

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7769-7775
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Serverless 2.0: Unlocking Performance and Portability with WebAssembly

Satya Teja Muddada*

* Corresponding Author Email: mastergracemuddada@gmail.com -

 Independent Researcher, USA

ORCID: 0000-0002-0247-7850

Article Info:

DOI: 10.22399/ijcesen.4130

Received : 20 August 2025

Accepted : 11 October 2025

Keywords

WebAssembly Integration,

Serverless Computing Evolution,

Edge-First Architecture,

Polyglot Runtime Support,

Cold Start Optimization

Abstract:

Serverless computing has transformed the development of applications in the cloud

since it abstracts the infrastructure operation, enabling it to scale itself automatically.

Legacy Function-as-a-Service offerings have been characterized by severe constraints

such as high cold start delay, runtime constraints, language bias, and performance

flooding, making them inapplicable in latency-sensitive and distributed applications.

WebAssembly has become a groundbreaking platform to overcome these issues by

creating a lightweight binary instruction, close-to-native speed execution, and a

computer-independent compilation target platform. This article presents the idea of

Serverless 2.0, which is an enacted paradigm of incorporating WebAssembly modules

in serverless computing to achieve enhanced performance aspects without

compromising operational simplicity. The architecture makes polyglot development and

deployment easy, as it replaces language-specific execution engines with single-

execution engines of WebAssembly. Patterns like edge-first deployment use the

WebAssembly small footprint when local distributed computing would be effective,

making computation closer to the data sources and end users. The extensive

benchmarking can be shown to have made significant gains in various key measures,

and cold start latency gains, a higher runtime performance, as well as better resource

usage are dwelt upon in the above expounded. The combination is supporting new

architectural patterns that were once impractical with traditional serverless frameworks,

and should not only be limited to straightforward event-driven processing, but can be

intensely real-time, application-latency-compromised, and globally distributed

applications. Regardless of the remaining room to improve in the areas of tooling

maturity and debugging support, WebAssembly-based serverless computing is an

important advancement in cloud-native architecture, with promising performance

benefits when it comes to cloud-critical and multi-cloud applications.

1. Introduction

The serverless model has revolutionized cloud

application development over the last decade,

enabling developers to deploy code without having

to worry about the underlying infrastructure.

Conventional serverless platforms have provided

fast development cycles and automatically scaling

features with immense operational overhead

reduction. Nevertheless, the platforms come with

tremendous limitations that limit applicability for

some categories of workloads. A recent study of

large serverless platforms identifies cold start

latency as a main performance bottleneck, with

initialization times differing widely depending on

runtime choice and resource provisioning [1]. The

work by Kelly et al. studied cold start behavior on

several platforms, showing that container

initialization and runtime bootstrapping add

significant overhead to function execution,

especially degrading applications that need uniform

low-latency responses. Runtime restrictions further

constrain the selection of execution environments

and programming languages, and vendor-specific

interpretations generate lock-in consequences that

make multi-cloud strategies troublesome and

expensive.

WebAssembly (WASM) presents itself as a

promising technical solution to remedy these

inherent core problems of present serverless

designs. First created to support web browsers to

provide near-native performance for

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Satya Teja Muddada / IJCESEN 11-4(2025)7769-7775

7770

computationally demanding software, WASM has

become a portable, secure, and high-performance

runtime that can be used in server-side scenarios. A

study by Poltavskyi illustrates how the integration

of WASM in performance-critical web applications

results in large boosts in execution time without

compromising security using sandboxing [2]. The

small binary format allows for speedier parsing and

compilation over standard JavaScript, with the

research demonstrating that WASM modules have

considerably lower memory overhead when

executed. The language-independent compilation

target facilitates support for various programming

languages such as Rust, C++, Go, and

AssemblyScript, solidifying it as the best fit for

future serverless platforms where developer agility

and performance optimization are of the utmost

importance.

