appear to be the apt solution to the 

same. This construction of the capital market, like a 

graph of nodes (entities) and edges (transactions, 

relationships), allows analysts and surveillance 

systems to draw conclusions about sophisticated 

patterns, including the strange centrality of 

participants, occult loops in the transactions, and 

the separation of cross-institutional collusion. As 

opposed to linear or tabular analytics, graph theory 

gives the means to gather relational and topological 

knowledge, which is essential in discovering illicit 

behaviours of networked data structures [5][6].On 

one hand, with this development in data modeling 
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comes the emergence of stream processing 

technologies. With the need to execute sub-second 

decisions in the financial markets, conventional 

batch-based analytics cannot satisfy the 

performance requirements. The stream processing 

systems like Apache Kafka, Apache Flink, and 

Apache Storm support event computing, data 

ingestion in real-time, and time-based analytics 

with a latency very close to zero. With this, trading 

platforms and surveillance teams have the ability to 

work with data on the run, instead of having to be 

analyzed after the fact [7][8]. With stream 

processing, one can combine graph analytics in 

order to continuously build and update graph 

representations of market behavior as new events 

are being fed into it. This allows finding 

inconsistencies not only in raw transactional data, 

but in the development of behavioral relationships 

over time. We give some possible examples: the 

unusual value of the centrality score of a node, a 

sudden network of highly connected subgraphs 

might indicate potential manipulation schemes in 

near real-time [9]. The regulatory aspect also 

promotes the implementation of such real-time 

anomaly detection systems that are highly 

developed. Regulatory initiatives around the world, 

including MiFID II in Europe, Reg SCI in the 

United States, and the cyber risk framework by 

SEBI in India, have an operational requirement to 

implement effective surveillance systems to support 

the integrity of the markets, real-time reporting, and 

operational resilience by financial institutions. 

Detection of anomalies or failure to take prompt 

action to flag suspicious activity in institutions also 

exposes the institutions to not only monetary 

penalties but also to deterioration of investor 

confidence and tarnishing of their image [10][11]. 

That is why the unification of graph models and 

stream analytics is not a technical improvement 

anymore but rather a requirement of operations. 

The organization needs to design systems that are 

scalable, explainable, and that dynamically learn in 

a fast-changing financial environment. New 

developments point towards using parallelism of 

graph-based machine learning, real-time processing 

frameworks, and domain-specific knowledge 

graphs in conjunction being one of the most 

appealing ways to proactively monitor the market 

[12][13].In this context, the following parts of this 

article discuss the basic elements, the obstacles, and 

the advancements in real-time graph-based anomaly 

detection. In the second part, it starts with the 

stream processing platform that guides the 

operation of these intelligent surveillance systems. 

2. Stream Processing Foundations for Capital 

Market Surveillance 

Since the capital markets produce massive amounts 

of data in real time, tick data, transaction records, 

and order book updates, any system that will 

process this data must have both built-in throughput 

and sub-microsecond latency. The real-time 

requirements of market surveillance do not suit the 

traditional batch-oriented data systems. 

Consequently, stream processing architectures have 

become the core of real-time anomaly detection 

systems, which promise the possibility of 

continuously ingesting, transforming, and analyzing 

the event as it arises [5][6].There is an emerging 

use of modern streaming platforms, including 

Apache Kafka, Apache Flink, Apache Pulsar, and 

Amazon Kinesis, to support event-driven pipelines. 

