Copyright © IJCESEN

International Journal of Computational and Experimental

NOESEN

Scz.ence and ENgineerlng By “:13»0“
(IJCESEN) T T\ui
Vol. 11-No.4 (2025) pp. 7769-7775 | ==
(2025) pp]

http://www.ijcesen.com

ISSN: 2149-9144
Research Article

Serverless 2.0: Unlocking Performance and Portability with WebAssembly

Satya Teja Muddada*

Independent Researcher, USA

* Corresponding Author Email: mastergracemuddada@gmail.com - ORCID: 0000-0002-0247-7850

Article Info:

DOI: 10.22399/ijcesen.4130
Received : 20 August 2025
Accepted : 11 October 2025

Keywords

WebAssembly Integration,

Serverless Computing Evolution,

Edge-First Architecture,
Polyglot Runtime Support,
Cold Start Optimization

Abstract:

Serverless computing has transformed the development of applications in the cloud
since it abstracts the infrastructure operation, enabling it to scale itself automatically.
Legacy Function-as-a-Service offerings have been characterized by severe constraints
such as high cold start delay, runtime constraints, language bias, and performance
flooding, making them inapplicable in latency-sensitive and distributed applications.
WebAssembly has become a groundbreaking platform to overcome these issues by
creating a lightweight binary instruction, close-to-native speed execution, and a
computer-independent compilation target platform. This article presents the idea of
Serverless 2.0, which is an enacted paradigm of incorporating WebAssembly modules
in serverless computing to achieve enhanced performance aspects without
compromising operational simplicity. The architecture makes polyglot development and
deployment easy, as it replaces language-specific execution engines with single-
execution engines of WebAssembly. Patterns like edge-first deployment use the
WebAssembly small footprint when local distributed computing would be effective,
making computation closer to the data sources and end users. The extensive
benchmarking can be shown to have made significant gains in various key measures,
and cold start latency gains, a higher runtime performance, as well as better resource
usage are dwelt upon in the above expounded. The combination is supporting new
architectural patterns that were once impractical with traditional serverless frameworks,
and should not only be limited to straightforward event-driven processing, but can be
intensely real-time, application-latency-compromised, and globally distributed
applications. Regardless of the remaining room to improve in the areas of tooling
maturity and debugging support, WebAssembly-based serverless computing is an
important advancement in cloud-native architecture, with promising performance
benefits when it comes to cloud-critical and multi-cloud applications.

1. Introduction

The serverless model has revolutionized cloud

work by Kelly et al. studied cold start behavior on
several platforms, showing that container
initialization and runtime bootstrapping add
significant overhead to function execution,

application development over the last decade,
enabling developers to deploy code without having
to worry about the underlying infrastructure.
Conventional serverless platforms have provided
fast development cycles and automatically scaling
features with immense operational overhead
reduction. Nevertheless, the platforms come with
tremendous limitations that limit applicability for
some categories of workloads. A recent study of
large serverless platforms identifies cold start
latency as a main performance bottleneck, with
initialization times differing widely depending on
runtime choice and resource provisioning [1]. The

especially degrading applications that need uniform
low-latency responses. Runtime restrictions further
constrain the selection of execution environments
and programming languages, and vendor-specific
interpretations generate lock-in consequences that
make multi-cloud strategies troublesome and
expensive.

WebAssembly (WASM) presents itself as a
promising technical solution to remedy these
inherent core problems of present serverless
designs. First created to support web browsers to
provide near-native performance for

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Satya Teja Muddada / 1JCESEN 11-4(2025)7769-7775

computationally demanding software, WASM has
become a portable, secure, and high-performance
runtime that can be used in server-side scenarios. A
study by Poltavskyi illustrates how the integration
of WASM in performance-critical web applications
results in large boosts in execution time without
compromising security using sandboxing [2]. The
small binary format allows for speedier parsing and
compilation over standard JavaScript, with the
research demonstrating that WASM modules have
considerably lower memory overhead when
executed. The language-independent compilation
target facilitates support for various programming
languages such as Rust, C++, Go, and
AssemblyScript, solidifying it as the best fit for
future serverless platforms where developer agility
and performance optimization are of the utmost
importance.

