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Abstract: 
 

This paper explores the influence of number theory concepts on the behavior and security 

of cryptographic hash functions. Hash functions play a critical role in modern 

cryptography, ensuring data integrity, authentication, and digital signatures. While they 

are primarily designed using principles from algebra and complexity theory, number 

theory significantly contributes to their construction and security analysis. Key number-

theoretic conceptssuch as modular arithmetic, prime number distributions, and discrete 

logarithmsunderpin many hash function designs, especially in schemes that rely on 

structured algebraic inputs or are constructed from hard mathematical problems. We 

analyze how these mathematical foundations affect essential properties like collision 

resistance, pre-image resistance, and avalanche behavior. Additionally, we examine how 

number-theoretic attacks (e.g., those exploiting modular congruences or integer 

factorization) pose potential threats to certain classes of hash functions. The paper 

concludes by highlighting current research trends leveraging advanced number-theoretic 

techniques to enhance hash function robustness, emphasizing the ongoing interplay 

between pure mathematics and practical cryptographic design. 
 

1. Introduction 
 

Hash functions play a fundamental role in modern 

cryptography, ensuring data integrity, 

authentication, and the secure functioning of digital 

systems. These mathematical constructs compress 

input data of arbitrary length into fixed-size outputs, 

or "hashes", in such a way that even small changes 

to the input produce significantly different outputs. 

For a hash function to be cryptographically secure, it 

must satisfy several stringent properties: pre-image 

resistance, second pre-image 

resistance, and collision resistance. Achieving these 

properties often relies on deep mathematical 

foundationsamong which ’number theory’ plays a 

particularly crucial role. Number theory, 

traditionally studied for its intrinsic mathematical 

elegance, has found extensive applications in 

cryptography, particularly in the design and analysis 

of cryptographic algorithms. Concepts such as 

modular arithmetic, prime number theory, the 

distribution of primes, discrete logarithms, and 

properties of finite fields are all instrumental in 

shaping the theoretical underpinnings and practical 

construction of secure hash functions. For instance, 

the hardness assumptions derived from number-

theoretic problems often serve as the basis for 

assessing the computational infeasibility of 

reversing or forging hash outputs. This paper 

explores the interplay between number-theoretic 

concepts and hash function design, highlighting how 

these mathematical principles influence the 

’behavior’, ’performance’, and ’security’ guarantees 

of modern hash functions. By examining both 

historical and contemporary approaches, we aim to 

illustrate how number theory not only strengthens 

the robustness of cryptographic hashing but also 
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exposes potential vulnerabilities when misapplied or 

inadequately understood. 

Concepts from ’number theory’, particularly ’prime 

modulus selection’ and ’quadratic residues’, play 

subtle but important roles in the design and security 

of ’cryptographic hash functions’, especially when 

these functions are used within cryptographic 

protocols. 

 

2. Hash functions in mathematics. 
 

In mathematics and computer science, ’hash 

functions’ are functions that take an input (or 

"message") and return a fixed-size string of bytes, 

typically used to index data or verify integrity. 

They play a fundamental role in many areas, 

including 

cryptography, data structures (like hash tables), and 

error detection. 

 

Definition: A Hash function h is a function from X 

to Y where: 

* X is the set of possible inputs (which may be 

infinite or very large), 

* Y is the set of possible outputs (often finite and of 

fixed size). 

 

2.1 Mathematical Properties of Hash 

Functions. 
 
1. Deterministic: For any input x, the 

output h(x) is always the same. 

2.  Efficient : The function should be fast 

and easy to compute for any input x. 

3. Uniformity: Outputs should be 

uniformly distributed across the output 

space Y to 

avoid clustering. 

4.  Compression: Hash functions typically 

map large inputs (e.g., strings of 

arbitrary length) to small fixed-size 

outputs (e.g., 32 bits, 256 bits, etc.). 

 

2.2 Cryptographic Hash Functions (Special 

Type) 

 

 Cryptographic hash functions are designed 

with added properties for security: 

1. Pre-image Resistance: Given a hash 

value h(x), it should be * 

computationally infeasible * to find x. 

2.  Second Pre-image Resistance: Given 

input x, it should be hard to find a 

different x'≠ x such that h(x) = h(x') 

3. Collision Resistance: It should be hard 

to find any two distinct inputs x ≠x'  

such that h(x) = h(x'). 

2.3 Examples of Hash Functions 

 

a/- Non-Cryptographic: 

* The simple Modulo Function: 

h(x) = x mod n Used in basic hash 

tables. 

