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Abstract:

U.S. healthcare is a designated critical infrastructure whose disruption jeopardizes
public health and national security. Yet escalating cyber risk, driven by large scale data
breaches and ransomware, has outpaced traditional controls. This paper argues that
machine learning (ML) can materially strengthen healthcare cyber defense if it is
engineered with security and privacy as first class requirements. We synthesize pre July
2022 literature across adversarial ML, privacy preserving learning, and medical
informatics, and propose an integrated architecture that combines federated learning,
secure aggregation, and differential privacy to enable cross institutional detection while
minimizing data exposure. We map ML techniques to concrete healthcare threat vectors
insider misuse of electronic health record (EHR) data, credential stuffing against patient
portals, lateral movement across medical loT/telehealth ecosystems, and tampering with
Al enabled clinical decision support and outline controls that align with NIST SP 800
53 and Zero Trust. A methodology section details data sources (EHR access logs,
identity and access management telemetry, endpoint/loMT signals, and clinical text),
model families (unsupervised anomaly detection, sequence and graph models, and
privacy preserving pipelines), governance (threat modeling, red teaming, privacy
budgets, and model risk management), and evaluation (detection efficacy, time to
detect, and formal privacy loss). We further discuss adversarial risks unique to medicine
and the policy implications of deploying ML in regulated environments governed by
HIPAA and FDA device guidance. Two figures visualize breach trends and cost
asymmetries; tables operationalize the control mapping and measurement plan. We
conclude that secure ML is not a panacea, but a necessary capability for resilient care
delivery. Properly engineered, it can reduce dwell time, contain blast radius, and enable
sector wide learning without centralized PHI pooling advancing both patient privacy
and national security.

1. Introduction

The healthcare and public health (HPH) sector is
explicitly recognized as U.S. critical infrastructure,
and its reliable operation is a national security
concern. Presidential Policy Directive 21 (PPD-21)
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formalized the sector’s status, emphasizing the need
to strengthen and maintain secure, functioning, and
resilient infrastructure across sectors whose
compromise would debilitate national security and
public safety (PPD-21). That imperative applies
acutely to healthcare: cyber-enabled disruption of
hospitals and supply chains can degrade clinical
effectiveness, impede emergency response, and
erode public trust.Risk growth has been stark. In
2021 alone, U.S. entities reported 712 healthcare
breaches of >500 records to HHS OCR, impacting
~45.7 million records (Figure 1). The 2021 total set
a new annual count record at the time (December
2021 and January 2022 HHS/OCR tallies
summarized by HIPAA Journal). Beyond
frequency, impact is pronounced: IBM’s 2022 Cost
of a Data Breach Report estimated the healthcare
sector’s average breach cost at $10.1M, more than
double the cross-industry average of $4.35M
(Figure 2). These asymmetries reflect operational

urgency, complex vendor ecosystems, and
prolonged detection/containment
cycles.Adversaries have capitalized on this