This paper presents Serverless 2.0, a new model
that uses WASM modules in serverless frameworks
to transcend the limitations of conventional
Function-as-a-Service platforms while preserving
operational advantages. Inclusion of WASM in
serverless computing solves several pain points at
once by leveraging architectural advances that
minimize initialization overhead and enhance
execution efficiency. Cold start times are reduced
dramatically through the use of WASM's light
runtime initialization process that avoids container
bootstrapping latency. The polyglot aspect of
WASM enables developers to wuse optimal
languages for given tasks and still have one
deployment model, such that teams can tap into
available expertise without language limits imposed
by the platform. In addition, the portability of
WASM facilitates genuine multi-cloud and edge
deployment strategies without code change, as
compiled modules run identically across disparate
runtime environments. This work provides a
thorough analysis of serverless computing based on
WASM, evincing benefits through real-world
deployment use cases and empirical benchmarking
that confirm the architectural innovations and
performance benefits possible with this method.

2. Architectural Framework and
Implementation

The Serverless 2.0 architecture critically redefines
how functions are packaged, deployed, and run in
cloud infrastructure through the adoption of
WebAssembly as a primary execution substrate.
Fundamentally, the architecture substitutes
language-specific runtimes with a common WASM
execution engine that runs modules compiled from
a different set of source languages. Decoupling
development language from execution
environment, this design unlocks serverless

7770

deployment flexibility at an unprecedented level
without sacrificing performance attributes similar to
native code execution. Studies by Jangda et al.
show that WASM programs attain execution
performance within a factor of 2x of natively
compiled code on varied workloads, with some
computational kernels running at 1.54x behind
native versions when optimized suitably [3]. The
research illustrates that compilation techniques
have a major effect on performance, where ahead-
of-time compilation offers lower execution cost
than ftraditional just-in-time methods used in
managed runtimes.

The architectural design includes a number of
interrelated elements that facilitate effective
WASM execution in serverless environments. The
compilation pipeline compiles source code in
languages like Rust, C++, Go, or AssemblyScript
into WASM modules that are optimized for
minimal binary formats by LLVM-based toolchains
and have smaller deployment footprints compared
to conventional serverless packages while retaining
execution performance using linear memory models
and controlled control flow. The runtime
environment of WASM supports sandboxed
execution with hardware-level isolation promises,
which guarantees security without the latency
overhead of container virtualization that normally
introduces large latency into function startup. The
orchestration layer is responsible for function
lifecycle operations such as instantiation, execution
monitoring, and termination, while also supporting
legacy serverless triggers and event sources via
standard interfaces.

Edge-first deployment patterns are an important
innovation in Serverless 2.0 architecture that takes
advantage of WASM's lightness for distributed
computing contexts. Comparison by Fiasco et al. of
WebAssembly and unikernels for edge serverless
deployments shows that WASM runtimes have
better cold startup performance with less than 1
millisecond initialization time vs. 5-10 milliseconds
for lightweight unikernel implementations [4]. The
study finds that WASM modules have smaller
memory profiles of around 4MB for runtime
overhead compared to 8-16MB for similar
unikernel deployments, making them possible for
higher-density function deployment on hardware-
constrained edge nodes. The system accommodates
both stateless function execution and stateful
workflows by integration with distributed storage
services and message queues, which enforces
consistency in geographically dispersed
deployments. Integration with prevailing cloud
services calls for judicious handling of interface
boundaries and data serialization mechanisms that
maintain performance and ensure compatibility.

Satya Teja Muddada / 1JCESEN 11-4(2025)7769-7775

The WebAssembly System Interface (WASI) gives
us standardized system calls that allow WASM
modules to access file systems, networks, and other
system resources in a platform-agnostic way
without compromising the security guarantees of
the sandboxed execution model. This
standardization makes it easy to integrate with
cloud-native services while retaining the portability
benefits of WASM deployment on heterogeneous
infrastructure environments. The capability-based
security model implemented by WASI blocks
unauthorized access to resources while allowing
fine-grained permission management better than
conventional process-based isolation schemes in
security as well as in performance attributes.