* The multiplicative Hashing:  

h(x) =⌊ m(xA    mod 1)⌋  
Where A is a constant irrational number and m is 

the table size 

b/  Cryptographic: 

* SHA-256: Produces a 256-bit hash. Common in 

Bitcoin and secure applications. 

* MD5 (now considered insecure). 

* SHA-1 (also broken for security purposes). 

2.4 Some applications of Hash Functions: 

* Data Structures: Hash tables, maps, sets. 

* Cryptography: Digital signatures, password 

storage, blockchain. 

* Checksums: File integrity, error detection. 

* Randomization: Hashing to uniformly distribute 

values. 

3. How to construct a simple hash function 

Let’s walk through the concept of a ’hash function’, 

build a simple one, and explore collisions with 

clear examples and visualizations. Hash function 

takes an input (key) and returns a fixed-size output 

(a number or string), often called a ’hash’ or ’hash 

code’. In programming, it’s used in ’hash tables’, 

’data indexing’, and ’cryptography’. 

Properties of a Good Hash Function 

* Deterministic: Same input always gives same 

output. 

* Fast: Should compute quickly. 

* Uniform: Outputs should be evenly distributed. 

* Minimizes Collisions: Different inputs should 

(ideally) give different outputs. 

Let’s build a very basic hash function that: 

* Takes a ’string’ as input. 

* Converts each character to its ’ASCII’ value. 



Salah Adoui, Ayache Benhadid/ IJCESEN 11-4(2025)8218-8225 

 

8220 

 

* Sums the ASCII values. 

* Uses ’modulo division’ to restrict output range 

(simulate a hash table of fixed size). 

 

Figure 1.Python code using  modulo division. 
 

Let take Hash table of size 10: 

 

Figure 2.Python code Hash table of size 10. 
 

Visualizing Collisions 

A ’collision’ happens when ’two different inputs’ 

produce the ’same hash value’. 

From the example above: 

→ ‘"act"‘→ hash = 2 

→ ‘"cat"‘ →hash = 2 

This is a ’collision’. 

Table 1.Visual Table (Hash Values) 

Input ASCII Sum Hash (mod 10) 

cat 

act 

dog 

god 

tac 

312 

312 

314 

314 

312 

2 

2 (collision) 

4 

4 (collision) 

2 (collision) 

 

Improving the Hash Function: 

Lets reduce collisions using ’character position 

weighting’: 

 

Figure 3.Python code using ’character position 

weighting’. 
 

Let’s try again: 

 

Figure 4.Python code improved, using ’character 

position weighting’. 
 

→ Now ‘"cat"‘ and ‘"act"‘ no longer collide. 

Visualization: Hash Table With Collisions 

Lets visualize a hash table of size 10. 

Table 2. Hash table of size 10 

Index Keys 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

cat, tac, act← collisions 

 

dog, god← collisions 

 

 

Using the improved function, the keys would 

spread more evenly: 

Table 3. Spread keys more evenly 

Index Keys 

0 

1 

2 

3 

4 

5 

 

 

cat 

act 

dog 

god 

 

Summary 

* A hash function maps data (like strings) to 

numbers. 

* Simple functions can create ’many collisions’. 

* ’Better hashing strategies’ reduce collisions by 

accounting for character position, prime numbers, 

etc. 

* Visualization helps understand and debug hash 

function behavior. 

4. Prime Modulus Selection 

Prime modulus arithmetic is foundational in many 

cryptographic systems. While hash functions 

themselves are often bitwise operations and not 

directly numbertheoretic, when ’hashes are used 

within number-theoretic constructions’, primes 

matter a lot. 
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• Modular Arithmetic in Hash-Based 

Cryptography 

Some ’hash functions or hash-based constructions’ 

(e.g., Merkle-Damgrd with modular reductions, or 

keyed-hash constructions in protocols) use 

arithmetic modulo a prime p. The prime is typically: 

* ’Large’, to resist brute-force attacks 

* ’Safe’, e.g., a *safe prime* p = 2q + 1 with both p 

and q prime 

• Collision Resistance 

When hash outputs are used ’modulo a prime’, the 

distribution of those outputs can be more uniform, 

which is essential for: 

* ’Reducing collisions’ (i.e., two inputs yielding the 

same hash) 

* Preventing ’modulo bias’ when mapping to finite 

fields or rings 

• Prime Selection for Hash-to-Field 

When hash functions are used to map arbitrary data 

into a finite field (e.g., in elliptic curve cryptography 

or zk-SNARKs), the field is defined by 

a prime modulus p. The prime must be carefully 

selected to: 

* Ensure uniform distribution 

* Avoid easy-to-invert mappings 

* Be compatible with the field structure (e.g., for 

pairing-friendly curves) 

What is Hash-to-Field? 

