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Abstract:

The growing complexity and speed of trading activities in capital markets have
rendered rule-based anomaly detection systems incapable of following real-time
monitoring. The paper examines the model of integrating graph-based modeling and
stream processing architecture on financial transactions as an effective framework to
detect anomalous behaviors of financial transactions. Via the representation of the
market entities and their relations as dynamic graphs and the application of the machine

Graph-Based Anomaly Detection,jearning model, leveraging a graph neural network to them, it is possible to detect

Capital Market Surveillance,
Stream Processing,

market anomalies, like fraud, market manipulation, and insider trading, with a more in-
depth understanding of the context and a faster pace. Stream processing engines (e.g.,

Graph Neural Networks (GNNS), apache Kafka, Flink) facilitate large-scale throughput, low-latency data ingestion,

Real-Time Financial Analytics

whereas graph forms describe non-linear as well as dynamic relationships between
brokers, traders, and instruments. In the paper, architectural, machine-learning, and
compliance-based deployment criteria needed to operationalize such systems are
discussed. It also covers more complex subjects, such as cross-market graph correlation,
federated learning, and explainability in high-stakes settings. Results indicate that
graph-based real-time anomaly detection systems bring a dramatic improvement in
scalability, accuracy, and compliance, as well as represent the first essential step

towards proactive financial market surveillance.

1. Introduction: The Need for Real-Time Graph
Intelligence in Capital Markets

Capital markets in the modern, hyper-connected,
algorithmically driven financial landscape are fast,
complicated, and extremely large in terms of their
transaction volumes. Billions of financial trades,
including equities, derivatives, forex, and fixed
income instruments, take place every day on
decentralized networks consisting of brokers,
exchanges, institutional traders, and automated
market makers. These trades are completed with
millisecond latency, producing an environment in
which market manipulation, fraud, and systemic
risk can propagate much more quickly than is
possible with prior systems of risk management or
post-trade surveillance [1][2].In the past, financial
surveillance networks were dependent on rule-
based analysis and threshold anomaly detection,
where a pattern like front-running or wash trading
was detected by checking possible patterns against
pre-defined behavioral models. Nevertheless, this
practice is becoming inadequate. Market abuse

methods as they are used now are flexible,
interconnected, and disguised by a variety of
accounts or routes, as well as through complex
algorithm methods. They are likely to avoid fixed
detection policies through pretending to be normal,
as well as using fragmented liquidity across
exchanges [3][4]. This requires a paradigm change
in anomaly detection, one that can mingle real-time
responsiveness with context-awareness. The graph-
based models appear to be the apt solution to the
same. This construction of the capital market, like a
graph of nodes (entities) and edges (transactions,
relationships), allows analysts and surveillance
systems to draw conclusions about sophisticated
patterns, including the strange centrality of
participants, occult loops in the transactions, and
the separation of cross-institutional collusion. As
opposed to linear or tabular analytics, graph theory
gives the means to gather relational and topological
knowledge, which is essential in discovering illicit
behaviours of networked data structures [5][6].0n
one hand, with this development in data modeling
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comes the emergence of stream processing
technologies. With the need to execute sub-second
decisions in the financial markets, conventional
batch-based  analytics cannot  satisfy  the
performance requirements. The stream processing
systems like Apache Kafka, Apache Flink, and
Apache Storm support event computing, data
ingestion in real-time, and time-based analytics
with a latency very close to zero. With this, trading
platforms and surveillance teams have the ability to
work with data on the run, instead of having to be
analyzed after the fact [7][8]. With stream
processing, one can combine graph analytics in
order to continuously build and update graph
representations of market behavior as new events
are being fed into it. This allows finding
inconsistencies not only in raw transactional data,
but in the development of behavioral relationships
over time. We give some possible examples: the
unusual value of the centrality score of a node, a
sudden network of highly connected subgraphs
might indicate potential manipulation schemes in
near real-time [9]. The regulatory aspect also
promotes the implementation of such real-time
anomaly detection systems that are highly
developed. Regulatory initiatives around the world,
including MIFID Il in Europe, Reg SCI in the
United States, and the cyber risk framework by
SEBI in India, have an operational requirement to
implement effective surveillance systems to support
the integrity of the markets, real-time reporting, and
operational resilience by financial institutions.
Detection of anomalies or failure to take prompt
action to flag suspicious activity in institutions also
exposes the institutions to not only monetary
penalties but also to deterioration of investor
confidence and tarnishing of their image [10][11].
That is why the unification of graph models and
stream analytics is not a technical improvement
anymore but rather a requirement of operations.
The organization needs to design systems that are
scalable, explainable, and that dynamically learn in
a fast-changing financial environment. New
developments point towards using parallelism of
graph-based machine learning, real-time processing
frameworks, and domain-specific knowledge
graphs in conjunction being one of the most
appealing ways to proactively monitor the market
[12][13].In this context, the following parts of this
article discuss the basic elements, the obstacles, and
the advancements in real-time graph-based anomaly
detection. In the second part, it starts with the
stream processing platform that guides the
operation of these intelligent surveillance systems.