3. Experimental Methodology
Performance Evaluation

and

To empirically confirm the benefits of Serverless
2.0, thorough benchmarking experiments contrasted
WASM-based serverless implementations with
FaaS systems based on traditional architecture
through crosscutting evaluation methods. The
experimental setup covered several aspects of
performance measurement, such as cold start delay,
execution time, memory usage, and scalability
behavior under different load types that describe
actual deployment use cases. The SPEC Cloud
Group's research methodology for FaaS and
serverless systems offered guiding principles for
setting up reproducible benchmarking
methodologies that guarantee equitable comparison
across varied platforms [5]. Van Eyk et al. highlight
that standardized performance analysis necessitates
precise attention to workload properties,
measurement granularities, and environmental
factors affecting serverless function behavior in
varied deployment situations. Research vision
captures the need for end-to-end metrics that reflect
application-level performance and system-level
utilization of resources in order to provide
comparisons among next-generation serverless
technologies.

The experiment used varied cloud providers and
platforms in order to provide full coverage of
modern serverless ecosystems. Node.js and Python

runtimes were used as traditional serverless
baselines, representing common deployment
options in production as per runtime adoption
numbers. WASM-based implementations used

modules that were compiled from Rust, C++, and
AssemblyScript with optimization flags that
optimize for performance while ensuring binary
compatibility. Workload choice involved CPU-
bound workloads like recursive Fibonacci
calculation and cryptography, I/O-bound workloads
like API aggregation and file handling, and blended

7771

workloads involving JSON parsing with
computationally intensive tasks to assess
performance across various application classes. All
workload categories reflect unique usage patterns
seen in production serverless use cases, allowing
for measurement of WASM performance attributes
under a variety of computational loads. The
approach used strict statistical treatment with
repeated trial executions to achieve result reliability
and statistical significance. Every function went
through large invocation sequences to compute
average measurements and percentile distributions
that reflect performance variability. Cold start
measurements recorded the entire initialization
process from receipt of request to execution of the
first instruction, including all overhead elements
contributing to startup delay. In their recent study,
Ebrahimi et al. give a thorough taxonomy of cold
start latency reduction mechanisms and list
initialization phases that consist of container
provisioning, bootstrapping at runtime, and loading
of the application as the main culprits behind delays
in startup [6]. The research establishes that classical
mitigation techniques like pre-warming containers
and pooling attain partial effectiveness due to
erratic invocation patterns, underpinning the
significance of architectural methods that inherently
minimize initialization overhead as opposed to
trying to cover up latency using prophetic methods.
The deployment for each platform utilized best-
practice methods established for production
environments to provide for experimental validity.
Classic serverless functions were optimized for
packaging to reduce deployment size via
dependency pruning and tree-shaking
optimizations. WASM modules were compiled
with aggressive optimization options such as link-
time optimization and dead code elimination to
generate small binaries. Edge deployments
stretched across geographically dispersed regions to
measure latency properties for large-scale
distributed user bases, with measurement
infrastructure placed to record end-to-end response
times. All experiments were conducted under
controlled environments to eliminate external
interference, with network baselines set using initial
measurements that ensured stable connectivity and
low packet loss on the test infrastructure.

4. Results and Comparative Analysis

Experimental results show significant performance
gains for WASM-based serverless deployments on
all tested metrics, confirming the architectural
benefits of the Serverless 2.0 paradigm. Cold start
latency improved most dramatically, with WASM
functions starting much faster than conventional
serverless platforms owing to light runtime

Satya Teja Muddada / 1JCESEN 11-4(2025)7769-7775

attributes and streamlined module loading
strategies. In-depth analysis by Zhang et al. across
several WebAssembly runtimes discloses that
contemporary WASM execution engines realize
instantiation times from microseconds to low
milliseconds based on module complexity and
runtime performance [7]. The study states that
independently running runtimes like Wasmtime and
Wasmer show better cold start performance than
runtimes embedded into their host processes, with
linear memory initialization and table setup adding
negligible overhead to the startup paths. These
results are in agreement with experimental evidence
of WASM-based serverless functions maintaining
consistent sub-second response times even at cold
start scenarios.

