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This paper explores the influence of number theory concepts on the behavior and security
of cryptographic hash functions. Hash functions play a critical role in modern
cryptography, ensuring data integrity, authentication, and digital signatures. While they

are primarily designed using principles from algebra and complexity theory, number
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theory significantly contributes to their construction and security analysis. Key number-

theoretic conceptssuch as modular arithmetic, prime number distributions, and discrete
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logarithmsunderpin many hash function designs, especially in schemes that rely on
structured algebraic inputs or are constructed from hard mathematical problems. We
analyze how these mathematical foundations affect essential properties like collision
resistance, pre-image resistance, and avalanche behavior. Additionally, we examine how

number-theoretic attacks (e.g., those exploiting modular congruences or integer
factorization) pose potential threats to certain classes of hash functions. The paper
concludes by highlighting current research trends leveraging advanced number-theoretic
techniques to enhance hash function robustness, emphasizing the ongoing interplay
between pure mathematics and practical cryptographic design.

1. Introduction

Hash functions play a fundamental role in modern
cryptography, ensuring data integrity,
authentication, and the secure functioning of digital
systems. These mathematical constructs compress
input data of arbitrary length into fixed-size outputs,
or "hashes", in such a way that even small changes
to the input produce significantly different outputs.
For a hash function to be cryptographically secure, it
must satisfy several stringent properties: pre-image
resistance, second pre-image

resistance, and collision resistance. Achieving these
properties often relies on deep mathematical
foundationsamong which 'number theory’ plays a
particularly  crucial ~role.  Number theory,
traditionally studied for its intrinsic mathematical
elegance, has found extensive applications in
cryptography, particularly in the design and analysis

of cryptographic algorithms. Concepts such as
modular arithmetic, prime number theory, the
distribution of primes, discrete logarithms, and
properties of finite fields are all instrumental in
shaping the theoretical underpinnings and practical
construction of secure hash functions. For instance,
the hardness assumptions derived from number-
theoretic problems often serve as the basis for
assessing the computational infeasibility of
reversing or forging hash outputs. This paper
explores the interplay between number-theoretic
concepts and hash function design, highlighting how
these mathematical principles influence the
"behavior’, performance’, and ’security’ guarantees
of modern hash functions. By examining both
historical and contemporary approaches, we aim to
illustrate how number theory not only strengthens
the robustness of cryptographic hashing but also
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exposes potential vulnerabilities when misapplied or
inadequately understood.
Concepts from 'number theory’, particularly ’prime
modulus selection’ and ’quadratic residues’, play
subtle but important roles in the design and security
of ’cryptographic hash functions’, especially when
these functions are used within cryptographic
protocols.

2. Hash functions in mathematics.
In mathematics and computer science, "hash
functions’ are functions that take an input (or
"message") and return a fixed-size string of bytes,
typically used to index data or verify integrity.
They play a fundamental role in many areas,
including
cryptography, data structures (like hash tables), and
error detection.

Definition: A Hash function h is a function from X
to Y where:

* X is the set of possible inputs (which may be
infinite or very large),

* Y is the set of possible outputs (often finite and of
fixed size).

2.1 Mathematical Properties of Hash
Functions.
1. Deterministic: For any input x, the

output h(x) is always the same.

2. Efficient : The function should be fast
and easy to compute for any input x.
3. Uniformity: Outputs should be

uniformly distributed across the output
space Y to

avoid clustering.

4. Compression: Hash functions typically
map large inputs (e.g., strings of
arbitrary length) to small fixed-size
outputs (e.g., 32 bits, 256 bits, etc.).

2.2 Cryptographic Hash Functions (Special
Type)

Cryptographic hash functions are designed

with added properties for security:

1. Pre-image Resistance: Given a hash
value h(x), it should be *
computationally infeasible * to find x.

2. Second Pre-image Resistance: Given
input x, it should be hard to find a
different x'# x such that h(x) = h(x")

3. Collision Resistance: It should be hard

to find any two distinct inputs x #x'
such that h(x) = h(x").
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2.3 Examples of Hash Functions

a/- Non-Cryptographic:

* The simple Modulo Function:
h(x) = x mod n Used in basic hash
tables.

