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Abstract:  
 

Solving nonlinear systems of equations is a central challenge in scientific computing, 

impacting a wide range of fields such as engineering, physics, and applied mathematics. 

Although the Newton-Raphson method is popular for its quadratic convergence near 

solutions, it faces notable difficulties, including reliance on the initial guess, potential 

failure with ill-conditioned Jacobians, and complications when multiple or closely 

situated roots are present. In this study, we investigate the creation of new iterative 

algorithms aimed at overcoming these obstacles by promoting better global 

convergence and improving numerical stability. The proposed approaches utilize 

adaptive step-size management, quasi-Newton techniques, and hybrid strategies that 

integrate trust-region and homotopy concepts. Results from numerical tests on standard 

benchmark problems show that these algorithms provide enhanced robustness for a 

wide array of nonlinear systems. Compared to Newton-Raphson, the new methods 

expand the convergence domain and frequently deliver equal or better accuracy and 

computational speed. This work paves the way for developing more trustworthy solvers 

for complex nonlinear systems in contemporary computational practice.  

 

 

1. Introduction 

Solving nonlinear systems of equations is a major 

challenge in many areas of science and engineering. 

The Newton-Raphson method is one of the most 

widely used approaches because of its rapid local 

convergence when conditions are favorable. 

However, its performance can be greatly hindered 

by poor initial guesses, badly conditioned Jacobian 

matrices, or when dealing with highly nonlinear or 

discontinuous systems. These limitations 

underscore the necessity for new algorithms that 

can deliver greater stability, robustness, and 

guarantee global convergence. 

Recent advances in numerical analysis, 

optimization, and machine learning have led to the 

emergence of iterative methods that often surpass 

Newton-Raphson. These developments include 

derivative-free strategies, globally convergent 

approaches such as homotopy and continuation 

methods, trust-region and line search techniques, 

and adaptive or hybrid frameworks that 

dynamically adjust based on the system’s 

properties. 

The primary objective in designing these 

algorithms is to reduce sensitivity to initial 

conditions, enhance convergence in challenging 

regions of the solution space, and maintain 

computational efficiency. This is particularly 

crucial in large-scale simulations, nonlinear finite 

element problems, power system modeling, and 

machine learning contexts, where traditional 

methods frequently encounter convergence failures. 

This work presents a framework for developing 

new iterative algorithms that combine mathematical 

rigor with practical robustness, offering a 

compelling alternative to the Newton-Raphson 

method—especially in real-world applications 

where stability and reliable convergence are 

paramount. 
 

2. Newton-Raphson Method 
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The Newton-Raphson method is widely used for 

solving nonlinear systems, especially when the 

problems are smooth and well-posed. Despite its 

effectiveness, it faces several well-documented 

challenges, such as high sensitivity to the initial 

estimate, possible divergence, and reliance on 

Jacobians which can be difficult to compute or 

poorly conditioned. To address these issues, 

researchers are actively working on new or 

enhanced algorithms designed to surpass Newton-

Raphson in terms of stability, global convergence, 

and robustness. The following is a summary of 

emerging and alternative algorithms that show 

promise in outperforming Newton-Raphson for 

nonlinear systems, along with insights into 

innovative ideas that could be incorporated into 

future algorithm designs. 

 

3. Quasi-Newton Methods with Adaptive 

Strategies 
 

     Quasi-Newton methods like Broadens method 

approximate the Jacobian instead of computing it 

directly. A modern enhancement could involve 

’adaptive update rules’, ’line search’, and ’trust-

region strategies’. 

 

3.1. Improvements 
• Less sensitive to initial guess 

• Avoids exact Jacobian computation 

• More robust for ill-conditioned systems 

3.2. New Development Ideas  
• Combine with machine learning to predict 

better Jacobian approximations. 

• Use rank-one updates guided by residuals’ 

trends. 

 

4. Homotopy and Continuation Methods 
 

     These methods solve a difficult nonlinear system 

by deforming it from a simpler one (via a 

parameterized path). 

4.1 Improvements: 

• Excellent global convergence 

• Can trace multiple solution branches 

• Especially useful for highly nonlinear or 

bifurcating systems 

4.2. New Development Ideas: 

• Adaptive step-size and path-following 

strategies. 

• Use machine learning to predict good 

homotopy paths. 

• Parallelized path-tracking for multiple roots. 

 

5. Anderson Acceleration for Fixed Point 

Iterations 
Transforms a fixed-point iteration (like x = g(x)) 

into a faster-converging scheme 

by mixing previous iterations like a multi-secant 

method. 

5.1. Improvements: 

• Can greatly enhance convergence speed. 

• Black-box applicability to nonlinear solvers. 

5.2. New Development Ideas: 

• Combine Anderson acceleration with 

Newton or quasi-Newton iterations. 