Performance analysis of execution showed that
WASM modules provide similar or better runtime
performance in spite of running in sandboxed
environments that impose strong security
boundaries. CPU-bound workloads exhibited cost-
efficient execution behavior on WASM platforms,
with instruction dispatch and register allocation
techniques optimized to reduce interpretation
overhead. Memory wusage patterns exhibited
consistent benefits for WASM deployments, with
linear memory models providing predictable
allocation behavior and less fragmentation than
garbage-collected runtimes. The enhanced memory
efficiency allows for increased function density per
host, enabling infrastructure providers to attain
improved resource utilization and lower operating
expenses in multi-tenant deployment environments.
Concurrent load scalability testing brought out
WASM's higher throughput-like behavior and
predictable degradation patterns. WASM functions

supported larger request rates without
compromising on acceptable response time
distributions, indicating improved resource

utilization and more predictable scaling under
conditions of stress. Binary size comparisons
showed significant decreases in deployment
package sizes, and WASM modules achieved small
representations by using efficient bytecode
encoding and removal of runtime dependencies.
Ray's work offers an extensive analysis of
WebAssembly usage in loT environments and
illustrates that WASM modules generally obtain
50-80% size savings compared to their equivalent
JavaScript counterparts while achieving functional
equivalence [8]. The research highlights that binary
compactness has a direct effect on quicker
transmission times and less storage in resource-
limited environments, benefits which directly apply
to serverless deployment scenarios where package
size has a direct effect on cold start latency and
storage expenses.

7772

Geographic distribution testing of edge
deployments revealed remarkable performance
properties that confirm WASM compatibility with
distributed serverless architectures. WASM
applications deployed at edge sites had low
response times for regional-proximity users that far
exceeded centralized, latency-penalized traditional

serverless deployments. Universality of
performance across multiple edge providers
confirms the portability benefits of WASM

modules, which run the same across diversified
runtime environments without platform-specific
translation. Performance measurements on various
geographic regions verified that WASM-based edge
functions provide reliable latency profiles that
make real-time applications that were previously
not well-suited for serverless deployment models.
Such findings establish WASM as a
groundbreaking technology for serverless
computing, and especially for applications that need
consistent low-latency outputs and global
distribution.

5. Discussion and Implications

Experimental results confirm the transformative
value of WASM integration in serverless
computing to establish Serverless 2.0 as a workable
next-generation FaaS evolution, overcoming
inherent architectural constraints. The combination
of lower cold start latency, better execution
performance, and improved portability overcomes
key constraints that have traditionally curbed
serverless adoption for specific categories of
applications. A study by Cisco researchers Eismann
et al. on serverless application patterns pinpoints
certain situations where current FaaS offerings fall
short, viz., applications needing certain levels of
predictable latency, function composition with fine
granularity, and deployment flexibility across
platforms [9]. Developers are found to avoid
serverless in workloads sensitive to latency due to
the uncertainty of cold start penalties, which is
mostly removed by WASM-based systems due to
lightweight runtime booting. Such improvements
enable new styles and applications of architecture
that could previously have been considered
impractical with traditional serverless
implementations and widen the application of FaaS
to event processing beyond simple event-driven
processing.

The impact on application architecture 1is
significant; it indeed transforms the way developers
design distributed systems and deploy them. The
sensational cold start latency decrease eliminates
one key obstacle to microservice decomposition on
a fine level, allowing developers to build more

Satya Teja Muddada / 1JCESEN 11-4(2025)7769-7775

modular and manageable systems without the
performance overhead traditionally linked to
function proliferation. WASM's polyglot nature
enables development teams to use the best
programming languages for individual components
without deployment overhead, supporting best-of-
breed development patterns that deliver the most
developer productivity and code efficiency. Edge
deployment capability fundamentally shifts the
economics and performance properties of globally
distributed applications, with computation brought
closer to data sources and end users while
preserving operational ease.

In spite of these benefits, there are a number of
challenges for production uptake in the enterprise
that need to be given proper consideration. Tooling
and debugging support for WASM within
serverless platforms is less mature compared to
traditional ~ platforms, potentially elevating
development complexity and operational burden.
Recent benchmarking research by Baek et al.
introduces the Wasm-R3 framework for realistic
WebAssembly performance evaluation, revealing
that current profiling tools lack the granularity
necessary for comprehensive performance analysis
in production deployments [10]. The study
demonstrates that execution characteristics vary
significantly based on workload patterns, with
memory-intensive applications showing different
optimization requirements than compute-bound
tasks, necessitating sophisticated tooling for
performance tuning. Security issues, though