2. Stream Processing Foundations for Capital
Market Surveillance
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Since the capital markets produce massive amounts
of data in real time, tick data, transaction records,
and order book updates, any system that will
process this data must have both built-in throughput
and sub-microsecond latency. The real-time
requirements of market surveillance do not suit the
traditional batch-oriented data systems.
Consequently, stream processing architectures have
become the core of real-time anomaly detection
systems, which promise the possibility of
continuously ingesting, transforming, and analyzing
the event as it arises [5][6].There is an emerging
use of modern streaming platforms, including
Apache Kafka, Apache Flink, Apache Pulsar, and
Amazon Kinesis, to support event-driven pipelines.
Such systems also work with a rapid-fire stream of
data ingestion via exchanges and brokerage APIs as
well as trading algorithms. This data is consumed
by the stream processors with stateful operators that
can perform sliding window analysis, aggregations,
joins, as well as transformations. Applied in capital
markets settings, these are capabilities applied to
identify inconsistencies in trading volumes, price
changes, order routing, and participant behavior in
the financial market on a short-term basis
[7].Event-time handling is one of the stream
processing developments of capital market
surveillance. Unlike processing-time computation,
which is pegged on the system clock, event-time
processing employs the actual timestamp attached
to every transaction, making sure that delayed and
out-of-order data are appropriately understood. This
is important in such a way that in markets where
network congestion or latencies might have led to
data skew, and therefore might give error alarms
unless recovered by mechanisms of watermarking
and line timestamps alignment [8].Scalability is one
more requirement of financial stream systems. As
exchanges like NSE or NASDAQ can execute
millions of events in a single second, the
architecture would have to allow horizontal scale-
out, fault tolerance, and exactly-once processing

semantics. To reach this, the contemporary
pipelines use distributed computing clusters,
message brokers, commonly replicated and

checkpointing mechanisms that maintain the state
during malfunctions. Stream graphs can even be
partitioned into many jobs or tasks to make parallel
processing possible, which contributes immensely
to the performance as well as resilience [9].
Practically, the graph construction in real-time is
established under the stream pipelines. When data
comes in, it is ordered and enhanced by
transformations, e.g., replacing account IDs with
user entities, or combining trades with metadata, or
grouping trade records into sessions. When this
data is enriched, it is then piped into graph engines
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either directly in-memory or by use of intermediate
storage engines such as Redis, Cassandra, or time-
series databases [10].Moving on to structural
analytics, the following section explores the
capability of graph-based models of financial
markets to capture and characterize complex
patterns of behavior and thus detect anomalies in a
more involved way than through the application of
statistical measures.