Such systems also work with a rapid-fire stream of 

data ingestion via exchanges and brokerage APIs as 

well as trading algorithms. This data is consumed 

by the stream processors with stateful operators that 

can perform sliding window analysis, aggregations, 

joins, as well as transformations. Applied in capital 

markets settings, these are capabilities applied to 

identify inconsistencies in trading volumes, price 

changes, order routing, and participant behavior in 

the financial market on a short-term basis 

[7].Event-time handling is one of the stream 

processing developments of capital market 

surveillance. Unlike processing-time computation, 

which is pegged on the system clock, event-time 

processing employs the actual timestamp attached 

to every transaction, making sure that delayed and 

out-of-order data are appropriately understood. This 

is important in such a way that in markets where 

network congestion or latencies might have led to 

data skew, and therefore might give error alarms 

unless recovered by mechanisms of watermarking 

and line timestamps alignment [8].Scalability is one 

more requirement of financial stream systems. As 

exchanges like NSE or NASDAQ can execute 

millions of events in a single second, the 

architecture would have to allow horizontal scale-

out, fault tolerance, and exactly-once processing 

semantics. To reach this, the contemporary 

pipelines use distributed computing clusters, 

message brokers, commonly replicated and 

checkpointing mechanisms that maintain the state 

during malfunctions. Stream graphs can even be 

partitioned into many jobs or tasks to make parallel 

processing possible, which contributes immensely 

to the performance as well as resilience [9]. 

Practically, the graph construction in real-time is 

established under the stream pipelines. When data 

comes in, it is ordered and enhanced by 

transformations, e.g., replacing account IDs with 

user entities, or combining trades with metadata, or 

grouping trade records into sessions. When this 

data is enriched, it is then piped into graph engines 
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either directly in-memory or by use of intermediate 

storage engines such as Redis, Cassandra, or time-

series databases [10].Moving on to structural 

analytics, the following section explores the 

capability of graph-based models of financial 

markets to capture and characterize complex 

patterns of behavior and thus detect anomalies in a 

more involved way than through the application of 

statistical measures. 

3. Graph-Based Representation of Financial 

Market Interactions 

After the data of trading is ingested and pre-

processed in real-time through the stream 

processing engines, the second important process in 

the process of anomaly detection is the 

transformation of this data into a structured 

representation that may involve complex 

relationships. Such is the reason why graph-based 

representations only come in handy. However, 

available traditional tabular data work on entities in 

isolation, unlike graphs, in which interdependent 

behaviors and network dynamics can be modeled; 

both of which tend to be the ultimate indicators of 

anomalous or fraudulent market operations 

[8][11].In order to better explain how graph 

representations are amenable to complex 

interactions in the marketplace, the following table 

represents typical nodes and edges that occur in 

real-time graph-based financial transaction graphs, 

as well as the typical attributes that can be added to 

each entity to provide more information about it.In 

finance, a graph is often used where the nodes can 

be traders, brokers, bank accounts, trading venues, 

or instruments. Edges refer to relationships or 

interactions, including trades made, money moved, 

or order book activity shared. Attributes can be 

added to these graphs, including trade volume, 

instrument, time, and price, to create a 

multidimensional picture of each relationship. 

These graphs change over time as more and more 

events are processed, and by doing so, a dynamic or 

temporal graph is created that enables the 

surveillance systems to monitor changes in 

behaviors and relational drift [12].An empirical 

illustration would include detecting collusive 

trading involving circular trade and coining of 

accounts that are involved in successive self-

dealing. Such patterns can seem statistically 

unnoticeable in tabular data. Nevertheless, the 

patterns, when presented in the form of repetitive 

patterns in a graphical map of transactions, 

resemble red flags. Similarly, unusual centrality can 

also be identified by graphs, i.e., when a node (such 

as a specific broker) is suddenly made a conduit in 

a network that has never had the connectivity, 

lending itself to the possibility of a liquidity funnel 

or intermediary manipulation [13]. Community 

detection algorithms are also supported by graphs, 

and the algorithms can be used to subdivide the 

trading ecosystem into closely-knit clusters. 

Anomalies occur when there is a violation of 

expected community bounds, such as a retail 

account doing business in an institutional cluster or 

dealing with offshore counterparties in a manner 

incompatible with the activity in its past. There are 

real-time algorithms such as Louvain, Label 

Propagation, and Spectra Clustering that can be 

used to track structural changes and give a 

probability score to anomalous behavior [14].To 

additionally increase interpretability, numerous 

platforms use graph schemas or ontologies that 

encode financial domain knowledge. To give an 

example, a node with a label of a retail trader will 

possess familiar restrictions, or transaction size, 

counterparties, and timing, that may be tested as it 

is traversed through the graph. Should a retail trader 

begin operating according to the schema with the 

algorithmic timing precision, then this operation 

will become a possible anomaly that is to be 

investigated [15]. Graph representations must hence 

be a strong abstraction to represent the domain 

knowledge and monitor behavioral dynamics and 

subtle relational anomalies that cannot be easily 

surfaced. The application of advanced machine 

learning techniques here is founded on this 

structural modeling, and it is discussed in the 

section below. 

