

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering
(IJCESEN)

Vol. 11-No.4 (2025) pp. 8218-8225

http://www.ijcesen.com ISSN: 2149-9144

 Research Article

The Influence of Concepts from Number Theory on the Behavior and Security of

Hash Functions

Salah Adoui1, Ayache Benhadid2*

1Batna 2 University, Faculty of Mathematics and Computer Science, Department of Mathematics,

Batna, Algeria.

Email: s.adoui@univ-batna2.dz- ORCID: 0000-0001-7567-2100

2 Batna 2 University, Faculty of Mathematics and Computer Science, Department of Mathematics,
Batna, Algeria.

* Corresponding Author Email: a.benhadid@univ-batna2.dz - ORCID: 0000-0001-7567-2192

Article Info:

DOI: 10.22399/ijcesen.4043
Received : 05 August 2025
Accepted : 29 September 2025

Keywords

Number theory
Hash functions
Systems Security
Data integrity

Abstract:

This paper explores the influence of number theory concepts on the behavior and security

of cryptographic hash functions. Hash functions play a critical role in modern

cryptography, ensuring data integrity, authentication, and digital signatures. While they

are primarily designed using principles from algebra and complexity theory, number

theory significantly contributes to their construction and security analysis. Key number-

theoretic conceptssuch as modular arithmetic, prime number distributions, and discrete

logarithmsunderpin many hash function designs, especially in schemes that rely on

structured algebraic inputs or are constructed from hard mathematical problems. We

analyze how these mathematical foundations affect essential properties like collision

resistance, pre-image resistance, and avalanche behavior. Additionally, we examine how

number-theoretic attacks (e.g., those exploiting modular congruences or integer

factorization) pose potential threats to certain classes of hash functions. The paper

concludes by highlighting current research trends leveraging advanced number-theoretic

techniques to enhance hash function robustness, emphasizing the ongoing interplay

between pure mathematics and practical cryptographic design.

1. Introduction

Hash functions play a fundamental role in modern

cryptography, ensuring data integrity,

authentication, and the secure functioning of digital

systems. These mathematical constructs compress

input data of arbitrary length into fixed-size outputs,

or "hashes", in such a way that even small changes

to the input produce significantly different outputs.

For a hash function to be cryptographically secure, it

must satisfy several stringent properties: pre-image

resistance, second pre-image

resistance, and collision resistance. Achieving these

properties often relies on deep mathematical

foundationsamong which ’number theory’ plays a

particularly crucial role. Number theory,

traditionally studied for its intrinsic mathematical

elegance, has found extensive applications in

cryptography, particularly in the design and analysis

of cryptographic algorithms. Concepts such as

modular arithmetic, prime number theory, the

distribution of primes, discrete logarithms, and

properties of finite fields are all instrumental in

shaping the theoretical underpinnings and practical

construction of secure hash functions. For instance,

the hardness assumptions derived from number-

theoretic problems often serve as the basis for

assessing the computational infeasibility of

reversing or forging hash outputs. This paper

explores the interplay between number-theoretic

concepts and hash function design, highlighting how

these mathematical principles influence the

’behavior’, ’performance’, and ’security’ guarantees

of modern hash functions. By examining both

historical and contemporary approaches, we aim to

illustrate how number theory not only strengthens

the robustness of cryptographic hashing but also

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:s.adoui@univ-batna2.dz
mailto:a.benhadid@univ-batna2.dz

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8219

exposes potential vulnerabilities when misapplied or

inadequately understood.

Concepts from ’number theory’, particularly ’prime

modulus selection’ and ’quadratic residues’, play

subtle but important roles in the design and security

of ’cryptographic hash functions’, especially when

these functions are used within cryptographic

protocols.

2. Hash functions in mathematics.

In mathematics and computer science, ’hash

functions’ are functions that take an input (or

"message") and return a fixed-size string of bytes,

typically used to index data or verify integrity.