3. Graph-Based Representation of Financial
Market Interactions

After the data of trading is ingested and pre-
processed in real-time through the stream
processing engines, the second important process in

the process of anomaly detection is the
transformation of this data into a structured
representation that may involve complex

relationships. Such is the reason why graph-based
representations only come in handy. However,
available traditional tabular data work on entities in
isolation, unlike graphs, in which interdependent
behaviors and network dynamics can be modeled,;
both of which tend to be the ultimate indicators of
anomalous or fraudulent market operations
[8][11].In order to better explain how graph
representations are amenable to complex
interactions in the marketplace, the following table
represents typical nodes and edges that occur in
real-time graph-based financial transaction graphs,
as well as the typical attributes that can be added to
each entity to provide more information about it.In
finance, a graph is often used where the nodes can
be traders, brokers, bank accounts, trading venues,
or instruments. Edges refer to relationships or
interactions, including trades made, money moved,
or order book activity shared. Attributes can be
added to these graphs, including trade volume,
instrument, time, and price, to create a
multidimensional picture of each relationship.
These graphs change over time as more and more
events are processed, and by doing so, a dynamic or
temporal graph is created that enables the
surveillance systems to monitor changes in
behaviors and relational drift [12].An empirical
illustration would include detecting collusive
trading involving circular trade and coining of
accounts that are involved in successive self-
dealing. Such patterns can seem statistically
unnoticeable in tabular data. Nevertheless, the
patterns, when presented in the form of repetitive
patterns in a graphical map of transactions,
resemble red flags. Similarly, unusual centrality can
also be identified by graphs, i.e., when a node (such
as a specific broker) is suddenly made a conduit in
a network that has never had the connectivity,
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lending itself to the possibility of a liquidity funnel
or intermediary manipulation [13]. Community
detection algorithms are also supported by graphs,
and the algorithms can be used to subdivide the
trading ecosystem into closely-knit clusters.
Anomalies occur when there is a violation of
expected community bounds, such as a retail
account doing business in an institutional cluster or
dealing with offshore counterparties in a manner
incompatible with the activity in its past. There are
real-time algorithms such as Louvain, Label
Propagation, and Spectra Clustering that can be
used to track structural changes and give a
probability score to anomalous behavior [14].To
additionally increase interpretability, numerous
platforms use graph schemas or ontologies that
encode financial domain knowledge. To give an
example, a node with a label of a retail trader will
possess familiar restrictions, or transaction size,
counterparties, and timing, that may be tested as it
is traversed through the graph. Should a retail trader
begin operating according to the schema with the
algorithmic timing precision, then this operation
will become a possible anomaly that is to be
investigated [15]. Graph representations must hence
be a strong abstraction to represent the domain
knowledge and monitor behavioral dynamics and
subtle relational anomalies that cannot be easily
surfaced. The application of advanced machine
learning techniques here is founded on this
structural modeling, and it is discussed in the
section below.

4. Machine Learning Models for Graph-Based
Anomaly Detection

When trading data has been converted to a graph
structure, the rest is to determine which behaviors
or nodes are abnormal. That is where graph data-
specific machine learning models are deployed.
Anomalies in a capital market tend to be volatile
and circumstantial, and as such, there may be no
strict parameters or guidelines to be followed.
Machine learning offers an avenue to learn ordinary
behaviors and identify anomalies based on semi-
supervised, unsupervised, or self-supervised
learning models [13][16]. Graph neural networks
(GNNs) are among the most popular
implementation ~ approaches.  These  models
generalize those of traditional neural networks (to
graphs), allowing node embeddings to be learned to
preserve both node properties and any topological
context. Anomaly detectors have been trained on
models like Graph Convolutional Networks
(GCNs), GraphSAGE, and Graph Attention
Networks (GATS) to assign a score to each node or
subgraph on how abnormal it acts to previously



Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287

learned norms of behavior [17]. Most real-world
market surveillance systems, however, experience
the scarcity of labeled data, particularly of rare
cases of fraud. To solve this, unsupervised
(Autoencoders, One-Class SVMs, and Isolation
Forests) are frequently applied. Such models are
trained with data that are assumed to be normal and
are subsequently applied to score the outliers on
reconstruction error or statistical separation
[18].Temporal graph modeling, an alternative
direction, is to add recurrent modules to GNNs
(e.g., LSTM, GRU) or make them spatio-temporal
networks. They allow tracing the development of
the relationships over time, which is crucial in
capital markets, where numerous schemes shift
slowly or respond depending on monitoring
feedback. Temporal GNNs have the capability to
identify patterns, including the recurrence of a
trader on the edge of various suspicious subgraphs,
even though individually each interaction may
seem normal [19]. In recent years, self-supervised
learning has become widely used because of its
tendency to take the employment of substantial
amounts of unlabelled data. Training of models is
done to make predictions regarding masked nodes,
missing edges, or future graph conditions. Any
difference in the performance of the prediction may
be considered as a proxy for anomaly detection. An
example of this can be given when a model trained
on regular periods in the market is used in the off-
hours trading and gives high error; the anomaly can
indicate an effort to avoid the detection systems
[20]. Nevertheless, explainability in models has
been an urgent issue despite such developments. It
is not enough that the compliance teams and
regulators have to know anomalies detected by
financial institutions, but they can also justify
alerting  them.  Consequently,  explainable
techniques of post-hoc, like SHAP values,
counterfactual analysis, and subgraph highlighting,
are being integrated into real-time dashboards to aid
decision-making [21]. Such machine learning
solutions significantly increase the complexity of
surveillance systems and also bring along
deployment loss and operational dangers, discussed
in the following section.