4. Machine Learning Models for Graph-Based 

Anomaly Detection 

When trading data has been converted to a graph 

structure, the rest is to determine which behaviors 

or nodes are abnormal. That is where graph data-

specific machine learning models are deployed. 

Anomalies in a capital market tend to be volatile 

and circumstantial, and as such, there may be no 

strict parameters or guidelines to be followed. 

Machine learning offers an avenue to learn ordinary 

behaviors and identify anomalies based on semi-

supervised, unsupervised, or self-supervised 

learning models [13][16]. Graph neural networks 

(GNNs) are among the most popular 

implementation approaches. These models 

generalize those of traditional neural networks (to 

graphs), allowing node embeddings to be learned to 

preserve both node properties and any topological 

context. Anomaly detectors have been trained on 

models like Graph Convolutional Networks 

(GCNs), GraphSAGE, and Graph Attention 

Networks (GATs) to assign a score to each node or 

subgraph on how abnormal it acts to previously 



Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287 

 

8282 

 

learned norms of behavior [17]. Most real-world 

market surveillance systems, however, experience 

the scarcity of labeled data, particularly of rare 

cases of fraud. To solve this, unsupervised 

(Autoencoders, One-Class SVMs, and Isolation 

Forests) are frequently applied. Such models are 

trained with data that are assumed to be normal and 

are subsequently applied to score the outliers on 

reconstruction error or statistical separation 

[18].Temporal graph modeling, an alternative 

direction, is to add recurrent modules to GNNs 

(e.g., LSTM, GRU) or make them spatio-temporal 

networks. They allow tracing the development of 

the relationships over time, which is crucial in 

capital markets, where numerous schemes shift 

slowly or respond depending on monitoring 

feedback. Temporal GNNs have the capability to 

identify patterns, including the recurrence of a 

trader on the edge of various suspicious subgraphs, 

even though individually each interaction may 

seem normal [19]. In recent years, self-supervised 

learning has become widely used because of its 

tendency to take the employment of substantial 

amounts of unlabelled data. Training of models is 

done to make predictions regarding masked nodes, 

missing edges, or future graph conditions. Any 

difference in the performance of the prediction may 

be considered as a proxy for anomaly detection. An 

example of this can be given when a model trained 

on regular periods in the market is used in the off-

hours trading and gives high error; the anomaly can 

indicate an effort to avoid the detection systems 

[20]. Nevertheless, explainability in models has 

been an urgent issue despite such developments. It 

is not enough that the compliance teams and 

regulators have to know anomalies detected by 

financial institutions, but they can also justify 

alerting them. Consequently, explainable 

techniques of post-hoc, like SHAP values, 

counterfactual analysis, and subgraph highlighting, 

are being integrated into real-time dashboards to aid 

decision-making [21]. Such machine learning 

solutions significantly increase the complexity of 

surveillance systems and also bring along 

deployment loss and operational dangers, discussed 

in the following section. 

5. Deployment Challenges and Regulatory 

Implications 

Although graph analytics and machine learning 

applied to stream processing pipelines are powerful 

tools to perform anomaly detection tasks, there are 

compelling technical, operational, and regulatory 

issues when seeking to put such systems into 

practice in a capital market environment. 

Production environments that these systems have to 

work in are non-tolerant to latency, cannot tolerate 

any downtime, and cannot tolerate regulatory 

compliance failure.Since compliance, security, and 

explainability are parts of the real-time detection 

system deployments having such criticality, the 

accompanying table presents the principal 

regulatory and operational factors that institutions 

should take into consideration in deploying graph-

based surveillance in capital markets.Complex 

system architecture is one of the key challenges. 

