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Abstract:  
 

U.S. healthcare is a designated critical infrastructure whose disruption jeopardizes 

public health and national security. Yet escalating cyber risk, driven by large scale data 

breaches and ransomware, has outpaced traditional controls. This paper argues that 

machine learning (ML) can materially strengthen healthcare cyber defense if it is 

engineered with security and privacy as first class requirements. We synthesize pre July 

2022 literature across adversarial ML, privacy preserving learning, and medical 

informatics, and propose an integrated architecture that combines federated learning, 

secure aggregation, and differential privacy to enable cross institutional detection while 

minimizing data exposure. We map ML techniques to concrete healthcare threat vectors 

insider misuse of electronic health record (EHR) data, credential stuffing against patient 

portals, lateral movement across medical IoT/telehealth ecosystems, and tampering with 

AI enabled clinical decision support and outline controls that align with NIST SP 800 

53 and Zero Trust. A methodology section details data sources (EHR access logs, 

identity and access management telemetry, endpoint/IoMT signals, and clinical text), 

model families (unsupervised anomaly detection, sequence and graph models, and 

privacy preserving pipelines), governance (threat modeling, red teaming, privacy 

budgets, and model risk management), and evaluation (detection efficacy, time to 

detect, and formal privacy loss). We further discuss adversarial risks unique to medicine 

and the policy implications of deploying ML in regulated environments governed by 

HIPAA and FDA device guidance. Two figures visualize breach trends and cost 

asymmetries; tables operationalize the control mapping and measurement plan. We 

conclude that secure ML is not a panacea, but a necessary capability for resilient care 

delivery. Properly engineered, it can reduce dwell time, contain blast radius, and enable 

sector wide learning without centralized PHI pooling advancing both patient privacy 

and national security. 

 

1. Introduction 
 

The healthcare and public health (HPH) sector is 

explicitly recognized as U.S. critical infrastructure, 

and its reliable operation is a national security 

concern. Presidential Policy Directive 21 (PPD-21) 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
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formalized the sector’s status, emphasizing the need 

to strengthen and maintain secure, functioning, and 

resilient infrastructure across sectors whose 

compromise would debilitate national security and 

public safety (PPD-21). That imperative applies 

acutely to healthcare: cyber-enabled disruption of 

hospitals and supply chains can degrade clinical 

effectiveness, impede emergency response, and 

erode public trust.Risk growth has been stark. In 

2021 alone, U.S. entities reported 712 healthcare 

breaches of ≥500 records to HHS OCR, impacting 

~45.7 million records (Figure 1). The 2021 total set 

a new annual count record at the time (December 

2021 and January 2022 HHS/OCR tallies 

summarized by HIPAA Journal). Beyond 

frequency, impact is pronounced: IBM’s 2022 Cost 

of a Data Breach Report estimated the healthcare 

sector’s average breach cost at $10.1M, more than 

double the cross-industry average of $4.35M 

(Figure 2). These asymmetries reflect operational 

urgency, complex vendor ecosystems, and 

prolonged detection/containment 

cycles.Adversaries have capitalized on this 

exposure. The CISA/FBI/HHS joint advisory on 

2021 ransomware trends documented the 

professionalization of ransomware-as-a-service and 

the use of criminal “support” services for 

negotiation and payment capabilities that increase 

scale and endurance of campaigns against 

healthcare providers and suppliers. Such operations 

do not merely threaten confidentiality; they disrupt 

care delivery and can spill over into other lifeline 

sectors.Traditional perimeter-centric defenses 

struggle in modern, cloud-connected health systems 

with remote workforces, telehealth, and 

heterogeneous medical IoT. Federal guidance has 

accordingly shifted toward Zero Trust models 

(NIST SP 800-207) and risk-based control catalogs 

(NIST SP 800-53 Rev. 5), both emphasizing 

identity-centric access, continuous verification, 

segmentation, and resilient monitoring. For medical 

device and telehealth ecosystems, NIST SP 

1800-30 provides a practical reference design for 

securing remote patient monitoring. These 

frameworks create an architectural “scaffold” into 

which data-driven detection can be 

embedded.Machine learning (ML) offers leverage 

at several points in this scaffold: (1) Identity and 

access sequence-aware and graph-based anomaly 

detection on EHR and IAM logs to flag credential 

misuse; (2) Endpoint/IoMT unsupervised 

detection of device behavior drift; (3) Network 

contextual detection of exfiltration and lateral 

movement; (4) Data protection automated 

de-identification of clinical text before secondary 

use; and (5) Model assurance defenses that harden 

clinical AI against adversarial manipulation. 