5. Deployment Challenges and Regulatory
Implications

Although graph analytics and machine learning
applied to stream processing pipelines are powerful
tools to perform anomaly detection tasks, there are
compelling technical, operational, and regulatory
issues when seeking to put such systems into
practice in a capital market environment.
Production environments that these systems have to
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work in are non-tolerant to latency, cannot tolerate
any downtime, and cannot tolerate regulatory
compliance failure.Since compliance, security, and
explainability are parts of the real-time detection
system deployments having such criticality, the
accompanying table presents the principal
regulatory and operational factors that institutions
should take into consideration in deploying graph-
based surveillance in capital markets.Complex
system architecture is one of the key challenges.
Real-time surveillance needs to run on various
types of data, ranging from exchange feeds, broker
APIs, intrinsic order management systems (OMS),
and after-trade settlement systems. The data in
these sources is frequently of heterogeneous format
and may have different timestamp representations
or identifiers. This can be addressed by
incorporating both schema harmonization, metadata
enrichment, and entity resolution tiers in
deployment architectures so that the nodes in the
graph can be used to faithfully represent unique
actors and transactions [17][22]. The other key
deployment aspect is latency and fault tolerance.
They have relatively short windows: A capital
market works within milliseconds, and high-
frequency trading has very micro timescales. The
construction of graphs and the inference level
providing information required through machine
learning should be done without causing any
bottlenecks, which can slow down the occurrence
of alerts or the development of blind spots. This
needs the deployment of spread-out stream
handling frameworks, such as Apache Flink or
Kafka Streams, or in-memory databases or graph
shivers, such as Neo4J or TigerGraph. Fault-
tolerance is achieved by checkpointing, replicated
stores of state, and failover clusters; however, the
DevOps cost of configuring and maintaining such
systems is high [23].Adding to the technical sphere,
there lies a major regulatory and compliance issue.

Financial regulations are moving towards all
automated  decision-making systems to be
explainable, auditable, and non-discriminatory.

This becomes especially difficult for the black-box
models like the deep neural networks or self-
supervised GNNs. Surveillance systems will thus
have to be explainable by design, using
interpretable features, rule-based overrides, and ex-
post explanations that are standards-compliant with
regulations, such as MiIFID Il, Dodd-Frank, and
GDPR [24]. There is also data governance as a
constraint. Legal provisions like GDPR, CCPA, or
local data residency laws formulate strict policies
that require funds-centric data to be collected,
stored, and shared in a specific manner. In order to
support this, more surveillance systems are taking
the form of federated systems in which model
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learning is done locally with data particular to the
institution, and only aggregate insights or anomaly
scores are reported back to central authorities. This
ensures privacy, which facilitates coordination
among the entities and across jurisdictions
[25].Safety comes first, too. Since such systems
feed and learn on sensitive trading data in real-time,
they are appealing points of attack by an adversary
(in the form of data poisoning, model inversion, or
deceptive patterns of input to beat detection). To
alleviate this, platforms employ zero-trust security
solutions, TLS encrypts data being moved, and
frequently check model integrity [26-30]. Finally,
there is a human factor to consider. The key to
success in deployment is the capacity of
compliance officers and risk managers, along with
IT teams, to interpret alerts, tune thresholds, and
confirm models. In many organizations, there are
what is known as a human-in-the-loop review
cycle, where it is the analysts who first review
flagged anomalies before it is escalated to
enforcement. This type of collaborative model
minimizes false matches and gives confidence in
automated  solutions.These  high-dimensional
complexities require a carefully considered
deployment roadmap that is innovative, yet reliable,
interpretable, and compliant. It is to be expected
that, as the systems mature, more attention will be
paid to real-time coordination across platforms,
venues, and regulators, and that is what is to be
done in the future-oriented consideration in the next
section.