exposure. The CISA/FBI/HHS joint advisory on
2021 ransomware trends documented the
professionalization of ransomware-as-a-service and
the use of criminal “support” services for
negotiation and payment capabilities that increase
scale and endurance of campaigns against
healthcare providers and suppliers. Such operations
do not merely threaten confidentiality; they disrupt
care delivery and can spill over into other lifeline
sectors.Traditional ~ perimeter-centric ~ defenses
struggle in modern, cloud-connected health systems
with  remote  workforces, telehealth, and
heterogeneous medical IoT. Federal guidance has
accordingly shifted toward Zero Trust models
(NIST SP 800-207) and risk-based control catalogs
(NIST SP 800-53 Rev. 5), both emphasizing
identity-centric access, continuous verification,
segmentation, and resilient monitoring. For medical
device and telehealth ecosystems, NIST SP
1800-30 provides a practical reference design for
securing remote patient monitoring. These
frameworks create an architectural “scaffold” into
which data-driven detection can be
embedded.Machine learning (ML) offers leverage
at several points in this scaffold: (1) Identity and
access sequence-aware and graph-based anomaly
detection on EHR and IAM logs to flag credential
misuse; (2) Endpoint/loMT  unsupervised
detection of device behavior drift; (3) Network
contextual detection of exfiltration and lateral
movement; (4) Data protection automated
de-identification of clinical text before secondary
use; and (5) Model assurance defenses that harden
clinical Al against adversarial manipulation.
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However, naive ML deployment can worsen risk if
it centralizes protected health information (PHI) or
exposes models to privacy and adversarial
attacks.Emerging privacy-preserving ML methods
address these barriers. Federated learning (FL)
enables cross-institutional training without pooling
raw PHI; secure aggregation protects client
updates in transit; differential privacy (DP)
bounds what can be inferred about any individual
from a trained model; and homomorphic
encryption (HE) and secure enclaves can protect
inference. Importantly, the medical Al community
has begun to demonstrate these methods in imaging
and multi-site settings while noting tradeoffs
among privacy, utility, and robustness.This paper
makes three contributions. First, it frames
patient-data protection as a national security
priority, grounding the argument in federal doctrine
and sector-specific breach economics. Second, it
maps healthcare threat vectors to ML controls
designed with privacy and adversarial risk in mind
and aligned to federal guidance. Third, it proposes a
methodology for designing, evaluating, and
governing secure ML pipelines that respect HIPAA
obligations while enabling sector-wide
learning.Figures 1 and 2 contextualize the urgency:
breach frequency surged between 2014 and 2021,
and the cost differential indicates that failing safely
is especially expensive in healthcare. Our tables
operationalize the approach by connecting threats
to controls and by specifying evaluation metrics
and governance checkpoints. The remainder of the
paper reviews relevant literature, details the
methodology, and discusses implications for
practice and policy.