This paper presents Serverless 2.0, a new model

that uses WASM modules in serverless frameworks

to transcend the limitations of conventional

Function-as-a-Service platforms while preserving

operational advantages. Inclusion of WASM in

serverless computing solves several pain points at

once by leveraging architectural advances that

minimize initialization overhead and enhance

execution efficiency. Cold start times are reduced

dramatically through the use of WASM's light

runtime initialization process that avoids container

bootstrapping latency. The polyglot aspect of

WASM enables developers to use optimal

languages for given tasks and still have one

deployment model, such that teams can tap into

available expertise without language limits imposed

by the platform. In addition, the portability of

WASM facilitates genuine multi-cloud and edge

deployment strategies without code change, as

compiled modules run identically across disparate

runtime environments. This work provides a

thorough analysis of serverless computing based on

WASM, evincing benefits through real-world

deployment use cases and empirical benchmarking

that confirm the architectural innovations and

performance benefits possible with this method.

2. Architectural Framework and

Implementation

The Serverless 2.0 architecture critically redefines

how functions are packaged, deployed, and run in

cloud infrastructure through the adoption of

WebAssembly as a primary execution substrate.

Fundamentally, the architecture substitutes

language-specific runtimes with a common WASM

execution engine that runs modules compiled from

a different set of source languages. Decoupling

development language from execution

environment, this design unlocks serverless

deployment flexibility at an unprecedented level

without sacrificing performance attributes similar to

native code execution. Studies by Jangda et al.

show that WASM programs attain execution

performance within a factor of 2x of natively

compiled code on varied workloads, with some

computational kernels running at 1.54x behind

native versions when optimized suitably [3]. The

research illustrates that compilation techniques

have a major effect on performance, where ahead-

of-time compilation offers lower execution cost

than traditional just-in-time methods used in

managed runtimes.

The architectural design includes a number of

interrelated elements that facilitate effective

WASM execution in serverless environments. The

compilation pipeline compiles source code in

languages like Rust, C++, Go, or AssemblyScript

into WASM modules that are optimized for

minimal binary formats by LLVM-based toolchains

and have smaller deployment footprints compared

to conventional serverless packages while retaining

execution performance using linear memory models

and controlled control flow. The runtime

environment of WASM supports sandboxed

execution with hardware-level isolation promises,

which guarantees security without the latency

overhead of container virtualization that normally

introduces large latency into function startup. The

orchestration layer is responsible for function

lifecycle operations such as instantiation, execution

monitoring, and termination, while also supporting

legacy serverless triggers and event sources via

standard interfaces.

Edge-first deployment patterns are an important

innovation in Serverless 2.0 architecture that takes

advantage of WASM's lightness for distributed

computing contexts. Comparison by Fiasco et al. of

WebAssembly and unikernels for edge serverless

deployments shows that WASM runtimes have

better cold startup performance with less than 1

millisecond initialization time vs. 5-10 milliseconds

for lightweight unikernel implementations [4]. The

study finds that WASM modules have smaller

memory profiles of around 4MB for runtime

overhead compared to 8-16MB for similar

unikernel deployments, making them possible for

higher-density function deployment on hardware-

constrained edge nodes. The system accommodates

both stateless function execution and stateful

workflows by integration with distributed storage

services and message queues, which enforces

consistency in geographically dispersed

deployments. Integration with prevailing cloud

services calls for judicious handling of interface

boundaries and data serialization mechanisms that

maintain performance and ensure compatibility.

Satya Teja Muddada / IJCESEN 11-4(2025)7769-7775

7771

The WebAssembly System Interface (WASI) gives

us standardized system calls that allow WASM

modules to access file systems, networks, and other

system resources in a platform-agnostic way

without compromising the security guarantees of

the sandboxed execution model. This

standardization makes it easy to integrate with

cloud-native services while retaining the portability

benefits of WASM deployment on heterogeneous

infrastructure environments. The capability-based

security model implemented by WASI blocks

unauthorized access to resources while allowing

fine-grained permission management better than

conventional process-based isolation schemes in

security as well as in performance attributes.