6. Real-Time Explainability and Alert
Prioritization in  Graph-Based  Anomaly
Detection

With the increasing maturity of anomaly detection
systems, the challenge exists increasingly to explain
and take action in real time on the output of those
systems. In the high-value stakes environment of
capital markets, regulatory requirements and
operational mandates require that system-generated
alerts be not only interpretable but also triage-
ready. Though machine learning models, and
especially graph neural networks (GNNs), have
proven up to the task of learning complex, non-
linear patterns of behavior, the outcomes such
networks generate are usually quite difficult to
interpret, especially by compliance officers and risk
analysts, unless further contextualization is applied
to the result [20][21]. The real-time explainability
methods have been developed that help to narrow
this gap and comprise: subgraph highlighting,
attribution scoring, and rule-based enrichment. The
point of these methods is to add evidence to the
anomaly scores, e.g., to know which edge
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(transaction) or node (entity) was most helpful in
triggering the alert. In addition, the historical
behavioral baselines can be used in integrating
alerts to provide context (separating benign but
unexpected bursts (e.g., earnings day trading) and
truly suspicious patterns) [10][12]. The other vital
requirement is the prioritization of alerts. In a
scenario where thousands of accounts and millions
of transactions are going on, the false positives may
saturate monitoring personnel. The current graph-
based risk scorable also incorporates anomaly
scores with node centrality, previous alert data, and
cross-market interactivity to produce a queue on
priority of investigation [22][26]. Notifications with
respect to the accounts already marked as flagged
or crossing regulatory borders are frequently
prioritized, so a small number of human sources
can monitor locations with a high density of risk.
The explanatory and prioritizing layer (on the real-
time level) guarantees that the machine-driven
surveillance is not too far apart to be accepted by
human judgment and regulatory responsibility.
There is also a rising need to use such tools to scale
oversight efforts as anomaly detection continues to
be applied to more asset types and locations.

7. Cross-Market Graph Correlation and

Federated Anomaly Detection

One of the key weaknesses of the existing market
surveillance systems is the venue-specific nature
that surrounds them. The majority of graph-based
anomaly detectors are built and utilized in the data
range of an individual exchange, broker, or
institution. Nevertheless, present-day capital market
anomalies  (spreading  risks across  many
infrastructures or jurisdictions) like spoofing,
layering, or the pump-and-dump scheme usually
take place within various venues or jurisdictions. It
requires a cross-market paradigm of graph
correlation and federated detection [4][13][21]. As
they can relate activity across exchanges, e.g. large
spike in trades in one exchange and strange orders
in another, the market surveillance solutions allow
them to identify more clever threat vectors. This
cannot be just synchronization of real-time data but
requires graph schema alignment, entity resolution,
and anomaly scoring model alignment. In this
respect, technologies like federated graph learning
are attracting attention. Each institution is given the
opportunity to locally train models with its
proprietary graph and may only give high-level
detectives or anomaly vectors to a central
coordinator, thus ensuring the privacy of the data
and allowing global patterns to be detected
[21][23]. These architectures are quite applicable in
the context of cross-border trading environments,



Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287

crypto-asset monitoring, as well as consortium-
based market surveillance. In such instances, graph
metadata exchange protocols, secure multi-party
computation, and cross-market anomaly
dictionaries will be paramount to make them
interoperable as well as trusted. Cross-market graph
analytics is an emerging area that will offer future
potential to increase global integrity of capital
markets and decrease systemic risk [5] [27-30].New
federalized surveillance and pre-validation on
multi-market correlation logically lead to a
subsequent stage in which what are presently
anomaly detection systems are not only devices of
the institution, but systems of risk warning to
engage in shared risk sentinel functions across the
ecosystem. This prepares the way for the enlarged
thoughts of the subsequent conclusion.