They play a fundamental role in many areas,

including

cryptography, data structures (like hash tables), and

error detection.

Definition: A Hash function h is a function from X

to Y where:

* X is the set of possible inputs (which may be

infinite or very large),

* Y is the set of possible outputs (often finite and of

fixed size).

2.1 Mathematical Properties of Hash

Functions.

1. Deterministic: For any input x, the

output h(x) is always the same.

2. Efficient : The function should be fast

and easy to compute for any input x.

3. Uniformity: Outputs should be

uniformly distributed across the output

space Y to

avoid clustering.

4. Compression: Hash functions typically

map large inputs (e.g., strings of

arbitrary length) to small fixed-size

outputs (e.g., 32 bits, 256 bits, etc.).

2.2 Cryptographic Hash Functions (Special

Type)

 Cryptographic hash functions are designed

with added properties for security:

1. Pre-image Resistance: Given a hash

value h(x), it should be *

computationally infeasible * to find x.

2. Second Pre-image Resistance: Given

input x, it should be hard to find a

different x'≠ x such that h(x) = h(x')

3. Collision Resistance: It should be hard

to find any two distinct inputs x ≠x'

such that h(x) = h(x').

2.3 Examples of Hash Functions

a/- Non-Cryptographic:

* The simple Modulo Function:

h(x) = x mod n Used in basic hash

tables.

* The multiplicative Hashing:

h(x) =⌊ m(xA mod 1)⌋
Where A is a constant irrational number and m is

the table size

b/ Cryptographic:

* SHA-256: Produces a 256-bit hash. Common in

Bitcoin and secure applications.

* MD5 (now considered insecure).

* SHA-1 (also broken for security purposes).

2.4 Some applications of Hash Functions:

* Data Structures: Hash tables, maps, sets.

* Cryptography: Digital signatures, password

storage, blockchain.

* Checksums: File integrity, error detection.

* Randomization: Hashing to uniformly distribute

values.

3. How to construct a simple hash function

Let’s walk through the concept of a ’hash function’,

build a simple one, and explore collisions with

clear examples and visualizations. Hash function

takes an input (key) and returns a fixed-size output

(a number or string), often called a ’hash’ or ’hash

code’. In programming, it’s used in ’hash tables’,

’data indexing’, and ’cryptography’.

Properties of a Good Hash Function

* Deterministic: Same input always gives same

output.

* Fast: Should compute quickly.

* Uniform: Outputs should be evenly distributed.

* Minimizes Collisions: Different inputs should

(ideally) give different outputs.

Let’s build a very basic hash function that:

* Takes a ’string’ as input.

* Converts each character to its ’ASCII’ value.

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8220

* Sums the ASCII values.

* Uses ’modulo division’ to restrict output range

(simulate a hash table of fixed size).

Figure 1.Python code using modulo division.

Let take Hash table of size 10:

Figure 2.Python code Hash table of size 10.

Visualizing Collisions

A ’collision’ happens when ’two different inputs’

produce the ’same hash value’.

From the example above:

→ ‘"act"‘→ hash = 2

→ ‘"cat"‘ →hash = 2

This is a ’collision’.

Table 1.Visual Table (Hash Values)

Input ASCII Sum Hash (mod 10)

cat

act

dog

god

tac

312

312

314

314

312

2

2 (collision)

4

4 (collision)

2 (collision)

Improving the Hash Function:

Lets reduce collisions using ’character position

weighting’:

Figure 3.Python code using ’character position

weighting’.

Let’s try again:

Figure 4.Python code improved, using ’character

position weighting’.

→ Now ‘"cat"‘ and ‘"act"‘ no longer collide.

Visualization: Hash Table With Collisions

Lets visualize a hash table of size 10.

Table 2. Hash table of size 10

Index Keys

0

1

2

3

4

5

6

7

8

9

cat, tac, act← collisions

dog, god← collisions

Using the improved function, the keys would

spread more evenly:

Table 3. Spread keys more evenly

Index Keys

0

1

2

3

4

5

cat

act

dog

god

Summary

* A hash function maps data (like strings) to

numbers.