3. Experimental Methodology and

Performance Evaluation

To empirically confirm the benefits of Serverless

2.0, thorough benchmarking experiments contrasted

WASM-based serverless implementations with

FaaS systems based on traditional architecture

through crosscutting evaluation methods. The

experimental setup covered several aspects of

performance measurement, such as cold start delay,

execution time, memory usage, and scalability

behavior under different load types that describe

actual deployment use cases. The SPEC Cloud

Group's research methodology for FaaS and

serverless systems offered guiding principles for

setting up reproducible benchmarking

methodologies that guarantee equitable comparison

across varied platforms [5]. Van Eyk et al. highlight

that standardized performance analysis necessitates

precise attention to workload properties,

measurement granularities, and environmental

factors affecting serverless function behavior in

varied deployment situations. Research vision

captures the need for end-to-end metrics that reflect

application-level performance and system-level

utilization of resources in order to provide

comparisons among next-generation serverless

technologies.

The experiment used varied cloud providers and

platforms in order to provide full coverage of

modern serverless ecosystems. Node.js and Python

runtimes were used as traditional serverless

baselines, representing common deployment

options in production as per runtime adoption

numbers. WASM-based implementations used

modules that were compiled from Rust, C++, and

AssemblyScript with optimization flags that

optimize for performance while ensuring binary

compatibility. Workload choice involved CPU-

bound workloads like recursive Fibonacci

calculation and cryptography, I/O-bound workloads

like API aggregation and file handling, and blended

workloads involving JSON parsing with

computationally intensive tasks to assess

performance across various application classes. All

workload categories reflect unique usage patterns

seen in production serverless use cases, allowing

for measurement of WASM performance attributes

under a variety of computational loads. The

approach used strict statistical treatment with

repeated trial executions to achieve result reliability

and statistical significance. Every function went

through large invocation sequences to compute

average measurements and percentile distributions

that reflect performance variability. Cold start

measurements recorded the entire initialization

process from receipt of request to execution of the

first instruction, including all overhead elements

contributing to startup delay. In their recent study,

Ebrahimi et al. give a thorough taxonomy of cold

start latency reduction mechanisms and list

initialization phases that consist of container

provisioning, bootstrapping at runtime, and loading

of the application as the main culprits behind delays

in startup [6]. The research establishes that classical

mitigation techniques like pre-warming containers

and pooling attain partial effectiveness due to

erratic invocation patterns, underpinning the

significance of architectural methods that inherently

minimize initialization overhead as opposed to

trying to cover up latency using prophetic methods.

The deployment for each platform utilized best-

practice methods established for production

environments to provide for experimental validity.

Classic serverless functions were optimized for

packaging to reduce deployment size via

dependency pruning and tree-shaking

optimizations. WASM modules were compiled

with aggressive optimization options such as link-

time optimization and dead code elimination to

generate small binaries. Edge deployments

stretched across geographically dispersed regions to

measure latency properties for large-scale

distributed user bases, with measurement

infrastructure placed to record end-to-end response

times. All experiments were conducted under

controlled environments to eliminate external

interference, with network baselines set using initial

measurements that ensured stable connectivity and

low packet loss on the test infrastructure.

4. Results and Comparative Analysis

Experimental results show significant performance

gains for WASM-based serverless deployments on

all tested metrics, confirming the architectural

benefits of the Serverless 2.0 paradigm. Cold start

latency improved most dramatically, with WASM

functions starting much faster than conventional

serverless platforms owing to light runtime

Satya Teja Muddada / IJCESEN 11-4(2025)7769-7775

7772

attributes and streamlined module loading

strategies. In-depth analysis by Zhang et al. across

several WebAssembly runtimes discloses that

contemporary WASM execution engines realize

instantiation times from microseconds to low

milliseconds based on module complexity and

runtime performance [7]. The study states that

independently running runtimes like Wasmtime and

Wasmer show better cold start performance than

runtimes embedded into their host processes, with

linear memory initialization and table setup adding

negligible overhead to the startup paths. These

results are in agreement with experimental evidence

of WASM-based serverless functions maintaining

consistent sub-second response times even at cold

start scenarios.

Performance analysis of execution showed that

WASM modules provide similar or better runtime

performance in spite of running in sandboxed

environments that impose strong security

boundaries. CPU-bound workloads exhibited cost-

efficient execution behavior on WASM platforms,

with instruction dispatch and register allocation

techniques optimized to reduce interpretation

overhead. Memory usage patterns exhibited

consistent benefits for WASM deployments, with

linear memory models providing predictable

allocation behavior and less fragmentation than

garbage-collected runtimes. The enhanced memory

efficiency allows for increased function density per

host, enabling infrastructure providers to attain

improved resource utilization and lower operating

expenses in multi-tenant deployment environments.