DATA
INGESTION

Figure 1: Diagram illustrating the foundational stages
of stream processing for capital market surveillance,
from data ingestion to detection.

Table 1: Key Node and Edge Types in Real-Time Financial Graphs

Graph . . .
Element Entity Type Example Attributes Analytical Purpose
INode [Trader Account  |[ID, account type, location, risk score  |[User profiling and behavioral tracking |
Node Financial Ticker, asset class, market, price|[lnstrument clustering and anomaly
Instrument volatility propagation
Node Broker or Exchange ||Venue ID, jurisdiction, compliance tier ;:nrgls; ;ir?arket connectivity and routing
[Edge |[Trade Transaction |[Volume, price, timestamp, direction |[Flow tracking and cycle detection |
Amount, bank ID, method, source-{|Movement tracing for fraud or AML
Edge Fund Transfer L .
destination link analysis
Edae Order Book||Quote type, order size, and timing|Latency arbitrage and spoofing pattern
g Interaction granularity detection

Real-Time Explainability and
Alert Prioritisation in Graph-
Based Anomaly Detection

Detec‘tioh

Figure 2: Flowchart illustrating real-time explainability and alert prioritization in graph-based anomaly detection
workflows.
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Table 2: Compliance and Operational Challenges in Real-Time Financial Anomaly Detection

|Chal|enge Area

||Requirement Description

||Strategic Response

Regulatory Explainability, auditability under MIFID II,||Use interpretable models and anomaly
Compliance Dodd-Frank traceability logs
Data Privacy GDPR, CCPA, data sovereignty regulations Eﬁgf;;:iegn learning,  anonymized  sharing,

Latency Constraints

Real-time detection within milliseconds

Use of in-memory graph engines and distributed
pipelines

Model Validation

Internal model governance and external audit

Human-in-the-loop  feedback

retraining

and periodic

Cybersecurity Risk

Threats to stream integrity and model inversion

Zero-trust architecture and adversarial testing

attacks

4. Conclusions and Future Outlook

As the nature of the capital markets and their
organization has changed, novel instruments of
control, supervision, and credibility are required.
Static-rule-based historical data-focused detection
systems are insufficient in the world of algorithmic
trades, liquidity fragmentation across exchanges,
and almost instant settlement. Here, anomaly
detection in financial systems is robust on the
convergence of graph analytics, stream processing,
and machine learning. By expressing entities and
interactions as changing graphs, financial
institutions acquire a structural prism through
which to treat changing trading patterns, network
abnormalities, and other forms of collusions that
cannot be captured before. Together with a real-
time stream processing framework, these models
can be continuously updated and tested within a
few seconds of data creation, and they are able to
provide quick, intelligent reactions to signs of
suspicious moves. Intelligence and flexibility are
gained by the use of graph-based machine learning
models, particularly Graph Neural Networks and
temporal graph models. Such models prove
especially helpful in finding weak and distant
connections and changes in behavior that elude
traditional  statistical methods.  Nevertheless,
scalability, explainability, and compliance are still
issues to address, which means that the
stakeholders will have to work interdisciplinarily
between the fields of Al, finance, and legal
practice. In the future, research will move to multi-
modal anomaly detection, where it will not only
capture trade and transaction data but also text,
visual signals, and behavioral signals, i.e., chat
logs, analyst notes, social media sentiment, and
biometric authentication logs. The latency will also
be reduced further with edge processing, and it will
also help in the detection of regionalized risk,
especially in local markets. It is possible that
federated learning allows collaboration between
institutions while still maintaining data privacy. A

more promising path is the development of self-
adaptive surveillance solutions, which are able to
learn online and retrain instantly in reaction to
shifts in concepts. When accompanied by active
explainability mechanisms, such systems will
become trusted guides to human agents, as opposed
to black boxes. The potential to create trusted
autonomous surveillance eco-systems in capital
markets is quickly emerging, and with further
ethics, cybersecurity, and graph science
advancements, ever more likely. Overall, it is not
merely possible to detect anomalies in real-time
graphs based on stream processing, but also
necessary for the security of the modern financial
markets. It represents a transition of reactive post-
trade analysis to proactive, dynamic, and intelligent
surveillance and will enable capital market
infrastructure to satisfy transparency, latency, and
scale requirements of the algorithmic era.