* Simple functions can create ’many collisions’.

* ’Better hashing strategies’ reduce collisions by

accounting for character position, prime numbers,

etc.

* Visualization helps understand and debug hash

function behavior.

4. Prime Modulus Selection

Prime modulus arithmetic is foundational in many

cryptographic systems. While hash functions

themselves are often bitwise operations and not

directly numbertheoretic, when ’hashes are used

within number-theoretic constructions’, primes

matter a lot.

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8221

• Modular Arithmetic in Hash-Based

Cryptography

Some ’hash functions or hash-based constructions’

(e.g., Merkle-Damgrd with modular reductions, or

keyed-hash constructions in protocols) use

arithmetic modulo a prime p. The prime is typically:

* ’Large’, to resist brute-force attacks

* ’Safe’, e.g., a *safe prime* p = 2q + 1 with both p

and q prime

• Collision Resistance

When hash outputs are used ’modulo a prime’, the

distribution of those outputs can be more uniform,

which is essential for:

* ’Reducing collisions’ (i.e., two inputs yielding the

same hash)

* Preventing ’modulo bias’ when mapping to finite

fields or rings

• Prime Selection for Hash-to-Field

When hash functions are used to map arbitrary data

into a finite field (e.g., in elliptic curve cryptography

or zk-SNARKs), the field is defined by

a prime modulus p. The prime must be carefully

selected to:

* Ensure uniform distribution

* Avoid easy-to-invert mappings

* Be compatible with the field structure (e.g., for

pairing-friendly curves)

What is Hash-to-Field?

In cryptology, ’hash-to-field’ maps arbitrary byte

strings (like a message or hash) into an element of a

’finite field’. This is a key step in:

* Hashing to elliptic curves (e.g., in BLS signatures,

zk-SNARKs)

* Pairing-based cryptography

* Cryptographic commitments

The ’field’ is often defined as Fp or Fp
k, where:

* p is a ’prime number’ (the field characteristic)

* k is an integer (often 1 for simple fields)

Why Primes Are Essential in Hash-to-Field?

(1) Finite Fields Need Prime Characteristics:

* A finite field Fp only exists if p is a ’prime number’.

* The arithmetic rules (like existence of

multiplicative inverses) only hold if the fields

characteristic is prime.

(2) Uniformity and Distribution:

* Hash-to-field needs **uniform distribution** over

the field.

* For this, the field size p must be chosen to make

modulo operations efficient and reduce ’bias’.

* Number theory ensures minimal **modulo bias**

when mapping large hashes to elements mod p.

Number-Theoretic Concepts That Influence

Prime Choice:

A. ’Modular Arithmetic’

* Hash outputs are converted to integers and reduced

modulo p.

* You want p to be close to a power of 2 for efficient

reduction (e.g., p ≈ 2255).

B. ’Prime Density and Distribution’

* Number theory tells us how primes are distributed

(e.g., ’Prime Number Theorem’).

* Designers use this to find **large safe primes**

near powers of 2, like:

* p = 2255 - 19 (used in Curve25519)

* p = 2381 - x (used in BLS12-381)

C. ’Quadratic Residues and Nonresidues’

* Needed when hashing to elliptic curves, especially

with map-to-curve algorithms like SWU.

* You must compute square roots modulo p, which

is only possible if certain conditions (like p ≡ 3 mod

4) are met.

* Number theory provides **TonelliShanks**

algorithm or conditions for easy square root

calculation.

D. ’Field Extensions and Subgroup Orders’

* In pairing-based cryptography, the field might be

Fp
k.

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8222

* The subgroup order should also be prime (or have

prime factors) for security.

* The ’order of the fields multiplicative group’, p -

1, and its factors matter:

- Prevents small-subgroup attacks.

- Ensures the security of discrete log assumptions.