Concurrent load scalability testing brought out

WASM's higher throughput-like behavior and

predictable degradation patterns. WASM functions

supported larger request rates without

compromising on acceptable response time

distributions, indicating improved resource

utilization and more predictable scaling under

conditions of stress. Binary size comparisons

showed significant decreases in deployment

package sizes, and WASM modules achieved small

representations by using efficient bytecode

encoding and removal of runtime dependencies.

Ray's work offers an extensive analysis of

WebAssembly usage in IoT environments and

illustrates that WASM modules generally obtain

50-80% size savings compared to their equivalent

JavaScript counterparts while achieving functional

equivalence [8]. The research highlights that binary

compactness has a direct effect on quicker

transmission times and less storage in resource-

limited environments, benefits which directly apply

to serverless deployment scenarios where package

size has a direct effect on cold start latency and

storage expenses.

Geographic distribution testing of edge

deployments revealed remarkable performance

properties that confirm WASM compatibility with

distributed serverless architectures. WASM

applications deployed at edge sites had low

response times for regional-proximity users that far

exceeded centralized, latency-penalized traditional

serverless deployments. Universality of

performance across multiple edge providers

confirms the portability benefits of WASM

modules, which run the same across diversified

runtime environments without platform-specific

translation. Performance measurements on various

geographic regions verified that WASM-based edge

functions provide reliable latency profiles that

make real-time applications that were previously

not well-suited for serverless deployment models.

Such findings establish WASM as a

groundbreaking technology for serverless

computing, and especially for applications that need

consistent low-latency outputs and global

distribution.

5. Discussion and Implications

Experimental results confirm the transformative

value of WASM integration in serverless

computing to establish Serverless 2.0 as a workable

next-generation FaaS evolution, overcoming

inherent architectural constraints. The combination

of lower cold start latency, better execution

performance, and improved portability overcomes

key constraints that have traditionally curbed

serverless adoption for specific categories of

applications. A study by Cisco researchers Eismann

et al. on serverless application patterns pinpoints

certain situations where current FaaS offerings fall

short, viz., applications needing certain levels of

predictable latency, function composition with fine

granularity, and deployment flexibility across

platforms [9]. Developers are found to avoid

serverless in workloads sensitive to latency due to

the uncertainty of cold start penalties, which is

mostly removed by WASM-based systems due to

lightweight runtime booting. Such improvements

enable new styles and applications of architecture

that could previously have been considered

impractical with traditional serverless

implementations and widen the application of FaaS

to event processing beyond simple event-driven

processing.

The impact on application architecture is

significant; it indeed transforms the way developers

design distributed systems and deploy them. The

sensational cold start latency decrease eliminates

one key obstacle to microservice decomposition on

a fine level, allowing developers to build more

Satya Teja Muddada / IJCESEN 11-4(2025)7769-7775

7773

modular and manageable systems without the

performance overhead traditionally linked to

function proliferation. WASM's polyglot nature

enables development teams to use the best

programming languages for individual components

without deployment overhead, supporting best-of-

breed development patterns that deliver the most

developer productivity and code efficiency. Edge

deployment capability fundamentally shifts the

economics and performance properties of globally

distributed applications, with computation brought

closer to data sources and end users while

preserving operational ease.

In spite of these benefits, there are a number of

challenges for production uptake in the enterprise

that need to be given proper consideration. Tooling

and debugging support for WASM within

serverless platforms is less mature compared to

traditional platforms, potentially elevating

development complexity and operational burden.

Recent benchmarking research by Baek et al.

introduces the Wasm-R3 framework for realistic

WebAssembly performance evaluation, revealing

that current profiling tools lack the granularity

necessary for comprehensive performance analysis

in production deployments [10]. The study

demonstrates that execution characteristics vary

significantly based on workload patterns, with

memory-intensive applications showing different

optimization requirements than compute-bound

tasks, necessitating sophisticated tooling for

performance tuning. Security issues, though

handled by sandboxing technology, are subject to

continued monitoring with changing attack surfaces

and threat scenarios as adoption of WASM grows.