2. Literature Review

Healthcare threat landscape. Empirical analyses
and public reporting indicate a steady increase in
reportable breaches since the early 2010s, with
major spikes in 2015 (notably insurer
mega-breaches) and again by 2021 (Figure 1).
HIPAA Journal’s year-end 2021 analysis and
January 2022 update record the highest annual
count to date then, underscoring a sustained shift
from small unauthorized disclosures to large
hacking/ransomware events. The 2015 spike 255
incidents and >112M records illustrated the
outsized impact of a handful of high-value
compromises (e.g., payors).CISA, FBI, and HHS
assessed that ransomware groups professionalized
in 2021, adopting affiliate models, data-theft
tactics, and service ecosystems (negotiators, money
launderers), while exploiting weak remote access,
credential reuse, and unpatched vulnerabilities. The
advisory situates healthcare within a broader
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economic system in which disruption creates
leverage to coerce payment and rapidly monetize
stolen data.Policy and control frameworks. At the
doctrine level, PPD-21 defines 16 sectors explicitly
including HPH as critical infrastructure, directing
risk-informed collaboration among public and
private stakeholders. Within healthcare, CISA’s
sector-specific plan (2015) clarifies governance
roles. NIST SP 800-53 Rev. 5 catalogs security and
privacy controls; SP 800-207 articulates Zero Trust
principles; and SP 1800-30 demonstrates a
reference architecture for securing remote patient
monitoring  especially salient as telehealth
expanded. These create a common lexicon and
baseline  expectations  for  technical and
organizational controls that ML-based detection
must complement, not replace.Machine learning
in clinical data and operations. Foundational
work showed that modern deep learning can model
raw EHR sequences and multimodal hospital data
for clinical prediction tasks, but also highlighted
heterogeneity, temporal dynamics, and
generalization challenges (e.g., Miotto etal,;
Rajkomar etal.; Choi etal.). These capabilities
imply that similar architectures attuned to
operational telemetry rather than patient outcomes
can model access and behavior sequences for
security detection. Meanwhile, NLP methods have
improved PHI de-identification (e.g., RNNs) for
clinical notes, facilitating privacy-preserving
secondary use.Adversarial ML threats in
healthcare. The advent of adversarial examples
and robustness failures in deep networks
(Goodfellow etal.; Carlini & Wagner; Biggio &
Roli) raised alarms for medical Al Finlayson et al.
argued that medicine is uniquely susceptible to
adversarial manipulation due to financial incentives
and the introduction of model-driven workflows
demonstrating attacks across medical imaging tasks
and calling for robust evaluation, regulatory review,
and domain-specific defenses. Such threats extend
beyond image classifiers: manipulated inputs to
ML-assisted triage, billing, or
utilization-management systems could distort care
or reimbursement.Privacy attacks and
countermeasures. Even absent adversarial
test-time manipulation, deployed models can leak
training data. Model inversion (extracting sensitive
attributes) and membership inference
(determining whether an individual was in the
training set) were demonstrated across model
classes and domains, including health-related data
(Fredrikson etal.; Shokri etal.). These attacks
motivate limiting per-example influence and
restricting output confidence exposure. Differential
privacy (DP) provides provable, quantifiable
privacy guarantees by bounding how much a single
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record can change observable outputs; DP-SGD
variants enable training deep nets under formal
privacy budgets. In healthcare, studies applied DP
to medical imaging and surveyed DP in health
research, highlighting tradeoffs between privacy
loss (¢) and utility.Federated and
privacy-preserving learning. Federated learning
(FL) allows multi-site training without centralizing
PHI. In medical imaging and pathology, FL has
achieved performance close to centralized baselines
across multiple institutions (Sheller etal.) and is
proposed as a path to unlock distributed health data
(Rieke et al.). Secure aggregation protects gradient
updates during FL, ensuring the server learns only
aggregate statistics; protocols at scale have been
demonstrated in  industry. Combined  with
client-side DP or server-side noise addition, FL can
reduce data exposure while bounding privacy risk.
Homomorphic encryption (CryptoNets; CKKS)
and trusted execution environments enable
encrypted or hardware-isolated inference, though
latency and accuracy tradeoffs remain non-trivial
for real-time clinical settings.Securing telehealth
and medical 10T. As care extends beyond hospital
walls, device and platform security is pivotal. NIST
SP 1800-30 integrates identity, update, data
protection, and monitoring controls for remote
patient monitoring; NISTIR 8259A defines baseline
lIoT device capabilities that support cybersecurity
controls. These guidance documents are relevant
telemetry sources and enforcement points for
ML-driven detection, e.g., modeling device
behavior profiles and detecting anomalies
suggestive  of  compromise.Economics and
national-level framing. IBM’s 2022 report
guantified average healthcare breach costs at
$10.1M, highest among sectors for the 12th
consecutive year; detection and escalation costs
rose markedly, reflecting longer attacker dwell
times and complex investigations. Together with
federal doctrine (PPD-21), these economics justify
framing patient-data protection as a
national-security-adjacent  imperative:  breaches
ripple across clinical care, payer operations, and
public confidence.Synthesis. Pre-July-2022
evidence supports three design goals: (1) Minimize
raw PHI movement via FL and de-identification;
(2) Bound leakage via DP and careful model/API
design; (3) Harden models and pipelines against
adversarial use. The literature also cautions that
privacy and robustness are distinct: DP does not
guarantee adversarial robustness, and robustness
measures can inadvertently leak data. Therefore,
system design must treat privacy and robustness as
co-equal but separate requirements under a
common governance program.
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3. Methodology

Objective and scope. We propose a
production-oriented methodology to design and
evaluate ML defenses that reduce attacker dwell
time, limit blast radius, and protect PHI without
creating new concentrations of sensitive data. The
approach targets three layers of health-system

telemetry:  (A) ldentity & access, (B)
Endpoint/loMT &  telehealth, and (C)
Network/data exfiltration, plus (D) Data

protection (clinical text de-identification; privacy
budgets). Threat modeling. Using STRIDE-like
categories adapted to healthcare, we prioritize: (1)
Credential misuse/insider abuse of EHRs and
data warehouses; (2) Privilege escalation &
lateral movement across endpoints and 10MT; (3)
Data exfiltration via cloud/SaaS connectors; (4)
Ransomware staging and command-and-control;
(5) Adversarial manipulation of Al-enabled
clinical tools. We align mitigations with NIST SP
800-53 control families (AC, AU, IA, SC, SI) and
SP  800-207 (continuous verification, least
privilege, micro-segmentation).