Author Statements:

e Ethical approval: The conducted research is
not related to either human or animal use.

e Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

e Acknowledgement: The authors declare that
they have nobody or no-company to
acknowledge.

e Author contributions: The authors declare that
they have equal right on this paper.

e Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.




Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287

References

1.

10.

11.

12.

13.

Akoglu, L., Tong, H., & Koutra, D. (2015). Graph-
based anomaly detection and description: a
survey. Data mining and knowledge discovery, 29,
626-688.

Rasul, 1., Shaboj, S. I., Rafi, M. A., Miah, M. K.,
Islam, M. R., & Ahmed, A. (2024). Detecting
Financial Fraud in Real-Time Transactions Using
Graph  Neural  Networks and  Anomaly
Detection. Journal of Economics, Finance and
Accounting Studies, 6(1), 131-142.

Ye, C., Li, Y., He, B., Li, Z, & Sun, J. (2021,
June). Gpu-accelerated graph label propagation for
real-time fraud detection. In Proceedings of the
2021 International Conference on Management of
Data (pp. 2348-2356).

Deng, C., Duan, Y., Jin, X., Chang, H., Tian, Y.,
Liu, H., ... & Zhuang, J. (2024). Deconstructing
The Ethics of Large Language Models from Long-
standing Issues to New-emerging Dilemmas: A
Survey. arXiv preprint arXiv:2406.05392.
Gudimetla, A. R. REAL-TIME FRAUD
DETECTION: INTEGRATING EVENT-DRIVEN
ARCHITECTURES WITH GRAPH NEURAL
NETWORKS.

Pazho, A. D., Noghre, G. A., Purkayastha, A. A.,
Vempati, J., Martin, O., & Tabkhi, H. (2023). A
survey of graph-based deep learning for anomaly
detection in distributed systems. IEEE Transactions
on Knowledge and Data Engineering, 36(1), 1-20.
Morishima, S. (2021). Scalable anomaly detection
in  blockchain  using  graphics  processing
unit. Computers & Electrical Engineering, 92,
107087.

Ekle, O. A, & Eberle, W. (2024). Anomaly
detection in dynamic graphs: A comprehensive
survey. ACM  Transactions on  Knowledge
Discovery from Data, 18(8), 1-44.

Trinh, T. K., & Wang, Z. (2024). Dynamic graph
neural networks for multi-level financial fraud
detection: A temporal-structural approach. Annals
of Applied Sciences, 5(1).

Odofin, O. T., Abayomi, A. A., Uzoka, A. C,,
Adekunle, B. I., Agboola, O. A., & Owoade, S.
(2024). Designing Event-Driven Architecture for
Financial Systems Using Kafka, Camunda BPM,
and Process Engines.

Liu, Y., Ding, K., Lu, Q., Li, F., Zhang, L. Y., &
Pan, S. (2023). Towards self-interpretable graph-
level anomaly detection. Advances in Neural
Information Processing Systems, 36, 8975-8987.
George, J. G. (2023). Advancing Enterprise
Architecture for Post-Merger Financial Systems
Integration in Capital Markets laying the
Foundation for Machine Learning Application. Aus.
J. ML Res. & App, 3(2), 429.

Goyal, A, Liu, J., Bates, A., & Wang, G. (2024).
ORCHID: Streaming Threat Detection over
Versioned Provenance Graphs. arXiv preprint
arXiv:2408.13347.

8286

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Hu, W., Yang, F., Mao, X., Chen, R, Fan, K., &
Xie, J. (2024, January). Ranking the spreading
influence of nodes in weighted networks by
combining node2vec and weighted K-Shell
decomposition. In2024  4th International
Conference on Neural Networks, Information and
Communication (NNICE) (pp. 588-597). IEEE.