* The multiplicative Hashing:

h(x) =] m(xA mod 1)|
Where A is a constant irrational number and m is
the table size
b/ Cryptographic:

* SHA-256: Produces a 256-bit hash. Common in
Bitcoin and secure applications.

* MD5 (now considered insecure).

* SHA-1 (also broken for security purposes).
2.4 Some applications of Hash Functions:
* Data Structures: Hash tables, maps, sets.

* Cryptography: Digital signatures, password
storage, blockchain.

* Checksums: File integrity, error detection.

* Randomization: Hashing to uniformly distribute
values.

3. How to construct a simple hash function

Let’s walk through the concept of a "hash function’,
build a simple one, and explore collisions with
clear examples and visualizations. Hash function
takes an input (key) and returns a fixed-size output
(a number or string), often called a "hash’ or "hash
code’. In programming, it’s used in "hash tables’,
‘data indexing’, and ‘cryptography’.

Properties of a Good Hash Function

* Deterministic: Same input always gives same
output.

* Fast: Should compute quickly.
* Uniform: Outputs should be evenly distributed.

* Minimizes Collisions: Different inputs should
(ideally) give different outputs.

Let’s build a very basic hash function that:
* Takes a 'string’ as input.

* Converts each character to its "ASCII’ value.
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* Sums the ASCII values.

* Uses ‘'modulo division’ to restrict output range
(simulate a hash table of fixed size).

Figure 1.Python code using modulo division.

Let take Hash table of size 10:

Figure 2.Python code Hash table of size 10.

Visualizing Collisions

>

A ’collision’ happens when ’two different inputs
produce the same hash value’.

From the example above:
— “"act"‘— hash =2

— “"cat"* —hash =2
This is a ’collision’.

Table 1.Visual Table (Hash Values)

Input ASCII Sum Hash (mod 10)
cat 312 2
act 312 2 (collision)
dog 314 4
god 314 4 (collision)
tac 312 2 (collision)

Improving the Hash Function:

Lets reduce collisions using ’character position
weighting’:

Figure 3.Python code using 'character position
weighting’.

Let’s try again:
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Figure 4.Python code improved, using ’character
position weighting’.

“n

— Now “"cat" and “"act"‘ no longer collide.
Visualization: Hash Table With Collisions
Lets visualize a hash table of size 10.

Table 2. Hash table of size 10

Index Keys

0

1

2 cat, tac, act<— collisions
3

4 dog, god« collisions
5

6

7

8

9

Using the improved function, the keys would
spread more evenly:

Table 3. Spread keys more evenly

Index Keys
0
1
2 cat
3 act
4 dog
5 god

Summary

* A hash function maps data (like strings) to
numbers.

* Simple functions can create *many collisions’.

* ’Better hashing strategies’ reduce collisions by
accounting for character position, prime numbers,
etc.

* Visualization helps understand and debug hash
function behavior.

4. Prime Modulus Selection

Prime modulus arithmetic is foundational in many
cryptographic systems. While hash functions
themselves are often bitwise operations and not
directly numbertheoretic, when ’hashes are used
within  number-theoretic constructions’, primes
matter a lot.
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e Modular Arithmetic in Hash-Based

Cryptography

Some ’hash functions or hash-based constructions’
(e.g., Merkle-Damgrd with modular reductions, or
keyed-hash constructions in protocols) use

arithmetic modulo a prime p. The prime is typically:
* ’Large’, to resist brute-force attacks

* ’Safe’, e.g., a *safe prime* p = 29 + 1 with both p
and g prime

« Collision Resistance

When hash outputs are used modulo a prime’, the
distribution of those outputs can be more uniform,
which is essential for:

* *Reducing collisions’ (i.e., two inputs yielding the
same hash)

* Preventing *modulo bias’ when mapping to finite
fields or rings

* Prime Selection for Hash-to-Field

When hash functions are used to map arbitrary data
into a finite field (e.g., in elliptic curve cryptography
or zk-SNARKS), the field is defined by

a prime modulus p. The prime must be carefully
selected to:

* Ensure uniform distribution
* Avoid easy-to-invert mappings

* Be compatible with the field structure (e.g., for
pairing-friendly curves)

What is Hash-to-Field?