In cryptology, ’hash-to-field’ maps arbitrary byte 

strings (like a message or hash) into an element of a 

’finite field’. This is a key step in: 

* Hashing to elliptic curves (e.g., in BLS signatures, 

zk-SNARKs) 

* Pairing-based cryptography 

* Cryptographic commitments 

The ’field’ is often defined as Fp or Fp
k, where: 

* p is a ’prime number’ (the field characteristic) 

* k is an integer (often 1 for simple fields) 

Why Primes Are Essential in Hash-to-Field? 

(1) Finite Fields Need Prime Characteristics: 

* A finite field Fp only exists if p is a ’prime number’. 

* The arithmetic rules (like existence of 

multiplicative inverses) only hold if the fields 

characteristic is prime. 

(2) Uniformity and Distribution: 

* Hash-to-field needs **uniform distribution** over 

the field. 

* For this, the field size p must be chosen to make 

modulo operations efficient and reduce ’bias’. 

* Number theory ensures minimal **modulo bias** 

when mapping large hashes to elements mod p. 

Number-Theoretic Concepts That Influence 

Prime Choice: 

A. ’Modular Arithmetic’ 

* Hash outputs are converted to integers and reduced 

modulo p. 

* You want p to be close to a power of 2 for efficient 

reduction (e.g., p ≈ 2255). 

B. ’Prime Density and Distribution’ 

* Number theory tells us how primes are distributed 

(e.g., ’Prime Number Theorem’). 

* Designers use this to find **large safe primes** 

near powers of 2, like: 

* p = 2255 - 19 (used in Curve25519) 

* p = 2381 - x (used in BLS12-381) 

C. ’Quadratic Residues and Nonresidues’ 

* Needed when hashing to elliptic curves, especially 

with map-to-curve algorithms like SWU. 

* You must compute square roots modulo p, which 

is only possible if certain conditions (like p ≡ 3 mod 

4) are met. 

* Number theory provides **TonelliShanks** 

algorithm or conditions for easy square root 

calculation. 

D. ’Field Extensions and Subgroup Orders’ 

* In pairing-based cryptography, the field might be 

Fp
k. 
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* The subgroup order should also be prime (or have 

prime factors) for security. 

* The ’order of the fields multiplicative group’, p - 

1, and its factors matter: 

- Prevents small-subgroup attacks. 

- Ensures the security of discrete log assumptions. 

E. ’Cyclic Groups’ 

* Many cryptographic groups are cyclic. 

* For the field Fp 
*, it is cyclic of order p - 1. 

* Having p-1 divisible by a large prime ensures 

secure discrete logarithm hardness. 

F. ’Montgomery-Friendly Primes’ 

* Primes of the form 2k - c enable faster modular 

arithmetic (Montgomery reduction). 

* These forms are chosen using number-theoretic 

constraints for: 

- Efficient modular reduction 

- SIMD or constant-time implementation 

Examples of Number Theory in Real Systems: 

- in Curve/System the Prime Used is p = 2255 - 19 and 

NumberTheoretic Reasoning is: Close to power of 2, 

fast mod reduction 

- in BLS12-381 the Prime Used is p = 2381 - x and 

Number-Theoretic 

Reasoning is: Supports pairing-friendly curves. 

- in secp256k1 (Bitcoin) the Prime Used is p = 2256 - 

232 - 977 and 

Number-Theoretic Reasoning is: Optimized for 256-

bit fields. 

So, number Theory Provides: 

- Existence and structure of finite fields 

- Efficient algorithms (e.g., square roots mod p) 

- Security guarantees (via field and group order) 

- Bias minimization in hash mapping 

5. Quadratic Residues 

Quadratic residues are elements that are squares 

modulo p, and they play roles in cryptographic 

constructions involving: 

* ’Trapdoor permutations’ 

* ’Obfuscation’ 

* ’Verifiable random functions (VRFs)’ 

In hash functions, this matters particularly in 

’hashing into elliptic curves’ or ’designing hard-to-

invert functions’. 