Data sources and minimal-exposure collection.

e Al. EHR/IAM audit logs. Fine-grained access
events (user, role, patient, context, location,
device, time), authentication outcomes, privilege
changes.

o B1. Endpoint/loMT telemetry. Process, driver,
and network metadata from clinical endpoints;
medical device inventory/firmware/update state
per NISTIR 8259A; telemetry from telehealth
platforms per SP 1800-30 reference design.

e C1. Network flow and DNS/HTTP logs from
clinical VLANs and egress points; data-loss
prevention events.

e D1. Clinical text for de-identification (notes,

messages), processed locally with modern PHI
de-identification models before any downstream
analytics.
Collection follows data minimization: only
fields needed for detection are retained; PHI
fields are hashed/tokenized where feasible;
retention policies enforce short lifetimes.

Model families and features.

e ldentity & access anomaly detection. Train
sequence models (e.g., GRUs/transformers) and
graph neural networks over dynamic bipartite
graphs (user<>resource) to flag deviations from
role baselines and peer cohorts (e.g., nighttime
mass chart access outside unit assignments). Use
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weak supervision (policy violations) and
autoencoder reconstruction errors as
unsupervised signals.

e Endpoint/loMT  behavior.  Unsupervised
clustering and density estimation over process
trees and device communications to detect
firmware downgrade attempts, new service
beacons, or anomalous data bursts. Incorporate

device capability baselines (8259A) and
telehealth topology (SP 1800-30).
o Network/exfiltration.  Flow-level  models

combining protocol metadata and content-free
features to detect exfil patterns (long-duration
low-rate flows, unusual destinations, encrypted
upload surges).

e Clinical text de-identification. Deploy
RNN/CRF or transformer-based
de-identification models (Dernoncourt etal.)
with conservative thresholds; retain only
de-identified text for analytics.

o Adversarial risk management. For Al-enabled
clinical tools (e.g., imaging triage), adopt robust
training baselines, confidence-calibrated
outputs, input-consistency checks, and model
cards documenting threat models. Test with
domain-specific adversarial examples per
Finlayson et al. and strong attacks (e.g., CW) to
ensure evaluation beyond gradient masking.

Privacy-preserving learning stack.

e Federated learning (FL). Partition by
institution or business unit; exchange model
updates, not raw PHI.

e Secure aggregation. Apply practical protocols
so servers see only aggregated updates; tolerate
client dropout.

o Differential privacy. Train with DP-SGD,
setting € budgets per use case (tighter for text
PHI). Track cumulative privacy loss across
rounds; adopt privacy amplification by
subsampling.

e Encrypted inference (where feasible). For
sensitive inference tasks (e.g., high-risk
re-identification vectors), evaluate HE (CKKYS)
or trusted enclaves; accept latency tradeoffs for
batch workflows rather than interactive ones.

System architecture and governance.

e Zero Trust integration. Ingest model outputs
as policy signals to adapt access e.g., step-up
authentication or session isolation when
anomaly scores exceed calibrated thresholds,
consistent with SP 800-207.
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e Model risk management. Maintain versioned
datasets, lineage, and approvals; document
intended use, limitations, and monitoring plans;
apply canarying and shadow-mode deployment
before enforcement.

o Red-team and privacy reviews. Run periodic
adversarial ML  red-teams to probe
evasion/counter-evasion;  conduct  privacy
reviews assessing membership-inference risk
and model inversion susceptibility (e.g., via
confidence clipping and audit logs).

o HIPAA & FDA alignment. Ensure safeguards

map to HIPAA Security Rule
administrative/technical controls; for
device-resident  analytics,  follow  FDA

postmarket/premarket cybersecurity guidance
including  update/patch  processes, threat
modeling, and SBOM expectations.