handled by sandboxing technology, are subject to
continued monitoring with changing attack surfaces
and threat scenarios as adoption of WASM grows.
Economic impacts of Serverless 2.0 need
thoughtful examination, both from the provider and
consumer sides. Lowered memory usage and
enhanced throughput directly equate to cost
benefits in consumption-tiered pricing mechanisms,
with likely benefits in reduced operational costs for
high-volume software. The support for deploying
the same WASM modules on a variety of cloud
providers allows for advanced cost optimization
techniques and minimizes vendor lock-in risks that
otherwise limit architectural choices. Arbitrage
across a multi-cloud deployment can be realised by
organisations routing workloads to the least-cost
platforms dynamically, whilst maintaining the same
performance properties at the delivery endpoints.
The adoption pace in the future is probably more
gradual, where first adopters will explore greenfield
deployments and more niche applications, which
can most directly benefit from WASM advantages
and slowly upgrade towards systems that take on
progressively greater value from the ecosystem.
Main body of manuscript should be written using

Table 1: Cold Start Latency Performance Metrics [1, 2]

Performance Metric

Value/Description

Container initialization overhead

Substantial contributor to the function execution delays

JavaScript vs WASM parsing speed

WASM enables faster parsing and compilation

WASM memory overhead

Substantially less than traditional JavaScript

Supported programming languages

Rust, C++, Go, AssemblyScript

Platform migration complexity

Vendor lock-in increases migration costs

Runtime constraint impact

Limits programming language choices

Deployment model characteristics

Unified model without platform restrictions

Table 2: WASM Runtime Performance and Resource Utilization Metrics [3,4]

Architecture Component

Specification/
Performance

WASM vs native code execution spee

d

Within a factor of 2x

WASM cold start initialization

Under 1 millisecond

Unikernel cold start initialization

5-10 milliseconds

WASM runtime memory overhead

Approximately 4MB

Unikernel memory overhead

8-16MB

7773

Satya Teja Muddada / 1JCESEN 11-4(2025)7769-7775

Supported source languages

| Rust, C++, Go ‘

Table 3: Benchmarking Protocol and Workload Characteristics for Serverless Evaluation [5,6]

Experimental Parameter

Specification/Details

Performance dimensions evaluated

Cold start, execution time, memory, scalability

Traditional runtime baselines

Node.js and Python runtimes

WASM compilation sources

Rust, C++, AssemblyScript

Workload categories

CPU-intensive, I/0-bound, mixed workloads

Container provisioning phases

Primary contributor to startup delays

Application loading overhead

Key initialization phase contributor

Pre-warming strategy effectiveness

Limited due to unpredictable invocation

Optimization techniques

Link-time optimization, dead code elimination

Table 4: Considerations and implications for WebAssembly adoption in production serverless environments

Implementation Aspect

Characteristic/Impact

Problematic FaaS scenarios

Fine-grained composition, cross-platform deployment

Developer avoidance reason

Unpredictable cold start penalties

WASM mitigation approach

Lightweight runtime initialization

Wasm-R3 framework purpose

Realistic WebAssembly performance evaluation

Security mechanism

Sandboxing with ongoing vigilance required

Cost optimization strategy

Multi-cloud workload routing enabled

[9,10]

4. Conclusions

Introducing WebAssembly in serverless computing
frameworks constitutes an epigenetic improvement
in the development of cloud-native applications,
eliminating persistent constraints that had
historically curtailed the use of Function-as-a-
Service in workloads requiring high performance.
The Serverless 2.0 paradigm showcases that a
combination of the lightweight runtime nature of
WebAssembly, along with its serverless paradigms
of operation, presents strong benefits in a variety of
facets. Latency to cold start with hairsplitting.
Latency to cold start without performance
degradation. Latency Hairsplitting Finer-grained
microservice decomposition Fine-grained
microservice decomposition best for individual
components Polyglot Capabilities Select the
optimal language to use in a particular component.
Edge deployment patterns change the economics
and performance properties of globally distributed
applications, enabling real-time interactions, which
have not been feasible using serverless
architectures, to be feasible. The innovations in
architecture go beyond mere enhancements and
define additional avenues of application design and
deployment strategies. Although tooling
sophistication and debugging capabilities continue
to be challenging, the move toward more

7774

comprehensive ecosystem maturity is evident.
WebAssembly-based servers should be considered
by organizations working with processes related to
WebAssembly, the cases of edge computing, and
those where cross-platform portability is needed.
The financial aspect of promoting resource use and
the versatility of multi-cloud offers further reasons
to consider adopting. With the maturity of tool
ecosystems and increased standardization
movements, WebAssembly-powered serverless
computing is poised to be the new favorite of MN,
but more cloud-native with high consistency,
distributed availability, and operational wholeness.