• Obfuscation of Bit Patterns 

If a hash construction involves selecting elements in 

a group where distinguishing ’quadratic residues’ 

from non-residues is ’hard’ (e.g., under the 

’Quadratic Residuosity Assumption’), it can be used 

to: 

* ’Hide information’ in a hash output 

* Ensure ’semantic security’ in protocols using 

hashes 

• Hashing to Elliptic Curves 

When mapping hash values to points on an elliptic 

curve (like in BLS signatures or zk-SNARKs), the 

function must solve for y2 = f(x) mod p. This requires 

checking whether f(x) is a ’quadratic residue mod p’, 

and only then can y be found. This process must: 

* Be efficient 

* Avoid leaking information 

* Maintain uniformity 

• Security via Hard Problems 

Some hash-like functions or randomness extractors 

are built using problems like: 

* ’Deciding quadratic residuosity modulo a 

composite’ 

* ’Finding square roots modulo a prime’ 

These are believed to be ’hard’, and thus offer 

cryptographic strength. 

6. Examples in Practice 

* ’RSA-based hash constructions’: Use modular 

arithmetic with composite moduli; security depends 

on number-theoretic assumptions. 
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* ’Hash-to-curve algorithms’: Use finite field 

arithmetic, requiring understanding of residues for 

correct and uniform mappings. 

* ’Discrete log-based hashes’ (e.g., Pedersen 

commitments): 

Use modular groups where quadratic residues help 

define group structure and hard problems. 

Summary 

◦ In prime Modulus the role in Hash Functions / 

Protocols is to ensures uniform distribution, avoids 

bias, supports strong mathematical structure (e.g., 

fields, groups). 

◦ In quadratic Residues the role in Hash Functions 

/ Protocols is: Used in secure mappings (e.g., hash to 

curve), obfuscation, and assumptions (e.g., 

Quadratic 

Residuosity Problem). 

◦ In Hash Security the role in Hash Functions / 

Protocols is: Often underpinned by hardness 

assumptions from number theory (e.g., discrete log, 

residuosity). 

◦ In efficiency the role in Hash Functions / Protocols 

is: Prime-based fields allow fast Efficiency modular 

reduction and efficient arithmetic in hash 

constructions. 

7. Results and Discussions 

This study explored how number-theoretic 

principles influence the construction, performance, 

and security of modern cryptographic hash 

functions. Specifically, we examined how concepts 

such as modular arithmetic, prime number theory, 

multiplicative groups, and discrete logarithms are 

embedded in or affect the behavior of widely-used 

hash functions like SHA-2, SHA-3, and older 

constructs such as MD5 or RIPEMD. 

• About the use of Modular Arithmetic 

Hash functions often employ modular arithmetic to 

maintain fixed-size outputs and to manage overflow 

behavior. Our analysis confirmed that: 

* In SHA-2, modulo 232 or 264 operations are used to 

constrain word sizes. 

* Modular addition operations help create diffusion 

and avalanche effects, 

which are desirable for resistance against differential 

attacks. 

* Modular arithmetic ensures uniformity and 

unpredictability, enhancing hash function diffusion 

properties. 

• Prime Numbers and Field Properties 

While not all hash functions directly use large 

primes, their internal structure or supporting 

cryptographic frameworks (e.g., HMAC or 

MerkleDamgrd constructions) may depend on prime 

field behavior. 

* In sponge constructions (e.g., Keccak in SHA-3), 

while primes are not explicitly required, number-

theoretic randomness is desirable in round constants. 

* Some theoretical hash designs (e.g., those based on 

ideal lattices or elliptic curves) depend heavily on 

prime fields or rings. 

* Primes and related structures contribute to the 

unpredictability and mathematical hardness 

assumptions underlying theoretical hash constructs. 

• Discrete Logarithm and Hard Problems 

While hash functions typically do not rely directly 

on discrete logarithm problems (unlike key 

exchange protocols), some proposed constructions 

(e.g., ZK-friendly hash functions used in SNARKs 

and STARKs) do. 

* Pedersen hash and MiMC hash use group 

operations based on discrete log hardness. 

* These are particularly relevant in zero-knowledge 

proofs and blockchain applications. 

* Discrete log-based hash functions offer algebraic 

structure suitable for proofs but require careful 

parameter selection to prevent leakage or collision 

vulnerabilities. 