Evaluation plan and metrics.

o Detection efficacy. AUROC/PR-AUC on
labeled incidents and realistic simulations;
time-to-detect and time-to-contain relative to
baselines; analyst alert burden (alerts per 1,000
users/day) and true-positive yield.

e Privacy. Formal ¢, & budgets; empirical
resistance to membership inference under
white-/black-box settings; audit for attribute
leakage via inversion.

e Robustness. Attack success rates under
CW/PGD and domain-specific perturbations;
calibration error; detection of OOD inputs.

e Operational fit. False-positive review time,
escalation rates to IR, alignment with SOC
playbooks; control mapping coverage (e.g.,
AU/IR/AC families in SP 800-53).

Data sharing and sector learning. We propose a
consortium-based FL deployment among regional
hospital networks, without centralizing PHI.
Updates are securely aggregated; each participant
enforces local DP budgets tuned to risk tolerance.
For telehealth RPM, apply the SP 1800-30
architecture, instrument devices per 8259A
baselines, and coordinate incident response via

CISA information-sharing  channels.Baseline
visualizations and  artifacts.  Figure 1
(OCR-reported  breaches,  selected  years)

contextualizes rising frequency; Figure 2 (IBM
2022 costs) highlights sector-specific impact. These
motivate investments in privacy-preserving ML as
risk-reduction infrastructure and inform
cost-benefit analyses for executive sponsors.

4. Discussion
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Why ML, and why now? The breach trend and
cost asymmetry indicate insufficient observability
and  responsiveness. ML can  improve
signal-to-noise by modeling fine-grained sequences
and relationships (users«—>patients<»applications)
that static rules miss. In access monitoring, for
instance, nurses on a unit often share similar
temporal and resource access patterns; deviations
mass access to off-unit patients or sudden
after-hours bursts are detectable via sequence and
peer-group models with lower false positives than
naive per-user thresholds. Similar gains arise in
[oMT behavior profiling and anomalous egress
detection.Privacy and compliance by design.
Healthcare cannot simply “collect everything” to
build better models; HIPAA’s minimum necessary
standard and public trust demand restraint. FL,
secure aggregation, and DP allow learning from
many without exposing any a meaningful advance
beyond central data lakes. Still, these technigques
carry tradeoffs: DP introduces noise that can
degrade utility, especially for minority patterns; FL
can be attacked via poisoned updates; secure
aggregation  increases  system  complexity.
Mitigations include per-client clipping/noise,
by-zantine-robust aggregation, update attestation,
and privacy budgeting  with  auditable
accounting.Adversarial ML in clinical contexts.
Finlayson etal. cautioned that medical incentives
create real attack surfaces for adversarial examples
(e.g., manipulating dermatology images to alter
triage). Clinical-Al governance must therefore
expand to explicitly consider adversarial risk:
document threat models in model cards, require
pre-submission robustness testing for
device-embedded Al, and restrict overly confident
outputs exposed to end users or APIs to reduce
attack leverage and leakage. Robustness techniques
(adversarial training, confidence calibration) should
complement not replace clinical validation.Zero
Trust as the operational wrapper. ML-derived
risk signals are most valuable when they directly
influence access decisions. In a Zero Trust
architecture, signals can  gate  step-up
authentication, session restrictions, and
micro-segmentation. For example, an elevated
anomaly score on an EHR session might (1)
downgrade access to read-only, (2) re-verify
identity with phishing-resistant MFA, and (3)
dynamically restrict lateral movement. These
actions can be codified as policy (SP 800-207),
monitored via AU/SI controls (SP 800-53), and
executed consistently across cloud and on-prem
assets.Telehealth and 1o0MT realities. SP 1800-30
demonstrates that a secure remote patient
monitoring solution is achievable with commercial
components, but it depends on accurate asset
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inventories, update mechanisms, and role-based
access to the RPM platform. ML can enhance this
baseline by profiling device communications and
alerting on behavioral drift, such as an oximeter
initiating outbound connections to unknown hosts.
The 8259A core baseline provides a minimal
capability set (device identity, secure update, data
protection) that, when present, significantly
improves ML observability and control.Economics
and national interest. From a board perspective,
the IBM 2022 cost figures transform cyber risk
from an abstract compliance problem into a
quantifiable drag on care delivery and capital
planning. Investing in privacy-preserving detection
that reduces average time-to-detect and
time-to-contain feeds directly into cost avoidance
especially for ransomware, where hour-scale
containment windows determine whether elective
procedures and ICU operations are disrupted. At a
national level, sector resilience reduces cascading
risk to other lifeline sectors and maintains public