Real-time surveillance needs to run on various 

types of data, ranging from exchange feeds, broker 

APIs, intrinsic order management systems (OMS), 

and after-trade settlement systems. The data in 

these sources is frequently of heterogeneous format 

and may have different timestamp representations 

or identifiers. This can be addressed by 

incorporating both schema harmonization, metadata 

enrichment, and entity resolution tiers in 

deployment architectures so that the nodes in the 

graph can be used to faithfully represent unique 

actors and transactions [17][22]. The other key 

deployment aspect is latency and fault tolerance. 

They have relatively short windows: A capital 

market works within milliseconds, and high-

frequency trading has very micro timescales. The 

construction of graphs and the inference level 

providing information required through machine 

learning should be done without causing any 

bottlenecks, which can slow down the occurrence 

of alerts or the development of blind spots. This 

needs the deployment of spread-out stream 

handling frameworks, such as Apache Flink or 

Kafka Streams, or in-memory databases or graph 

shivers, such as Neo4J or TigerGraph. Fault-

tolerance is achieved by checkpointing, replicated 

stores of state, and failover clusters; however, the 

DevOps cost of configuring and maintaining such 

systems is high [23].Adding to the technical sphere, 

there lies a major regulatory and compliance issue. 

Financial regulations are moving towards all 

automated decision-making systems to be 

explainable, auditable, and non-discriminatory. 

This becomes especially difficult for the black-box 

models like the deep neural networks or self-

supervised GNNs. Surveillance systems will thus 

have to be explainable by design, using 

interpretable features, rule-based overrides, and ex-

post explanations that are standards-compliant with 

regulations, such as MiFID II, Dodd-Frank, and 

GDPR [24]. There is also data governance as a 

constraint. Legal provisions like GDPR, CCPA, or 

local data residency laws formulate strict policies 

that require funds-centric data to be collected, 

stored, and shared in a specific manner. In order to 

support this, more surveillance systems are taking 

the form of federated systems in which model 
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learning is done locally with data particular to the 

institution, and only aggregate insights or anomaly 

scores are reported back to central authorities. This 

ensures privacy, which facilitates coordination 

among the entities and across jurisdictions 

[25].Safety comes first, too. Since such systems 

feed and learn on sensitive trading data in real-time, 

they are appealing points of attack by an adversary 

(in the form of data poisoning, model inversion, or 

deceptive patterns of input to beat detection). To 

alleviate this, platforms employ zero-trust security 

solutions, TLS encrypts data being moved, and 

frequently check model integrity [26-30]. Finally, 

there is a human factor to consider. The key to 

success in deployment is the capacity of 

compliance officers and risk managers, along with 

IT teams, to interpret alerts, tune thresholds, and 

confirm models. In many organizations, there are 

what is known as a human-in-the-loop review 

cycle, where it is the analysts who first review 

flagged anomalies before it is escalated to 

enforcement. This type of collaborative model 

minimizes false matches and gives confidence in 

automated solutions.These high-dimensional 

complexities require a carefully considered 

deployment roadmap that is innovative, yet reliable, 

interpretable, and compliant. It is to be expected 

that, as the systems mature, more attention will be 

paid to real-time coordination across platforms, 

venues, and regulators, and that is what is to be 

done in the future-oriented consideration in the next 

section. 