• Collision and Preimage Resistance via Number 

Theory 

The difficulty of finding collisions or preimages in 

secure hash functions mirrors the complexity of 

number-theoretic problems. For instance: 

* Hash functions using multiplicative group 

structures benefit from the intractability of solving 

inverse or discrete log problems. 

* However, functions with insufficient randomness 

in number-theoretic components (e.g., poorly chosen 

primes or constants) can become vulnerable. 

* Number-theoretic complexity can underpin 

collision resistance but must be well-implemented to 

avoid structural weaknesses. 

• Discussion 

- Theoretical vs Practical Relevance 

In practice, standardized hash functions such as 

SHA-2 and SHA-3 do not heavily rely on advanced 

number-theoretic problems (like discrete 

logs or primes), favoring bitwise operations and 

permutation-based designs for efficiency. However, 

in theoretical cryptography and privacy-focused 

applications (e.g., zero-knowledge protocols), 
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number theory plays a central role. Functions 

designed for these contexts (e.g., Poseidon, MiMC) 

leverage field arithmetic and elliptic curve groups. 

-Security Implications 

Understanding the number-theoretic foundation can 

aid in: 

* ’Evaluating resistance’ to algebraic attacks. 

* ’Designing hash functions’ that align with specific 

mathematical assumptions (e.g., post-quantum 

resistance). 

* ’Recognizing vulnerabilities’, such as when poor 

prime selection leads to reduced entropy or faster 

collision finding 

- Efficiency Trade-offs 

Number-theoretic operations (e.g., modular 

exponentiation) are computationally more expensive 

than bitwise operations. Thus, hash functions based 

on them are slower and less suitable for general-

purpose hashing but ideal for environments that 

require compatibility with other algebraic protocols. 

The study confirms that while general-purpose hash 

functions (SHA-2, SHA-3) do not directly rely on 

deep number-theoretic problems, their security and 

behavior are nonetheless influenced by basic number 

theoryparticularly through modular arithmetic and 

group theory. Advanced cryptographic applications 

increasingly use hash functions rooted in number 

theory to meet specialized needs, particularly in 

privacy-preserving technologies.  

A proper understanding of these mathematical 

foundations is essential for evaluating hash function 

security and for designing new functions that are 

resistant to both classical and quantum attacks. 

 

8. Conclusions 

Number theory provides essential mathematical 

structuressuch as modular arithmetic, prime number 

theory, and discrete logarithmsthat underpin the 

design and analysis of many cryptographic hash 

functions. These structures ensure deterministic but 

complex behaviors necessary for cryptographic 

properties like ’collision 

resistance’ and ’pre-image resistance’. 

 Concepts like ’modular operations’, ’prime fields’, 

and ’finite cyclic groups’ introduce non-linearity and  

unpredictability into hash function design. These 

properties are crucial in making it computationally 

infeasible to reverse-engineer inputs or find two 

different inputs that produce the same hash 

(collisions). Number-theoretic hardness 

assumptionssuch as the ’difficulty of factoring large 

primes’ or solving ’discrete logarithm problems’form 

the security backbone of not only public-key 

cryptography but also influence the *design 

philosophy* behind robust hash functions. For 

example, constructions that use modular 

exponentiation or elliptic curves add layers of 

resistance against attacks like brute-force, birthday 

attacks, and differential cryptanalysis. Hash 

functions built upon number-theoretic constructs 

(e.g., in the ’MerkleDamgard’ paradigm or sponge 

functions) often rely on irreducible polynomials, 

prime moduli, and arithmetic over finite fields, 

which ensures good ’diffusion’ and ’avalanche 

effects’. This mathematical rigor makes such 

functions well-suited for secure applications, from 

digital signatures to blockchain technologies. While 

number theory enhances security and provides a 

strong theoretical foundation, practical hash 

functions must balance complexity with 

performance. Some purely number-theoretic 

constructions can be secure but computationally 

expensive, thus limiting their adoption in resource-

constrained environments. With the advent of 

quantum computing, some number-theoretic 

assumptions may become vulnerable (e.g., Shors 

algorithm impacting discrete log and factoringbased 

systems). However, number theory still contributes 

to ’post-quantum hashbased cryptographic 

schemes’, such as those using lattice-based or 

multivariate polynomial systems. 

In summary, ’number theory significantly influences 

both the theoretical and practical dimensions of hash 

function design’. It provides the mathematical 

foundation needed for strong cryptographic 

guarantees while also highlighting the importance of 

continuously evaluating the security of these 

functions in the face of advancing computational 

capabilities. 
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