• Dynamically switch between acceleration 

and damping based on residual history. 

 

6. Trust-Region Methods for Nonlinear 

Systems 

 
Rather than taking Newton steps directly, solve a 

local approximation (usually quadratic) within a 

trust region around the current guess. 

6.1 Improvements: 
• Much more stable when far from the root. 

• Handles ill-conditioned Jacobians better. 

• Better global convergence properties. 

6.2 New Development Ideas: 
• Combine trust-region strategy with inexact 

or learned Jacobians. 

• Use subspace-based trust-region refinement 

to reduce computational load. 

7. Machine Learning-Augmented Solvers 

 
Use trained neural networks or other learning 

models to: 

 Predict good initial guesses. 

 Estimate Jacobians. 

 Select step sizes or damping parameters. 

7.1 Improvements: 
• Can dramatically reduce iterations 

• Helps in structured problems where prior 

solutions exist 

7.2 New Development Ideas: 
• Reinforcement learning to adaptively 

control iteration parameters 

• Meta-learning across problem families 

(e.g.in Multiphysics simulations) 

 

8. Nonlinear Krylov Subspace Methods 

 
Extend ideas from GMRES and other Krylov 

subspace methods into the nonlinear setting 

(e.g., Newton-Krylov or Inexact Newton 

methods). 

8.1 Improvements: 

• Avoids forming or inverting full Jacobians. 



Brahim Benzeghli, Salah Adoui/ IJCESEN 11-4(2025)8336-8341 

 

8338 

 

• Very scalable for large systems (e.g., PDE 

discretization). 

8.2 New Development Ideas: 

• Precondition nonlinear residuals using 

learned or physics-informed strategies. 

• Dynamic subspace enrichment using 

residual analysis. 

 

9. Hybrid or Switching Methods 

 
Use multiple methods in a coordinated or adaptive 

way for example: 

 Start with Brayden or fixed-point iteration 

 Switch to Newton when close enough to the 

root 

9.1 Improvements: 

• Combines global convergence with local 

speed. 

• Adapts to system behavior. 

9.2 New Development Ideas: 

• Develop "solver controllers" that choose 

algorithms based on residual, Jacobian 

norm, etc. 

• Use ML classifiers to select the best solver 

path during iterations 

10. Novel Algorithm Blueprint: "Adaptive 

Trust-Region Anderson (ATRA) Solver" 

 
A new algorithm could combine: 

1- Trust-region control (global stability). 

2- Anderson acceleration (speed-up). 

3- Inexact, learned Jacobian approximations 

(cheap computations). 

4- A heuristic switching controller that adapts 

based on: 

a- Residual norm. 

b-   Predicted conditioning. 

c-   Iteration stagnation. 

This type of solver would be particularly well-

suited for stiff, ill-conditioned, 

or partially known nonlinear systems, such as those 

in Multiphysics, nonlinear optimization, and real-

time control. 

 

Table 1: Summary Table 

Methode Globel 

convergence 

Jacobian-Free Good for large systems ML Integration 

potential 

Quasi-Newton Moderate Yes Yes Medium 

Homotopy Excellent Yes Medium High 

Anderson Poor (alone) Yes Yes Medium 

Trust-Region Excellent No Yes Medium 

Newton-Krylov Good Yes Excellent Low 

ML-Augmented Depends Yes Yes High 

Hybrid/Switching Very good Mixed Mixed High 

 

11. Example of advanced nonlinear solver 

 
Let’s break an example of a solver step-by-step so 

we can ask about: 

 Building a hybrid solver. 

 Integrating Anderson acceleration. 

 Designing a trust-region controller for 

Newton steps. 

All of these are advanced nonlinear solver 

techniques used in optimization and numerical 

analysis, especially for solving systems of 

nonlinear equations or optimization problems. 

 

11.1. Building a Hybrid Solver 

 A hybrid solver typically combines multiple 

strategies to improve robustness and convergence. 

For example: 

 Newton-Raphson + Anderson acceleration. 

 Newton + Brayden update. 

 Switching from a quasi-Newton method to 

full Newton when close to solution. 

This sets up hybrid strategy early iterations rely 

on Newton if Jacobian is available; fallback is 

acceleration or quasi-Newton. 

 

 
Figure 1. Python code 

11.2. Integrating Anderson Acceleration  

 

Anderson Acceleration (AA) is used to accelerate 

fixed-point iterations 𝑥𝑘+1 = 𝐺(𝑥𝑘) , often used 
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with nonlinear solvers. We can define Anderson 

acceleration like so:  

We would  plug this into the hybrid solver when 

Newton is not used. 

 

 

 
Figure 2. Anderson Acceleration (Python - simplified) 

11.3. Designing a Trust-Region Controller for 

Newton Steps 

Trust-region methods improve Newton robustness 

by limiting the step size based on the quality of 

the quadratic approximation.  