trust during crises (e.g.,
pandemics).Interoperability and information
sharing. A common  argument  against

cross-enterprise ML is patient privacy. FL and DP
directly address this, enabling algorithmic
information sharing without raw PHI exchange.
Additionally, model artifacts feature schemas,
risk-scoring APIs, and anonymized telemetry
statistics are shareable through CISA/HHS
channels. As more institutions implement SP
1800-30-like telemetry for telehealth, consistent
schemas (e.g., device identity, firmware state)
further facilitate cross-site learning.Alignment
with regulation and standards. HIPAA’s Security
Rule demands administrative, physical, and

technical safeguards; the proposed methodology
maps to technical safeguards (access controls, audit

controls, integrity, transmission security) and
bolsters administrative safeguards (risk
management,  workforce  training)  through

model-informed policies and escalations. For
device-embedded  analytics, FDA  guidance
emphasizes threat modeling, SBOM, updateability,
and coordinated vulnerability  disclosure
prerequisites  for  sustainable =~ ML-enabled
devices.Caveats and ethics. ML detection is
probabilistic. False positives can burden clinicians
and degrade trust; false negatives may create
complacency. We therefore advocate
socio-technical design clear analyst playbooks,
clinician-friendly explanations (e.g., which access
attributes were unusual), and rigorous post-incident
reviews that feed model updates. Fairness also
matters: access-risk models must avoid proxying
for role seniority or shift timing in ways that
unfairly target specific staff groups. Differential
privacy must not be misused to claim absolute
anonymity; € must be contextualized, and residual
re-identification risk communicated transparently.
Finally, offensive research (red-teaming) should be
governed by IRB-like ethics controls to avoid
patient harm.A realistic path. Many health systems
already aggregate logs for compliance. The
incremental path is to (1) standardize schemas and
retention; (2) pilot anomaly detection on EHR/IAM
with privacy-preserving pipelines; (3) integrate
signals into policy engines; (4) expand to loMT and
network; and (5) participate in regional FL
consortia. This staged approach delivers early wins
(reduced inappropriate access) while building
toward sector-scale learning.

Table 1. Threat-to-Control Mapping (abbreviated).

Threat vector Representative signals

ML control (privacy-preserving
where feasible)

Standards alignment

Inappropriate  EHR | Unusual chart  access | Sequence/peer-group anomaly | HIPAA  Security Rule
access / credential | sequences; off-unit mass | detection; risk-based access; | (AC, AU), NIST SP
misuse access; odd times/locations | federated training with secure | 800-53 (AC, AU, IA),
aggregation + DP ZTA continuous

verification

Ransomware staging | New SMB/RDP  use;

Unsupervised

endpoint and | NIST SP 800-53 (SI, SC),

/ lateral movement beaconing; privilege | flow-based models; | ZTA policy enforcement;
escalation micro-segmentation triggers CISA ransomware trends

guidance

Telehealth/loMT Firmware downgrades; | Device-behavior profiling; graph | NIST SP 1800-30;

compromise anomalous device comms | models across RPM topology NISTIR 8259A device
baseline

Data exfiltration via | Long-duration encrypted | Flow-sequence anomaly models; | NIST SP 800-207 policy

SaaS/cloud uploads; rare destinations | auto-isolation actions signals; SP 800-53
SC-7/AC-4

Adversarial Inconsistent inputs; | Robust training; input-consistency | FDA cybersecurity

manipulation of | high-confidence and confidence controls; | guidance; robust

clinical Al misclassifications red-teaming evaluation practices
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Table 2. Measurement Plan.