In cryptology, “hash-to-field” maps arbitrary byte
strings (like a message or hash) into an element of a
*finite field’. This is a key step in:

* Hashing to elliptic curves (e.g., in BLS signatures,
zk-SNARKS)

* Pairing-based cryptography

* Cryptographic commitments

The *field’ is often defined as F, or Fy¥, where:
* pis a ’prime number’ (the field characteristic)
*k is an integer (often 1 for simple fields)

Why Primes Are Essential in Hash-to-Field?

(1) Finite Fields Need Prime Characteristics:
* Afinite field Fy only exists if p is a prime number’.

* The arithmetic rules (like existence of
multiplicative inverses) only hold if the fields
characteristic is prime.

(2) Uniformity and Distribution:

* Hash-to-field needs **uniform distribution** over
the field.

* For this, the field size p must be chosen to make
modulo operations efficient and reduce ’bias’.

* Number theory ensures minimal **modulo bias**
when mapping large hashes to elements mod p.

Number-Theoretic Concepts That Influence

Prime Choice:
A. ’Modular Arithmetic’

* Hash outputs are converted to integers and reduced
modulo p.

*You want p to be close to a power of 2 for efficient
reduction (e.g., p = 2%9).

B. ’Prime Density and Distribution’

* Number theory tells us how primes are distributed
(e.g., ’Prime Number Theorem’).

* Designers use this to find **large safe primes**
near powers of 2, like:

*p=22%-19 (used in Curve25519)
*p=2%1-x (used in BLS12-381)
C. ’Quadratic Residues and Nonresidues’

* Needed when hashing to elliptic curves, especially
with map-to-curve algorithms like SWU.

* You must compute square roots modulo p, which
is only possible if certain conditions (like p = 3 mod
4) are met.

* Number theory provides **TonelliShanks**
algorithm or conditions for easy square root
calculation.

D. ’Field Extensions and Subgroup Orders’

* In pairing-based cryptography, the field might be
Fo¥.
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* The subgroup order should also be prime (or have
prime factors) for security.

* The ’order of the fields multiplicative group’, p -
1, and its factors matter:

- Prevents small-subgroup attacks.

- Ensures the security of discrete log assumptions.
E. *Cyclic Groups’

* Many cryptographic groups are cyclic.

* For the field F, ", it is cyclic of order p - 1.

* Having p-1 divisible by a large prime ensures
secure discrete logarithm hardness.

F. ’Montgomery-Friendly Primes’

* Primes of the form 2* - ¢ enable faster modular
arithmetic (Montgomery reduction).

* These forms are chosen using number-theoretic
constraints for:

- Efficient modular reduction
- SIMD or constant-time implementation
Examples of Number Theory in Real Systems:

- in Curve/System the Prime Used is p = 2% - 19 and
NumberTheoretic Reasoning is: Close to power of 2,
fast mod reduction

- in BLS12-381 the Prime Used is p = 2% - x and
Number-Theoretic

Reasoning is: Supports pairing-friendly curves.

- in secp256k1 (Bitcoin) the Prime Used is p = 2% -
2%2-977 and

Number-Theoretic Reasoning is: Optimized for 256-
bit fields.

So, number Theory Provides:

- Existence and structure of finite fields

- Efficient algorithms (e.g., square roots mod p)
- Security guarantees (via field and group order)
- Bias minimization in hash mapping

5. Quadratic Residues
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Quadratic residues are elements that are squares
modulo p, and they play roles in cryptographic
constructions involving:

* *Trapdoor permutations’
* >Obfuscation’
* *Verifiable random functions (VRFs)’

In hash functions, this matters particularly in
“hashing into elliptic curves’ or ’designing hard-to-
invert functions’.