 Trust Region Concept  

Solve: 

𝐦𝐢𝐧
𝒔

𝟏

𝟐
𝒔𝑻𝑱𝑻𝑱𝒔 + 𝒔𝑻𝑱𝑻𝑺   Subject to |𝒔| ≤ 𝚫 

 

This is the Levenberg-Marquardt idea or Dogleg 

method.  

 

Figure 3. Trust-Region Newton Step (Sketch) 

Trust-Region Controller Inside the solver, monitor 

model agreement: 

Figure 4. Trust-Region Controller 

If we’re building a system, we’d integrate these 

into a stateful solver class, for example: 

 

 
Figure 5. Putting It All Together 

 Convergence and stability of Levenberg-

Marquardt idea or Dogleg method 

The Levenberg-Marquardt (LM) method or the 

Dogleg method is both widely used algorithms for 

solving nonlinear least squares problems. These 

methods are particularly popular in optimization 

problems where the objective function is a sum of 

squares, such as in curve fitting, parameter 

estimation, and inverse problems. Herse a focused 

overview of their convergence and stability 

characteristics. 

Levenberg-Marquardt (LM) Method:  

LM blends Gauss-Newton (fast near a solution) 

and gradient descent (robust far from solution). It 

introduces a damping parameter (λ) to interpolate 

between them.  

Update rule: 

(𝑱𝑻𝑱 + 𝝀𝑰)𝜹 = −𝑱𝑻𝒓 

Where:  
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 J :  is the Jacobian of the residuals;  

 r :  is the residual vector;  

  δ :  is the step direction.  

  Convergence: 

1- Quadratic convergence:  
- near the solution, like Gauss-Newton, if 

the Jacobian has full rank.  

- When the damping (λ → 0), LM becomes 

Gauss-Newton, achieving fast convergence.  

2- Global Convergence:   
- If damping (λ) is large, LM behaves like 

gradient descent (small, cautious steps).  

- Globally convergent under mild 

conditions e.g. objective function is 

continuously differentiable and bounded 

below.  

Local  

 Requires:  

-  Good damping adjustment strategy (e.g. 

increase (λ) when the step fails; decrease it 

when the step is successful).  

- Jacobian needs to be well-conditioned for 

fast convergence.  

  Stability:  

- More stable than pure Gauss-Newton near 

saddle points or where Jacobian is ill-

conditioned.  

- Robust to poor initial guesses due to 

gradient descent behavior at high (λ).  

- Sensitive to scaling preconditioning or 

normalization can help. 

Dogleg Method: 

The Dogleg method is used within trust region 

frameworks. It approximates the solution path as a 

piece-wise linear path (the” dogleg”) between the 

steepest descent direction and the Gauss-Newton 

direction.  

 Convergence: 

1- Local convergence:  
- Similar to Gauss-Newton when the trust 

region contains the Newton step. 

- Quadratic convergence if the Jacobian is 

full-rank and the trust region is large 

enough.  

2- Global Convergence:  

- Trust region strategy guarantees global 

convergence to a stationary point. 

-  Each step minimizes a model within a 

constrained region helps prevent overly 

large, unstable steps.  

 Stability:  

- Highly stable due to the trust region 

control.  

- Adapts well to problem geometry. 

-  Can be more efficient than LM when the 

model behaves well, because it avoids 

solving damped normal equations. 

 Table 2: Summary Comparison 

Feather Levenberg-Marquardt Dogleg Method 

Approach  

Local convergence  

Global convergence  

Stability  

Step type  

Computational cost  

Suitability  

Damped Gauss-Newton  

Quadratic (if Jacobian full rank)  

Yes, with damping  

Good, especially with tuning 

Solves modified normal equations  

Higher per step  

Robust to bad initial guesses  

Trust-region based 

Quadratic (similar conditions) 

Yes, via trust region framework 

Very stable due to trust region 

Chooses from piecewise-linear path 

Lower if Gauss-Newton is expensive 

Efficient for well-scaled problem 

 

12. Conclusion  

 
New algorithms can indeed be developed to solve 

nonlinear systems that outperform the classical 

Newton-Raphson method in terms of stability and 

convergence. While Newton-Raphson is widely 

used due to its simplicity and quadratic 

convergence near the root, it suffers from 

limitations such as sensitivity to initial guesses, 

divergence in certain cases, and poor performance 

on ill-conditioned problems. Modern advancements 

in numerical methods, such as homotopy 

continuation, trust-region approaches, and globally 

convergent or hybrid methods, offer more robust 

alternatives. These new algorithms enhance 

convergence reliability, expand the domain of 

attraction, and improve performance in solving 

large-scale or highly nonlinear systems. Continued 

research in this area holds strong potential for more 

efficient and stable solvers applicable across a wide 

range of scientific and engineering disciplines 
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