6. Real-Time Explainability and Alert 

Prioritization in Graph-Based Anomaly 

Detection 

With the increasing maturity of anomaly detection 

systems, the challenge exists increasingly to explain 

and take action in real time on the output of those 

systems. In the high-value stakes environment of 

capital markets, regulatory requirements and 

operational mandates require that system-generated 

alerts be not only interpretable but also triage-

ready. Though machine learning models, and 

especially graph neural networks (GNNs), have 

proven up to the task of learning complex, non-

linear patterns of behavior, the outcomes such 

networks generate are usually quite difficult to 

interpret, especially by compliance officers and risk 

analysts, unless further contextualization is applied 

to the result [20][21]. The real-time explainability 

methods have been developed that help to narrow 

this gap and comprise: subgraph highlighting, 

attribution scoring, and rule-based enrichment. The 

point of these methods is to add evidence to the 

anomaly scores, e.g., to know which edge 

(transaction) or node (entity) was most helpful in 

triggering the alert. In addition, the historical 

behavioral baselines can be used in integrating 

alerts to provide context (separating benign but 

unexpected bursts (e.g., earnings day trading) and 

truly suspicious patterns) [10][12]. The other vital 

requirement is the prioritization of alerts. In a 

scenario where thousands of accounts and millions 

of transactions are going on, the false positives may 

saturate monitoring personnel. The current graph-

based risk scorable also incorporates anomaly 

scores with node centrality, previous alert data, and 

cross-market interactivity to produce a queue on 

priority of investigation [22][26]. Notifications with 

respect to the accounts already marked as flagged 

or crossing regulatory borders are frequently 

prioritized, so a small number of human sources 

can monitor locations with a high density of risk. 

The explanatory and prioritizing layer (on the real-

time level) guarantees that the machine-driven 

surveillance is not too far apart to be accepted by 

human judgment and regulatory responsibility. 

There is also a rising need to use such tools to scale 

oversight efforts as anomaly detection continues to 

be applied to more asset types and locations. 

7. Cross-Market Graph Correlation and 

Federated Anomaly Detection 

One of the key weaknesses of the existing market 

surveillance systems is the venue-specific nature 

that surrounds them. The majority of graph-based 

anomaly detectors are built and utilized in the data 

range of an individual exchange, broker, or 

institution. Nevertheless, present-day capital market 

anomalies (spreading risks across many 

infrastructures or jurisdictions) like spoofing, 

layering, or the pump-and-dump scheme usually 

take place within various venues or jurisdictions. It 

requires a cross-market paradigm of graph 

correlation and federated detection [4][13][21]. As 

they can relate activity across exchanges, e.g. large 

spike in trades in one exchange and strange orders 

in another, the market surveillance solutions allow 

them to identify more clever threat vectors. This 

cannot be just synchronization of real-time data but 

requires graph schema alignment, entity resolution, 

and anomaly scoring model alignment. In this 

respect, technologies like federated graph learning 

are attracting attention. Each institution is given the 

opportunity to locally train models with its 

proprietary graph and may only give high-level 

detectives or anomaly vectors to a central 

coordinator, thus ensuring the privacy of the data 

and allowing global patterns to be detected 

[21][23]. These architectures are quite applicable in 

the context of cross-border trading environments, 
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crypto-asset monitoring, as well as consortium-

based market surveillance. In such instances, graph 

metadata exchange protocols, secure multi-party 

computation, and cross-market anomaly 

dictionaries will be paramount to make them 

interoperable as well as trusted. Cross-market graph 

analytics is an emerging area that will offer future 

potential to increase global integrity of capital 

markets and decrease systemic risk [5] [27-30].New 

federalized surveillance and pre-validation on 

multi-market correlation logically lead to a 

subsequent stage in which what are presently 

anomaly detection systems are not only devices of 

the institution, but systems of risk warning to 

engage in shared risk sentinel functions across the 

ecosystem. This prepares the way for the enlarged 

thoughts of the subsequent conclusion.  

 

 
Figure 1: Diagram illustrating the foundational stages 

of stream processing for capital market surveillance, 

from data ingestion to detection. 

 

Table 1: Key Node and Edge Types in Real-Time Financial Graphs 

Graph 

Element 
Entity Type Example Attributes Analytical Purpose 

Node Trader Account ID, account type, location, risk score User profiling and behavioral tracking 

Node 
Financial 

Instrument 

Ticker, asset class, market, price 

volatility 

Instrument clustering and anomaly 

propagation 

Node Broker or Exchange Venue ID, jurisdiction, compliance tier 
Cross-market connectivity and routing 

analysis 

Edge Trade Transaction Volume, price, timestamp, direction Flow tracking and cycle detection 

Edge Fund Transfer 
Amount, bank ID, method, source-

destination link 

Movement tracing for fraud or AML 

analysis 

Edge 
Order Book 

Interaction 

Quote type, order size, and timing 

granularity 

Latency arbitrage and spoofing pattern 

detection 

 