Economic impacts of Serverless 2.0 need

thoughtful examination, both from the provider and

consumer sides. Lowered memory usage and

enhanced throughput directly equate to cost

benefits in consumption-tiered pricing mechanisms,

with likely benefits in reduced operational costs for

high-volume software. The support for deploying

the same WASM modules on a variety of cloud

providers allows for advanced cost optimization

techniques and minimizes vendor lock-in risks that

otherwise limit architectural choices. Arbitrage

across a multi-cloud deployment can be realised by

organisations routing workloads to the least-cost

platforms dynamically, whilst maintaining the same

performance properties at the delivery endpoints.

The adoption pace in the future is probably more

gradual, where first adopters will explore greenfield

deployments and more niche applications, which

can most directly benefit from WASM advantages

and slowly upgrade towards systems that take on

progressively greater value from the ecosystem.

Main body of manuscript should be written using

Table 1: Cold Start Latency Performance Metrics [1, 2]

Performance Metric Value/Description

Container initialization overhead Substantial contributor to the function execution delays

JavaScript vs WASM parsing speed WASM enables faster parsing and compilation

WASM memory overhead Substantially less than traditional JavaScript

Supported programming languages Rust, C++, Go, AssemblyScript

Platform migration complexity Vendor lock-in increases migration costs

Runtime constraint impact Limits programming language choices

Deployment model characteristics Unified model without platform restrictions

Table 2: WASM Runtime Performance and Resource Utilization Metrics [3,4]

Architecture Component
Specification/

Performance

WASM vs native code execution speed Within a factor of 2x

WASM cold start initialization Under 1 millisecond

Unikernel cold start initialization 5-10 milliseconds

WASM runtime memory overhead Approximately 4MB

Unikernel memory overhead 8-16MB

Satya Teja Muddada / IJCESEN 11-4(2025)7769-7775

7774

Supported source languages Rust, C++, Go

Table 3: Benchmarking Protocol and Workload Characteristics for Serverless Evaluation [5,6]

Experimental Parameter Specification/Details

Performance dimensions evaluated Cold start, execution time, memory, scalability

Traditional runtime baselines Node.js and Python runtimes

WASM compilation sources Rust, C++, AssemblyScript

Workload categories CPU-intensive, I/O-bound, mixed workloads

Container provisioning phases Primary contributor to startup delays

Application loading overhead Key initialization phase contributor

Pre-warming strategy effectiveness Limited due to unpredictable invocation

Optimization techniques Link-time optimization, dead code elimination

Table 4: Considerations and implications for WebAssembly adoption in production serverless environments

Implementation Aspect Characteristic/Impact

Problematic FaaS scenarios Fine-grained composition, cross-platform deployment

Developer avoidance reason Unpredictable cold start penalties

WASM mitigation approach Lightweight runtime initialization

Wasm-R3 framework purpose Realistic WebAssembly performance evaluation

Security mechanism Sandboxing with ongoing vigilance required

Cost optimization strategy Multi-cloud workload routing enabled

 [9,10]

4. Conclusions

Introducing WebAssembly in serverless computing

frameworks constitutes an epigenetic improvement

in the development of cloud-native applications,

eliminating persistent constraints that had

historically curtailed the use of Function-as-a-

Service in workloads requiring high performance.

The Serverless 2.0 paradigm showcases that a

combination of the lightweight runtime nature of

WebAssembly, along with its serverless paradigms

of operation, presents strong benefits in a variety of

facets. Latency to cold start with hairsplitting.

Latency to cold start without performance

degradation. Latency Hairsplitting Finer-grained

microservice decomposition Fine-grained

microservice decomposition best for individual

components Polyglot Capabilities Select the

optimal language to use in a particular component.

Edge deployment patterns change the economics

and performance properties of globally distributed

applications, enabling real-time interactions, which

have not been feasible using serverless

architectures, to be feasible. The innovations in

architecture go beyond mere enhancements and

define additional avenues of application design and

deployment strategies. Although tooling

sophistication and debugging capabilities continue

to be challenging, the move toward more

comprehensive ecosystem maturity is evident.