Liu, J., Zhang, Y., Meng, K., Xu, Y., & Dong, Z.
Y. (2022, November). Risk-averse graph learning
for real-time power system emergency load
shedding. In 2022 IEEE PES Innovative Smart Grid
Technologies-Asia (ISGT Asia) (pp. 520-524).
IEEE.

Liu, F., Jung, J., Feinstein, W., D'Ambrogia, J., &
Jung, G. (2024, October). Aggregated Knowledge
Model: Enhancing Domain-Specific QA with Fine-
Tuned and Retrieval-Augmented  Generation
Models. In Proceedings of the 4th International
Conference on Al-ML Systems (pp. 1-7).

da Silva Veith, A., de Assuncao, M. D., & Lefevre,
L. (2021). Latency-aware strategies for deploying
data stream processing applications on large cloud-
edge infrastructure. IEEE transactions on cloud
computing.

Troupiotis-Kapeliaris, A., Kastrisios, C., & Zissis,
D. (2025). Vessel Trajectory Data Mining: a
review. IEEE Access.

Hassan, H. B., Barakat, S. A., & Sarhan, Q. I.
(2021). Survey on serverless computing. Journal of
Cloud Computing, 10(1), 39.

Bruno, D. R., Berri, R. A., Barbosa, F. M., &
Osorio, F. S. (2023). CARINA Project: Visual
perception systems applied for autonomous
vehicles and advanced driver assistance systems
(ADAS). IEEE Access, 11, 69720-69749.

Fu, D., Bao, W., Maciejewski, R., Tong, H., & He,
J. (2023). Privacy-preserving graph machine
learning from data to computation: A survey. ACM
SIGKDD Explorations Newsletter, 25(1), 54-72.
Khanzadeh, S., Neto, E. C. P., Igbal, S., Alalfi, M.,
& Buffett, S. (2025). An exploratory study on
domain knowledge infusion in deep learning for
automated threat defense. International Journal of
Information Security, 24(1), 1-19.

Wang, H., Lu, Y., Shutters, S. T., Steptoe, M.,
Wang, F., Landis, S., & Maciejewski, R. (2018). A
visual analytics framework for spatiotemporal trade
network analysis. IEEE transactions on
visualization and computer graphics, 25(1), 331-
341.

Zakrzewicz, M., Wojciechowski, M., & Glawinski,
P. (2019). Solution pattern for anomaly detection in
financial data streams. In New Trends in Databases
and Information Systems: ADBIS 2019 Short
Papers, Workshops BBIGAP, QAUCA, SemBDM,
SIMPDA, M2P, MADEISD, and Doctoral
Consortium, Bled, Slovenia, September 8-11, 2019,
Proceedings 23 (pp. 77-84). Springer International
Publishing.

Saadati, P., Abdelnour-Nocera, J., & Clemmensen,
T. (2020). Proposed system for a socio-technical
design framework for improved user collaborations
with automation technologies. In Human Computer



26.

217.

28.

29.

30.

Saravanan Thirumazhisai Prabhagaran / IJCESEN 11-4(2025)8279-8287

Interaction and Emerging Technologies. Cardiff
University Press.

Reynisson, K., Schreyer, M., & Borth, D. (2024).
GraphGuard: Contrastive Self-Supervised Learning
for Credit-Card Fraud Detection in Multi-
Relational Dynamic  Graphs. arXiv  preprint
arXiv:2407.12440.

Krichen, M. (2023). Convolutional neural
networks: A survey. Computers, 12(8), 151.

Zhong, H., Yang, D., Shi, S., Wei, L., & Wang, Y.
(2024). From data to insights: the application and
challenges of knowledge graphs in intelligent
audit. Journal of Cloud Computing, 13(1), 114.
Venugopal, K., & Jagadeesh, B. (2024). Theoretical
Insights Into User Security and Privacy in
Social. Human Impact on Security and Privacy:
Network and Human Security, Social Media, and
Devices: Network and Human Security, Social
Media, and Devices, 289.

Dou, F., Ye, J,, Yuan, G., Lu, Q., Niu, W., Sun, H.,
... & Song, W. (2023). Towards artificial general
intelligence (AGI) in the internet of things (iot):
Opportunities and challenges. arXiv  preprint
arXiv:2309.07438.

8287