» Obfuscation of Bit Patterns

If a hash construction involves selecting elements in
a group where distinguishing ’quadratic residues’
from non-residues is ’hard’ (e.g., under the
’Quadratic Residuosity Assumption’), it can be used
to:

* *Hide information’ in a hash output

* Ensure ’semantic security’ in protocols using
hashes

« Hashing to Elliptic Curves

When mapping hash values to points on an elliptic
curve (like in BLS signatures or zk-SNARKS), the
function must solve for y? = f(x) mod p. This requires
checking whether f(x) is a *quadratic residue mod p’,
and only then can y be found. This process must:

* Be efficient

* Avoid leaking information

* Maintain uniformity

« Security via Hard Problems

Some hash-like functions or randomness extractors
are built using problems like:

* ’Deciding quadratic

composite’

residuosity modulo a

* ’Finding square roots modulo a prime’

These are believed to be ’hard’, and thus offer
cryptographic strength.

6. Examples in Practice

* *RSA-based hash constructions’: Use modular
arithmetic with composite moduli; security depends
on number-theoretic assumptions.
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* ’Hash-to-curve algorithms’: Use finite field

arithmetic, requiring understanding of residues for
correct and uniform mappings.

* ’Discrete log-based hashes’

commitments):

(e.g., Pedersen

Use modular groups where quadratic residues help
define group structure and hard problems.

Summary

o In prime Modulus the role in Hash Functions /
Protocols is to ensures uniform distribution, avoids
bias, supports strong mathematical structure (e.g.,
fields, groups).

o In quadratic Residues the role in Hash Functions
/ Protocols is: Used in secure mappings (e.g., hash to
curve), obfuscation, and assumptions (e.g.,
Quadratic

Residuosity Problem).

o In Hash Security the role in Hash Functions /
Protocols is: Often underpinned by hardness
assumptions from number theory (e.g., discrete log,
residuosity).

o In efficiency the role in Hash Functions / Protocols
is: Prime-based fields allow fast Efficiency modular

reduction and efficient arithmetic in hash
constructions.

7. Results and Discussions

This study explored how number-theoretic

principles influence the construction, performance,
and security of modern cryptographic hash
functions. Specifically, we examined how concepts
such as modular arithmetic, prime number theory,
multiplicative groups, and discrete logarithms are
embedded in or affect the behavior of widely-used
hash functions like SHA-2, SHA-3, and older
constructs such as MD5 or RIPEMD.

» About the use of Modular Arithmetic

Hash functions often employ modular arithmetic to
maintain fixed-size outputs and to manage overflow
behavior. Our analysis confirmed that:

* In SHA-2, modulo 2% or 25 operations are used to
constrain word sizes.

* Modular addition operations help create diffusion
and avalanche effects,

which are desirable for resistance against differential
attacks.

8223

* Modular arithmetic ensures uniformity and
unpredictability, enhancing hash function diffusion
properties.

* Prime Numbers and Field Properties

While not all hash functions directly use large
primes, their internal structure or supporting
cryptographic  frameworks (e.g., HMAC or
MerkleDamgrd constructions) may depend on prime
field behavior.

* In sponge constructions (e.g., Keccak in SHA-3),
while primes are not explicitly required, number-
theoretic randomness is desirable in round constants.
* Some theoretical hash designs (e.g., those based on
ideal lattices or elliptic curves) depend heavily on
prime fields or rings.

* Primes and related structures contribute to the
unpredictability and  mathematical  hardness
assumptions underlying theoretical hash constructs.
» Discrete Logarithm and Hard Problems

While hash functions typically do not rely directly
on discrete logarithm problems (unlike key
exchange protocols), some proposed constructions
(e.g., ZK-friendly hash functions used in SNARKS
and STARKS) do.

* Pedersen hash and MIMC hash use group
operations based on discrete log hardness.

* These are particularly relevant in zero-knowledge
proofs and blockchain applications.

* Discrete log-based hash functions offer algebraic
structure suitable for proofs but require careful
parameter selection to prevent leakage or collision
vulnerabilities.

« Collision and Preimage Resistance via Number
Theory

The difficulty of finding collisions or preimages in
secure hash functions mirrors the complexity of
number-theoretic problems. For instance:

* Hash functions using multiplicative group
structures benefit from the intractability of solving
inverse or discrete log problems.