WebAssembly-based servers should be considered

by organizations working with processes related to

WebAssembly, the cases of edge computing, and

those where cross-platform portability is needed.

The financial aspect of promoting resource use and

the versatility of multi-cloud offers further reasons

to consider adopting. With the maturity of tool

ecosystems and increased standardization

movements, WebAssembly-powered serverless

computing is poised to be the new favorite of MN,

but more cloud-native with high consistency,

distributed availability, and operational wholeness.

Author Statements:

• Ethical approval: The conducted research is

not related to either human or animal use.

• Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

• Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

• Author contributions: The authors declare that

they have equal right on this paper.

Satya Teja Muddada / IJCESEN 11-4(2025)7769-7775

7775

• Funding information: The authors declare that

there is no funding to be acknowledged.

• Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Daniel Kelly et al., "Serverless Computing: Behind

the Scenes of Major Platforms", arXiv, 2020.

[Online]. Available:

https://arxiv.org/pdf/2012.05600

[2] Poltavskyi Dmytro, "Integration of WebAssembly in

Performance-critical Web Applications",

American Academic Scientific Research Journal

for Engineering, Technology, and Sciences

(ASRJETS), May 2025. [Online]. Available:

https://asrjetsjournal.org/American_Scientific_Jou

rnal/article/view/11676/2837

[3] Abhinav Jangda et al., "Not So Fast: Analyzing the

Performance of WebAssembly vs. Native Code",

arXiv, 2019. [Online]. Available:

https://arxiv.org/pdf/1901.09056

[4] Enrico Fiasco et al., "WebAssembly and Unikernels:

A Comparative Study for Serverless at the Edge",

arXiv, 11th Sept 2025. [Online]. Available:

https://arxiv.org/html/2509.09400v1

[5] Erwin van Eyk et al., "The SPEC cloud group's

research vision on FaaS and serverless

architectures", ResearchGate, 2017. [Online].

Available:

https://www.researchgate.net/publication/3210659

55_The_SPEC_cloud_group's_research_vision_o

n_FaaS_and_serverless_architectures

[6] Ana Ebrahimi et al., "Cold start latency mitigation

mechanisms in serverless computing: Taxonomy,

review, and future directions", ScienceDirect,

2024. [Online]. Available:

https://www.sciencedirect.com/science/article/abs

/pii/S1383762124000523

[7] Yixuan Zhang et al., "Research on WebAssembly

Runtimes: A Survey", arXiv, 2024. [Online].

Available: https://arxiv.org/html/2404.12621v1

[8] Partha Pratim Ray, "An Overview of WebAssembly

for IoT: Background, Tools, State-of-the-Art,

Challenges, and Future Directions", MDPI, 2023.

[Online]. Available: https://www.mdpi.com/1999-

5903/15/8/275

[9] Simon Eismann et al., "Serverless Applications:

Why, When, and How?", arXiv, 2020. [Online].

Available: https://arxiv.org/pdf/2009.08173

[10] Doehyun Baek et al., "Wasm-R3: Record-Reduce-

Replay for Realistic and Standalone

WebAssembly Benchmarks", arXiv, 2024.

[Online]. Available:

https://arxiv.org/pdf/2409.00708

https://arxiv.org/pdf/2012.05600
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11676/2837
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11676/2837
https://arxiv.org/pdf/1901.09056
https://arxiv.org/html/2509.09400v1
https://www.researchgate.net/publication/321065955_The_SPEC_cloud_group's_research_vision_on_FaaS_and_serverless_architectures
https://www.researchgate.net/publication/321065955_The_SPEC_cloud_group's_research_vision_on_FaaS_and_serverless_architectures
https://www.researchgate.net/publication/321065955_The_SPEC_cloud_group's_research_vision_on_FaaS_and_serverless_architectures
https://www.sciencedirect.com/science/article/abs/pii/S1383762124000523
https://www.sciencedirect.com/science/article/abs/pii/S1383762124000523
https://arxiv.org/html/2404.12621v1
https://www.mdpi.com/1999-5903/15/8/275
https://www.mdpi.com/1999-5903/15/8/275
https://arxiv.org/pdf/2009.08173
https://arxiv.org/pdf/2409.00708