E. ’Cyclic Groups’

* Many cryptographic groups are cyclic.

* For the field Fp
*, it is cyclic of order p - 1.

* Having p-1 divisible by a large prime ensures

secure discrete logarithm hardness.

F. ’Montgomery-Friendly Primes’

* Primes of the form 2k - c enable faster modular

arithmetic (Montgomery reduction).

* These forms are chosen using number-theoretic

constraints for:

- Efficient modular reduction

- SIMD or constant-time implementation

Examples of Number Theory in Real Systems:

- in Curve/System the Prime Used is p = 2255 - 19 and

NumberTheoretic Reasoning is: Close to power of 2,

fast mod reduction

- in BLS12-381 the Prime Used is p = 2381 - x and

Number-Theoretic

Reasoning is: Supports pairing-friendly curves.

- in secp256k1 (Bitcoin) the Prime Used is p = 2256 -

232 - 977 and

Number-Theoretic Reasoning is: Optimized for 256-

bit fields.

So, number Theory Provides:

- Existence and structure of finite fields

- Efficient algorithms (e.g., square roots mod p)

- Security guarantees (via field and group order)

- Bias minimization in hash mapping

5. Quadratic Residues

Quadratic residues are elements that are squares

modulo p, and they play roles in cryptographic

constructions involving:

* ’Trapdoor permutations’

* ’Obfuscation’

* ’Verifiable random functions (VRFs)’

In hash functions, this matters particularly in

’hashing into elliptic curves’ or ’designing hard-to-

invert functions’.

• Obfuscation of Bit Patterns

If a hash construction involves selecting elements in

a group where distinguishing ’quadratic residues’

from non-residues is ’hard’ (e.g., under the

’Quadratic Residuosity Assumption’), it can be used

to:

* ’Hide information’ in a hash output

* Ensure ’semantic security’ in protocols using

hashes

• Hashing to Elliptic Curves

When mapping hash values to points on an elliptic

curve (like in BLS signatures or zk-SNARKs), the

function must solve for y2 = f(x) mod p. This requires

checking whether f(x) is a ’quadratic residue mod p’,

and only then can y be found. This process must:

* Be efficient

* Avoid leaking information

* Maintain uniformity

• Security via Hard Problems

Some hash-like functions or randomness extractors

are built using problems like:

* ’Deciding quadratic residuosity modulo a

composite’

* ’Finding square roots modulo a prime’

These are believed to be ’hard’, and thus offer

cryptographic strength.

6. Examples in Practice

* ’RSA-based hash constructions’: Use modular

arithmetic with composite moduli; security depends

on number-theoretic assumptions.

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8223

* ’Hash-to-curve algorithms’: Use finite field

arithmetic, requiring understanding of residues for

correct and uniform mappings.

* ’Discrete log-based hashes’ (e.g., Pedersen

commitments):

Use modular groups where quadratic residues help

define group structure and hard problems.

Summary

◦ In prime Modulus the role in Hash Functions /

Protocols is to ensures uniform distribution, avoids

bias, supports strong mathematical structure (e.g.,

fields, groups).

◦ In quadratic Residues the role in Hash Functions

/ Protocols is: Used in secure mappings (e.g., hash to

curve), obfuscation, and assumptions (e.g.,

Quadratic

Residuosity Problem).

◦ In Hash Security the role in Hash Functions /

Protocols is: Often underpinned by hardness

assumptions from number theory (e.g., discrete log,

residuosity).

◦ In efficiency the role in Hash Functions / Protocols

is: Prime-based fields allow fast Efficiency modular

reduction and efficient arithmetic in hash

constructions.

7. Results and Discussions

This study explored how number-theoretic

principles influence the construction, performance,

and security of modern cryptographic hash

functions. Specifically, we examined how concepts

such as modular arithmetic, prime number theory,

multiplicative groups, and discrete logarithms are

embedded in or affect the behavior of widely-used

hash functions like SHA-2, SHA-3, and older

constructs such as MD5 or RIPEMD.