Author Statements:

Ethical approval: The conducted research is
not related to either human or animal use.
Conflict of interest: The authors declare that
they have no known competing financial
interests or personal relationships that could
have appeared to influence the work reported in
this paper

Acknowledgement: The authors declare that
they have mnobody or no-company to
acknowledge.

Author contributions: The authors declare that
they have equal right on this paper.

Satya Teja Muddada / 1JCESEN 11-4(2025)7769-7775

¢ Funding information: The authors declare that
there is no funding to be acknowledged.

e Data availability statement: The data that
support the findings of this study are available
on request from the corresponding author. The
data are not publicly available due to privacy or
ethical restrictions.

References

[1] Daniel Kelly et al., "Serverless Computing: Behind
the Scenes of Major Platforms", arXiv, 2020.
[Online]. Available:
https://arxiv.org/pdf/2012.05600

[2] Poltavskyi Dmytro, "Integration of WebAssembly in
Performance-critical Web Applications",
American Academic Scientific Research Journal
for Engineering, Technology, and Sciences
(ASRJETS), May 2025. [Online]. Available:
https://asrjetsjournal.org/American_Scientific_Jou
rnal/article/view/11676/2837

[3] Abhinav Jangda et al., "Not So Fast: Analyzing the
Performance of WebAssembly vs. Native Code",
arXiv, 2019. [Online]. Available:
https://arxiv.org/pdf/1901.09056

[4] Enrico Fiasco et al., "WebAssembly and Unikernels:
A Comparative Study for Serverless at the Edge",
arXiv, 11th Sept 2025. [Online]. Available:
https://arxiv.org/html/2509.09400v 1

[5] Erwin van Eyk et al,, "The SPEC cloud group's
research vision on FaaS and serverless
architectures", ResearchGate, 2017. [Online].
Available:
https://www.researchgate.net/publication/3210659
55_The SPEC_cloud group's_research_vision o
n_FaaS and serverless_architectures

[6] Ana Ebrahimi et al., "Cold start latency mitigation
mechanisms in serverless computing: Taxonomy,
review, and future directions", ScienceDirect,
2024. [Online]. Available:
https://www.sciencedirect.com/science/article/abs
/pii/S1383762124000523

[7] Yixuan Zhang et al., "Research on WebAssembly
Runtimes: A Survey", arXiv, 2024. [Online].
Available: https://arxiv.org/html/2404.12621v1

[8] Partha Pratim Ray, "An Overview of WebAssembly
for IoT: Background, Tools, State-of-the-Art,
Challenges, and Future Directions", MDPI, 2023.
[Online]. Available: https:/www.mdpi.com/1999-
5903/15/8/275

[9] Simon Eismann et al., "Serverless Applications:
Why, When, and How?", arXiv, 2020. [Online].
Available: https://arxiv.org/pdf/2009.08173

[10] Doehyun Baek et al., "Wasm-R3: Record-Reduce-
Replay for Realistic and Standalone
WebAssembly Benchmarks", arXiv, 2024.
[Online]. Available:
https://arxiv.org/pdf/2409.00708

7775

https://arxiv.org/pdf/2012.05600
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11676/2837
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11676/2837
https://arxiv.org/pdf/1901.09056
https://arxiv.org/html/2509.09400v1
https://www.researchgate.net/publication/321065955_The_SPEC_cloud_group's_research_vision_on_FaaS_and_serverless_architectures
https://www.researchgate.net/publication/321065955_The_SPEC_cloud_group's_research_vision_on_FaaS_and_serverless_architectures
https://www.researchgate.net/publication/321065955_The_SPEC_cloud_group's_research_vision_on_FaaS_and_serverless_architectures
https://www.sciencedirect.com/science/article/abs/pii/S1383762124000523
https://www.sciencedirect.com/science/article/abs/pii/S1383762124000523
https://arxiv.org/html/2404.12621v1
https://www.mdpi.com/1999-5903/15/8/275
https://www.mdpi.com/1999-5903/15/8/275
https://arxiv.org/pdf/2009.08173
https://arxiv.org/pdf/2409.00708