* However, functions with insufficient randomness
in number-theoretic components (e.g., poorly chosen
primes or constants) can become vulnerable.

* Number-theoretic complexity can underpin
collision resistance but must be well-implemented to
avoid structural weaknesses.

» Discussion

- Theoretical vs Practical Relevance

In practice, standardized hash functions such as
SHA-2 and SHA-3 do not heavily rely on advanced
number-theoretic problems (like discrete

logs or primes), favoring bitwise operations and
permutation-based designs for efficiency. However,
in theoretical cryptography and privacy-focused
applications (e.g., zero-knowledge protocols),
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number theory plays a central role. Functions
designed for these contexts (e.g., Poseidon, MiMC)
leverage field arithmetic and elliptic curve groups.
-Security Implications

Understanding the number-theoretic foundation can
aid in:

* *Evaluating resistance’ to algebraic attacks.

* *Designing hash functions’ that align with specific
mathematical assumptions (e.g., post-quantum
resistance).

* *Recognizing vulnerabilities’, such as when poor
prime selection leads to reduced entropy or faster
collision finding

- Efficiency Trade-offs

Number-theoretic  operations  (e.g., modular
exponentiation) are computationally more expensive
than bitwise operations. Thus, hash functions based
on them are slower and less suitable for general-
purpose hashing but ideal for environments that
require compatibility with other algebraic protocols.
The study confirms that while general-purpose hash
functions (SHA-2, SHA-3) do not directly rely on
deep number-theoretic problems, their security and
behavior are nonetheless influenced by basic number
theoryparticularly through modular arithmetic and
group theory. Advanced cryptographic applications
increasingly use hash functions rooted in number
theory to meet specialized needs, particularly in
privacy-preserving technologies.

A proper understanding of these mathematical
foundations is essential for evaluating hash function
security and for designing new functions that are
resistant to both classical and quantum attacks.

8. Conclusions

Number theory provides essential mathematical
structuressuch as modular arithmetic, prime number
theory, and discrete logarithmsthat underpin the
design and analysis of many cryptographic hash
functions. These structures ensure deterministic but
complex behaviors necessary for cryptographic
properties like ’collision

resistance’ and ’pre-image resistance’.

Concepts like *‘modular operations’, *prime fields’,
and ’finite cyclic groups’ introduce non-linearity and
unpredictability into hash function design. These
properties are crucial in making it computationally
infeasible to reverse-engineer inputs or find two
different inputs that produce the same hash
(collisions). Number-theoretic hardness
assumptionssuch as the ’difficulty of factoring large
primes’ or solving ’discrete logarithm problems’form
the security backbone of not only public-key
cryptography but also influence the *design
philosophy* behind robust hash functions. For
example,  constructions that use modular
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exponentiation or elliptic curves add layers of
resistance against attacks like brute-force, birthday
attacks, and differential cryptanalysis. Hash
functions built upon number-theoretic constructs
(e.g., in the MerkleDamgard’ paradigm or sponge
functions) often rely on irreducible polynomials,
prime moduli, and arithmetic over finite fields,
which ensures good ’diffusion’ and ’avalanche
effects’. This mathematical rigor makes such
functions well-suited for secure applications, from
digital signatures to blockchain technologies. While
number theory enhances security and provides a

strong theoretical foundation, practical hash
functions must balance  complexity  with
performance. Some purely number-theoretic

constructions can be secure but computationally
expensive, thus limiting their adoption in resource-
constrained environments. With the advent of
quantum  computing, some number-theoretic
assumptions may become wvulnerable (e.g., Shors
algorithm impacting discrete log and factoringbased
systems). However, number theory still contributes
to  ’post-quantum  hashbased  cryptographic
schemes’, such as those using lattice-based or
multivariate polynomial systems.

In summary, 'number theory significantly influences
both the theoretical and practical dimensions of hash
function design’. It provides the mathematical
foundation needed for strong cryptographic
guarantees while also highlighting the importance of
continuously evaluating the security of these
functions in the face of advancing computational
capabilities.
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