• About the use of Modular Arithmetic

Hash functions often employ modular arithmetic to

maintain fixed-size outputs and to manage overflow

behavior. Our analysis confirmed that:

* In SHA-2, modulo 232 or 264 operations are used to

constrain word sizes.

* Modular addition operations help create diffusion

and avalanche effects,

which are desirable for resistance against differential

attacks.

* Modular arithmetic ensures uniformity and

unpredictability, enhancing hash function diffusion

properties.

• Prime Numbers and Field Properties

While not all hash functions directly use large

primes, their internal structure or supporting

cryptographic frameworks (e.g., HMAC or

MerkleDamgrd constructions) may depend on prime

field behavior.

* In sponge constructions (e.g., Keccak in SHA-3),

while primes are not explicitly required, number-

theoretic randomness is desirable in round constants.

* Some theoretical hash designs (e.g., those based on

ideal lattices or elliptic curves) depend heavily on

prime fields or rings.

* Primes and related structures contribute to the

unpredictability and mathematical hardness

assumptions underlying theoretical hash constructs.

• Discrete Logarithm and Hard Problems

While hash functions typically do not rely directly

on discrete logarithm problems (unlike key

exchange protocols), some proposed constructions

(e.g., ZK-friendly hash functions used in SNARKs

and STARKs) do.

* Pedersen hash and MiMC hash use group

operations based on discrete log hardness.

* These are particularly relevant in zero-knowledge

proofs and blockchain applications.

* Discrete log-based hash functions offer algebraic

structure suitable for proofs but require careful

parameter selection to prevent leakage or collision

vulnerabilities.

• Collision and Preimage Resistance via Number

Theory

The difficulty of finding collisions or preimages in

secure hash functions mirrors the complexity of

number-theoretic problems. For instance:

* Hash functions using multiplicative group

structures benefit from the intractability of solving

inverse or discrete log problems.

* However, functions with insufficient randomness

in number-theoretic components (e.g., poorly chosen

primes or constants) can become vulnerable.

* Number-theoretic complexity can underpin

collision resistance but must be well-implemented to

avoid structural weaknesses.

• Discussion

- Theoretical vs Practical Relevance

In practice, standardized hash functions such as

SHA-2 and SHA-3 do not heavily rely on advanced

number-theoretic problems (like discrete

logs or primes), favoring bitwise operations and

permutation-based designs for efficiency. However,

in theoretical cryptography and privacy-focused

applications (e.g., zero-knowledge protocols),

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8224

number theory plays a central role. Functions

designed for these contexts (e.g., Poseidon, MiMC)

leverage field arithmetic and elliptic curve groups.

-Security Implications

Understanding the number-theoretic foundation can

aid in:

* ’Evaluating resistance’ to algebraic attacks.

* ’Designing hash functions’ that align with specific

mathematical assumptions (e.g., post-quantum

resistance).

* ’Recognizing vulnerabilities’, such as when poor

prime selection leads to reduced entropy or faster

collision finding

- Efficiency Trade-offs

Number-theoretic operations (e.g., modular

exponentiation) are computationally more expensive

than bitwise operations. Thus, hash functions based

on them are slower and less suitable for general-

purpose hashing but ideal for environments that

require compatibility with other algebraic protocols.

The study confirms that while general-purpose hash

functions (SHA-2, SHA-3) do not directly rely on

deep number-theoretic problems, their security and

behavior are nonetheless influenced by basic number

theoryparticularly through modular arithmetic and

group theory. Advanced cryptographic applications

increasingly use hash functions rooted in number

theory to meet specialized needs, particularly in

privacy-preserving technologies.

A proper understanding of these mathematical

foundations is essential for evaluating hash function

security and for designing new functions that are

resistant to both classical and quantum attacks.