However, naïve ML deployment can worsen risk if 

it centralizes protected health information (PHI) or 

exposes models to privacy and adversarial 

attacks.Emerging privacy-preserving ML methods 

address these barriers. Federated learning (FL) 

enables cross-institutional training without pooling 

raw PHI; secure aggregation protects client 

updates in transit; differential privacy (DP) 

bounds what can be inferred about any individual 

from a trained model; and homomorphic 

encryption (HE) and secure enclaves can protect 

inference. Importantly, the medical AI community 

has begun to demonstrate these methods in imaging 

and multi-site settings while noting tradeoffs 

among privacy, utility, and robustness.This paper 

makes three contributions. First, it frames 

patient-data protection as a national security 

priority, grounding the argument in federal doctrine 

and sector-specific breach economics. Second, it 

maps healthcare threat vectors to ML controls 

designed with privacy and adversarial risk in mind 

and aligned to federal guidance. Third, it proposes a 

methodology for designing, evaluating, and 

governing secure ML pipelines that respect HIPAA 

obligations while enabling sector-wide 

learning.Figures 1 and 2 contextualize the urgency: 

breach frequency surged between 2014 and 2021, 

and the cost differential indicates that failing safely 

is especially expensive in healthcare. Our tables 

operationalize the approach by connecting threats 

to controls and by specifying evaluation metrics 

and governance checkpoints. The remainder of the 

paper reviews relevant literature, details the 

methodology, and discusses implications for 

practice and policy. 

2. Literature Review 

Healthcare threat landscape. Empirical analyses 

and public reporting indicate a steady increase in 

reportable breaches since the early 2010s, with 

major spikes in 2015 (notably insurer 

mega-breaches) and again by 2021 (Figure 1). 

HIPAA Journal’s year-end 2021 analysis and 

January 2022 update record the highest annual 

count to date then, underscoring a sustained shift 

from small unauthorized disclosures to large 

hacking/ransomware events. The 2015 spike 255 

incidents and >112M records illustrated the 

outsized impact of a handful of high-value 

compromises (e.g., payors).CISA, FBI, and HHS 

assessed that ransomware groups professionalized 

in 2021, adopting affiliate models, data-theft 

tactics, and service ecosystems (negotiators, money 

launderers), while exploiting weak remote access, 

credential reuse, and unpatched vulnerabilities. The 

advisory situates healthcare within a broader 
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economic system in which disruption creates 

leverage to coerce payment and rapidly monetize 

stolen data.Policy and control frameworks. At the 

doctrine level, PPD-21 defines 16 sectors explicitly 

including HPH as critical infrastructure, directing 

risk-informed collaboration among public and 

private stakeholders. Within healthcare, CISA’s 

sector-specific plan (2015) clarifies governance 

roles. NIST SP 800-53 Rev. 5 catalogs security and 

privacy controls; SP 800-207 articulates Zero Trust 

principles; and SP 1800-30 demonstrates a 

reference architecture for securing remote patient 

monitoring especially salient as telehealth 

expanded. These create a common lexicon and 

baseline expectations for technical and 

organizational controls that ML-based detection 

must complement, not replace.Machine learning 

in clinical data and operations. Foundational 

work showed that modern deep learning can model 

raw EHR sequences and multimodal hospital data 

for clinical prediction tasks, but also highlighted 

heterogeneity, temporal dynamics, and 

generalization challenges (e.g., Miotto et al.; 

Rajkomar et al.; Choi et al.). These capabilities 

imply that similar architectures attuned to 

operational telemetry rather than patient outcomes 

can model access and behavior sequences for 

security detection. Meanwhile, NLP methods have 

improved PHI de-identification (e.g., RNNs) for 

clinical notes, facilitating privacy-preserving 

secondary use.Adversarial ML threats in 

healthcare. The advent of adversarial examples 

and robustness failures in deep networks 

(Goodfellow et al.; Carlini & Wagner; Biggio & 

Roli) raised alarms for medical AI. Finlayson et al. 