 

Figure 2: Flowchart illustrating real-time explainability and alert prioritization in graph-based anomaly detection 

workflows. 
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Table 2: Compliance and Operational Challenges in Real-Time Financial Anomaly Detection 

Challenge Area Requirement Description Strategic Response 

Regulatory 

Compliance 

Explainability, auditability under MiFID II, 

Dodd-Frank 

Use interpretable models and anomaly 

traceability logs 

Data Privacy GDPR, CCPA, data sovereignty regulations 
Federated learning, anonymized sharing, 

encryption 

Latency Constraints Real-time detection within milliseconds 
Use of in-memory graph engines and distributed 

pipelines 

Model Validation Internal model governance and external audit 
Human-in-the-loop feedback and periodic 

retraining 

Cybersecurity Risk 
Threats to stream integrity and model inversion 

attacks 
Zero-trust architecture and adversarial testing 

 

4. Conclusions and Future Outlook 

 
As the nature of the capital markets and their 

organization has changed, novel instruments of 

control, supervision, and credibility are required. 

Static-rule-based historical data-focused detection 

systems are insufficient in the world of algorithmic 

trades, liquidity fragmentation across exchanges, 

and almost instant settlement. Here, anomaly 

detection in financial systems is robust on the 

convergence of graph analytics, stream processing, 

and machine learning. By expressing entities and 

interactions as changing graphs, financial 

institutions acquire a structural prism through 

which to treat changing trading patterns, network 

abnormalities, and other forms of collusions that 

cannot be captured before. Together with a real-

time stream processing framework, these models 

can be continuously updated and tested within a 

few seconds of data creation, and they are able to 

provide quick, intelligent reactions to signs of 

suspicious moves. Intelligence and flexibility are 

gained by the use of graph-based machine learning 

models, particularly Graph Neural Networks and 

temporal graph models. Such models prove 

especially helpful in finding weak and distant 

connections and changes in behavior that elude 

traditional statistical methods. Nevertheless, 

scalability, explainability, and compliance are still 

issues to address, which means that the 

stakeholders will have to work interdisciplinarily 

between the fields of AI, finance, and legal 

practice. In the future, research will move to multi-

modal anomaly detection, where it will not only 

capture trade and transaction data but also text, 

visual signals, and behavioral signals, i.e., chat 

logs, analyst notes, social media sentiment, and 

biometric authentication logs. The latency will also 

be reduced further with edge processing, and it will 

also help in the detection of regionalized risk, 

especially in local markets. It is possible that 

federated learning allows collaboration between 

institutions while still maintaining data privacy. A 

more promising path is the development of self-

adaptive surveillance solutions, which are able to 

learn online and retrain instantly in reaction to 

shifts in concepts. When accompanied by active 

explainability mechanisms, such systems will 

become trusted guides to human agents, as opposed 

to black boxes. The potential to create trusted 

autonomous surveillance eco-systems in capital 

markets is quickly emerging, and with further 

ethics, cybersecurity, and graph science 

advancements, ever more likely. Overall, it is not 

merely possible to detect anomalies in real-time 

graphs based on stream processing, but also 

necessary for the security of the modern financial 

markets. It represents a transition of reactive post-

trade analysis to proactive, dynamic, and intelligent 

surveillance and will enable capital market 

infrastructure to satisfy transparency, latency, and 

scale requirements of the algorithmic era. 
 

Author Statements: 

 

 Ethical approval: The conducted research is 

not related to either human or animal use. 

 Conflict of interest: The authors declare that 

they have no known competing financial 

interests or personal relationships that could 

have appeared to influence the work reported in 

this paper 

 Acknowledgement: The authors declare that 

they have nobody or no-company to 

acknowledge. 

 Author contributions: The authors declare that 

they have equal right on this paper. 

 Funding information: The authors declare that 

there is no funding to be acknowledged.  

 Data availability statement: The data that 

support the findings of this study are available 

on request from the corresponding author. The 

data are not publicly available due to privacy or 

ethical restrictions. 
 



Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287 

 

8286 

 

References 
 

1. Akoglu, L., Tong, H., & Koutra, D. (2015). Graph-

based anomaly detection and description: a 

survey. Data mining and knowledge discovery, 29, 

626-688. 

2. Rasul, I., Shaboj, S. I., Rafi, M. A., Miah, M. K., 

Islam, M. R., & Ahmed, A. (2024). Detecting 

Financial Fraud in Real-Time Transactions Using 

Graph Neural Networks and Anomaly 

Detection. Journal of Economics, Finance and 

Accounting Studies, 6(1), 131-142. 

3. Ye, C., Li, Y., He, B., Li, Z., & Sun, J. (2021, 

June). Gpu-accelerated graph label propagation for 

real-time fraud detection. In Proceedings of the 

2021 International Conference on Management of 

Data (pp. 2348-2356). 

4. Deng, C., Duan, Y., Jin, X., Chang, H., Tian, Y., 

Liu, H., ... & Zhuang, J. (2024). Deconstructing 

The Ethics of Large Language Models from Long-

standing Issues to New-emerging Dilemmas: A 

Survey. arXiv preprint arXiv:2406.05392. 

5. Gudimetla, A. R. REAL-TIME FRAUD 

DETECTION: INTEGRATING EVENT-DRIVEN 

ARCHITECTURES WITH GRAPH NEURAL 

NETWORKS. 

6. Pazho, A. D., Noghre, G. A., Purkayastha, A. A., 

Vempati, J., Martin, O., & Tabkhi, H. (2023). A 

survey of graph-based deep learning for anomaly 

detection in distributed systems. IEEE Transactions 

on Knowledge and Data Engineering, 36(1), 1-20. 

7. Morishima, S. (2021). Scalable anomaly detection 

in blockchain using graphics processing 

unit. Computers & Electrical Engineering, 92, 

107087. 

8. Ekle, O. A., & Eberle, W. (2024). Anomaly 

detection in dynamic graphs: A comprehensive 

survey. ACM Transactions on Knowledge 

Discovery from Data, 18(8), 1-44. 

9. Trinh, T. K., & Wang, Z. (2024). Dynamic graph 

neural networks for multi-level financial fraud 

detection: A temporal-structural approach. Annals 

of Applied Sciences, 5(1). 

10. Odofin, O. T., Abayomi, A. A., Uzoka, A. C., 

Adekunle, B. I., Agboola, O. A., & Owoade, S. 

(2024). Designing Event-Driven Architecture for 

Financial Systems Using Kafka, Camunda BPM, 

and Process Engines. 

11. Liu, Y., Ding, K., Lu, Q., Li, F., Zhang, L. Y., & 

Pan, S. (2023). Towards self-interpretable graph-

level anomaly detection. Advances in Neural 

Information Processing Systems, 36, 8975-8987. 

12. George, J. G. (2023). Advancing Enterprise 

Architecture for Post-Merger Financial Systems 

Integration in Capital Markets laying the 

Foundation for Machine Learning Application. Aus. 

J. ML Res. & App, 3(2), 429. 

13. Goyal, A., Liu, J., Bates, A., & Wang, G. (2024). 

ORCHID: Streaming Threat Detection over 

Versioned Provenance Graphs. arXiv preprint 

arXiv:2408.13347. 

14. Hu, W., Yang, F., Mao, X., Chen, R., Fan, K., & 

Xie, J. (2024, January). Ranking the spreading 

influence of nodes in weighted networks by 

combining node2vec and weighted K-Shell 

decomposition. In 2024 4th International 

Conference on Neural Networks, Information and 

Communication (NNICE) (pp. 588-597). IEEE. 

15. Liu, J., Zhang, Y., Meng, K., Xu, Y., & Dong, Z. 

Y. (2022, November). Risk-averse graph learning 

for real-time power system emergency load 

shedding. In 2022 IEEE PES Innovative Smart Grid 

Technologies-Asia (ISGT Asia) (pp. 520-524). 

IEEE. 