8. Conclusions

Number theory provides essential mathematical

structuressuch as modular arithmetic, prime number

theory, and discrete logarithmsthat underpin the

design and analysis of many cryptographic hash

functions. These structures ensure deterministic but

complex behaviors necessary for cryptographic

properties like ’collision

resistance’ and ’pre-image resistance’.

 Concepts like ’modular operations’, ’prime fields’,

and ’finite cyclic groups’ introduce non-linearity and

unpredictability into hash function design. These

properties are crucial in making it computationally

infeasible to reverse-engineer inputs or find two

different inputs that produce the same hash

(collisions). Number-theoretic hardness

assumptionssuch as the ’difficulty of factoring large

primes’ or solving ’discrete logarithm problems’form

the security backbone of not only public-key

cryptography but also influence the *design

philosophy* behind robust hash functions. For

example, constructions that use modular

exponentiation or elliptic curves add layers of

resistance against attacks like brute-force, birthday

attacks, and differential cryptanalysis. Hash

functions built upon number-theoretic constructs

(e.g., in the ’MerkleDamgard’ paradigm or sponge

functions) often rely on irreducible polynomials,

prime moduli, and arithmetic over finite fields,

which ensures good ’diffusion’ and ’avalanche

effects’. This mathematical rigor makes such

functions well-suited for secure applications, from

digital signatures to blockchain technologies. While

number theory enhances security and provides a

strong theoretical foundation, practical hash

functions must balance complexity with

performance. Some purely number-theoretic

constructions can be secure but computationally

expensive, thus limiting their adoption in resource-

constrained environments. With the advent of

quantum computing, some number-theoretic

assumptions may become vulnerable (e.g., Shors

algorithm impacting discrete log and factoringbased

systems). However, number theory still contributes

to ’post-quantum hashbased cryptographic

schemes’, such as those using lattice-based or

multivariate polynomial systems.

In summary, ’number theory significantly influences

both the theoretical and practical dimensions of hash

function design’. It provides the mathematical

foundation needed for strong cryptographic

guarantees while also highlighting the importance of

continuously evaluating the security of these

functions in the face of advancing computational

capabilities.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225

8225

References

[1] Khodakhast Bibak. (2022). Quantum Key Distribution

Using Universal Hash Functions over Finite Fields.

Quantum Information Processing,

[2] Kapron . (2015). On an almostuniversal hash function

family with applications to authentication and

secrecy codes Bibak,, Srinivasan, Tth (2015)

[3] D. R. Stinson. Some Observations on the Theory of

Cryptographic Hash Functions. IACR Eprint

Archive

[4] Yoneyama, Wang. Security of Practical

Cryptosystems Using MerkleDamgard Hash

Function in the Ideal Cipher Model Naito, Ohta

(2009-2011)

[5] Barthe, Berg, Grgoire, Kunz, Skoruppa. (2012).

Verified Security of MerkleDamgard Backes,

ZanellaBguelin (CSF 2012).

[6] Christopher Battarbee, Ramn Flores, Thomas

Koberda. (2022). Postquantum hash functions using

SLn(Fp)-2022 Corentin Le Coz,, Delaram Kahrobaei

(ePrint / arXiv)

[7] Simran Tinani. (2023). Methods for Collisions in

Some Algebraic Hash Functions-2023

(preprintarXiv)

[8] Jan Buzek, Stefano Tessaro. (2024) . Collision

Resistance from MultiCollision Resistance for All

Constant Parameters-(CRYPTO 2024)

[9] Tomer Ashur, Al Kindi, Mohammad Mahzoun.

(2023). XHash8 and XHash12: Efficient

STARKfriendly Hash Functions-2023 (ePrint)

[10] Qing Zhou, Xueming Tang, Songfeng Lu. (2023).

Quantuminspired Hash Function Based on

Paritydependent Quantum Walks with Memory-

2023, Hao Yang (arXiv)

[11] A. Lubotzky. Discrete groups, expanding graphs and

invariant measures, volume 125 of Progress in

Mathematics. B With an appendix by J. D.

Rogawski.