Objective

Metric(s)

Target / comment

Reduce attacker dwell
time

Mean time-to-detect, mean time-to-contain

Downward trend vs. pre-deployment
baseline

Maintain analyst
workload

Alerts/1,000 users/day; true-positive yield

No net increase in total investigation
time

Bound privacy risk

(g, &) budgets; empirical membership-inference
AUC

¢ within policy; AUC = 0.5 under attack

Improve robustness

Attack success rate under CW/PGD; calibration
error

| Attack success; better calibration on
00D

Standards alignment

Control coverage and mapping

Documented mapping to SP 800-53 /
ZTA

Reported U.S. healthcare data breaches (=500 records), selected years

.

Number of breaches

Figure 1. Reported U.S. healthcare data breaches (=500 records), selected years (2014, 2015, 2021). Source:

UsD millions

HIPAA Journal analyses.

Average cost of a data breach (IBM 2022)

Healthcare

All industries

Figure 2. Average cost of a data breach (IBM 2022): Healthcare ($10.1M) vs. all industries ($4.35M).
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4. Conclusions

Patient-data protection is inseparable from national
security when healthcare is a designated critical
infrastructure. Breach trends and costs underscore
the urgency, while policy and standards (PPD-21,
NIST SP 800-53/207, SP 1800-30) provide the
governance scaffold. Pre-July-2022 research
demonstrates that ML can sharpen detection across
identity, device, and network layers but only if
engineered for privacy and robustness from the
outset. Federated learning with secure aggregation,
differential  privacy, and encryption-assisted
inference can enable collaborative learning without
centralizing PHI; adversarial testing and Zero Trust
integration ensure that models not only score risk
but also enforce safer access. Our methodology
translates these ideas into deployable pipelines,
metrics, and governance. The goal is not perfect
prevention; it is resilience shorter dwell times,
faster containment, and protection of clinical
continuity. By investing in secure ML as security
infrastructure, U.S. healthcare organizations can
reduce patient harm, meet regulatory obligations,
and contribute to national preparedness against
escalating cyber threats.

Limitations and Future Directions

This paper synthesizes pre-July-2022 evidence and
proposes a deployment methodology, but it does
not present prospective clinical trials of ML
defenses. Real-world efficacy depends on local
context: EHR/IAM logging fidelity, device
inventory accuracy, and SOC processes vary
widely. Privacy-preserving methods incur overhead
and tradeoffs: DP can degrade minority-pattern
detection; FL complicates debugging; secure
aggregation and HE add latency and operational
complexity. Adversarial robustness for clinical Al
remains an active research area robust training can
reduce accuracy or fail under adaptive
attacks.Evaluation is another limitation. Label
scarcity for true security incidents can bias results
toward synthetic tests; cross-site generalization
requires careful domain adaptation. Measurement
should therefore combine retrospective incident
labels, red-team exercises, and controlled
simulations, with governance formulas that accept
model uncertainty (e.g., using risk signals to require
step-up authentication rather than outright
blocking).Future work should: (1) develop
federated benchmarks for healthcare security
telemetry with standard schemas and privacy
budgets; (2) explore Byzantine-robust and
attack-aware FL aggregation to resist poisoned
updates; (3) advance privacy accounting tools
usable by non-specialists; (4) integrate formal
methods for safety constraints in clinical Al; (5)
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evaluate human-in-the-loop interfaces that explain
anomalies to clinicians and analysts to reduce alert
fatigue; and (6) connect economic models (e.g.,
IBM-style cost drivers) to security-control ROI to
support sustained investment. Finally, regulators

and standards bodies could extend SP
1800-30-style  practice guides to include
privacy-preserving analytics playbooks and
adversarial evaluation protocols for

FDA-regulated Al devices providing concrete,
testable expectations that vendors and providers can
meet.
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