16. Liu, F., Jung, J., Feinstein, W., D'Ambrogia, J., & 

Jung, G. (2024, October). Aggregated Knowledge 

Model: Enhancing Domain-Specific QA with Fine-

Tuned and Retrieval-Augmented Generation 

Models. In Proceedings of the 4th International 

Conference on AI-ML Systems (pp. 1-7). 

17. da Silva Veith, A., de Assuncao, M. D., & Lefevre, 

L. (2021). Latency-aware strategies for deploying 

data stream processing applications on large cloud-

edge infrastructure. IEEE transactions on cloud 

computing. 

18. Troupiotis-Kapeliaris, A., Kastrisios, C., & Zissis, 

D. (2025). Vessel Trajectory Data Mining: a 

review. IEEE Access. 

19. Hassan, H. B., Barakat, S. A., & Sarhan, Q. I. 

(2021). Survey on serverless computing. Journal of 

Cloud Computing, 10(1), 39. 

20. Bruno, D. R., Berri, R. A., Barbosa, F. M., & 

Osório, F. S. (2023). CARINA Project: Visual 

perception systems applied for autonomous 

vehicles and advanced driver assistance systems 

(ADAS). IEEE Access, 11, 69720-69749. 

21. Fu, D., Bao, W., Maciejewski, R., Tong, H., & He, 

J. (2023). Privacy-preserving graph machine 

learning from data to computation: A survey. ACM 

SIGKDD Explorations Newsletter, 25(1), 54-72. 

22. Khanzadeh, S., Neto, E. C. P., Iqbal, S., Alalfi, M., 

& Buffett, S. (2025). An exploratory study on 

domain knowledge infusion in deep learning for 

automated threat defense. International Journal of 

Information Security, 24(1), 1-19. 

23. Wang, H., Lu, Y., Shutters, S. T., Steptoe, M., 

Wang, F., Landis, S., & Maciejewski, R. (2018). A 

visual analytics framework for spatiotemporal trade 

network analysis. IEEE transactions on 

visualization and computer graphics, 25(1), 331-

341. 

24. Zakrzewicz, M., Wojciechowski, M., & Gławiński, 

P. (2019). Solution pattern for anomaly detection in 

financial data streams. In New Trends in Databases 

and Information Systems: ADBIS 2019 Short 

Papers, Workshops BBIGAP, QAUCA, SemBDM, 

SIMPDA, M2P, MADEISD, and Doctoral 

Consortium, Bled, Slovenia, September 8–11, 2019, 

Proceedings 23 (pp. 77-84). Springer International 

Publishing. 

25. Saadati, P., Abdelnour-Nocera, J., & Clemmensen, 

T. (2020). Proposed system for a socio-technical 

design framework for improved user collaborations 

with automation technologies. In Human Computer 



Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287 

 

8287 

 

Interaction and Emerging Technologies. Cardiff 

University Press. 

26. Reynisson, K., Schreyer, M., & Borth, D. (2024). 

GraphGuard: Contrastive Self-Supervised Learning 

for Credit-Card Fraud Detection in Multi-

Relational Dynamic Graphs. arXiv preprint 

arXiv:2407.12440. 

27. Krichen, M. (2023). Convolutional neural 

networks: A survey. Computers, 12(8), 151. 

28. Zhong, H., Yang, D., Shi, S., Wei, L., & Wang, Y. 

(2024). From data to insights: the application and 

challenges of knowledge graphs in intelligent 

audit. Journal of Cloud Computing, 13(1), 114. 

29. Venugopal, K., & Jagadeesh, B. (2024). Theoretical 

Insights Into User Security and Privacy in 

Social. Human Impact on Security and Privacy: 

Network and Human Security, Social Media, and 

Devices: Network and Human Security, Social 

Media, and Devices, 289. 

30. Dou, F., Ye, J., Yuan, G., Lu, Q., Niu, W., Sun, H., 

... & Song, W. (2023). Towards artificial general 

intelligence (AGI) in the internet of things (iot): 

Opportunities and challenges. arXiv preprint 

arXiv:2309.07438. 

 

 

 

 

 

 

 