argued that medicine is uniquely susceptible to 

adversarial manipulation due to financial incentives 

and the introduction of model-driven workflows 

demonstrating attacks across medical imaging tasks 

and calling for robust evaluation, regulatory review, 

and domain-specific defenses. Such threats extend 

beyond image classifiers: manipulated inputs to 

ML-assisted triage, billing, or 

utilization-management systems could distort care 

or reimbursement.Privacy attacks and 

countermeasures. Even absent adversarial 

test-time manipulation, deployed models can leak 

training data. Model inversion (extracting sensitive 

attributes) and membership inference 

(determining whether an individual was in the 

training set) were demonstrated across model 

classes and domains, including health-related data 

(Fredrikson et al.; Shokri et al.). These attacks 

motivate limiting per-example influence and 

restricting output confidence exposure. Differential 

privacy (DP) provides provable, quantifiable 

privacy guarantees by bounding how much a single 

record can change observable outputs; DP-SGD 

variants enable training deep nets under formal 

privacy budgets. In healthcare, studies applied DP 

to medical imaging and surveyed DP in health 

research, highlighting tradeoffs between privacy 

loss (ε) and utility.Federated and 

privacy-preserving learning. Federated learning 

(FL) allows multi-site training without centralizing 

PHI. In medical imaging and pathology, FL has 

achieved performance close to centralized baselines 

across multiple institutions (Sheller et al.) and is 

proposed as a path to unlock distributed health data 

(Rieke et al.). Secure aggregation protects gradient 

updates during FL, ensuring the server learns only 

aggregate statistics; protocols at scale have been 

demonstrated in industry. Combined with 

client-side DP or server-side noise addition, FL can 

reduce data exposure while bounding privacy risk. 

Homomorphic encryption (CryptoNets; CKKS) 

and trusted execution environments enable 

encrypted or hardware-isolated inference, though 

latency and accuracy tradeoffs remain non-trivial 

for real-time clinical settings.Securing telehealth 

and medical IoT. As care extends beyond hospital 

walls, device and platform security is pivotal. NIST 

SP 1800-30 integrates identity, update, data 

protection, and monitoring controls for remote 

patient monitoring; NISTIR 8259A defines baseline 

IoT device capabilities that support cybersecurity 

controls. These guidance documents are relevant 

telemetry sources and enforcement points for 

ML-driven detection, e.g., modeling device 

behavior profiles and detecting anomalies 

suggestive of compromise.Economics and 

national-level framing. IBM’s 2022 report 

quantified average healthcare breach costs at 

$10.1M, highest among sectors for the 12th 

consecutive year; detection and escalation costs 

rose markedly, reflecting longer attacker dwell 

times and complex investigations. Together with 

federal doctrine (PPD-21), these economics justify 

framing patient-data protection as a 

national-security-adjacent imperative: breaches 

ripple across clinical care, payer operations, and 

public confidence.Synthesis. Pre-July-2022 

evidence supports three design goals: (1) Minimize 

raw PHI movement via FL and de-identification; 

(2) Bound leakage via DP and careful model/API 

design; (3) Harden models and pipelines against 

adversarial use. The literature also cautions that 

privacy and robustness are distinct: DP does not 

guarantee adversarial robustness, and robustness 

measures can inadvertently leak data. Therefore, 

system design must treat privacy and robustness as 

co-equal but separate requirements under a 

common governance program. 
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3. Methodology  

Objective and scope. We propose a 

production-oriented methodology to design and 

evaluate ML defenses that reduce attacker dwell 

time, limit blast radius, and protect PHI without 

creating new concentrations of sensitive data. The 

approach targets three layers of health-system 

telemetry: (A) Identity & access, (B) 

Endpoint/IoMT & telehealth, and (C) 

Network/data exfiltration, plus (D) Data 

protection (clinical text de-identification; privacy 

budgets).Threat modeling. Using STRIDE-like 

categories adapted to healthcare, we prioritize: (1) 

Credential misuse/insider abuse of EHRs and 

data warehouses; (2) Privilege escalation & 

lateral movement across endpoints and IoMT; (3) 

Data exfiltration via cloud/SaaS connectors; (4) 

Ransomware staging and command-and-control; 

(5) Adversarial manipulation of AI-enabled 

clinical tools. We align mitigations with NIST SP 

800-53 control families (AC, AU, IA, SC, SI) and 

SP 800-207 (continuous verification, least 

privilege, micro-segmentation). 

Data sources and minimal-exposure collection. 

 A1. EHR/IAM audit logs. Fine-grained access 

events (user, role, patient, context, location, 

device, time), authentication outcomes, privilege 

changes. 

 B1. Endpoint/IoMT telemetry. Process, driver, 

and network metadata from clinical endpoints; 

medical device inventory/firmware/update state 

per NISTIR 8259A; telemetry from telehealth 

platforms per SP 1800-30 reference design. 

 C1. Network flow and DNS/HTTP logs from 

clinical VLANs and egress points; data-loss 

prevention events. 

 D1. Clinical text for de-identification (notes, 

messages), processed locally with modern PHI 

de-identification models before any downstream 

analytics. 

Collection follows data minimization: only 

fields needed for detection are retained; PHI 

fields are hashed/tokenized where feasible; 

retention policies enforce short lifetimes. 

Model families and features. 

 Identity & access anomaly detection. Train 

sequence models (e.g., GRUs/transformers) and 

graph neural networks over dynamic bipartite 

graphs (user↔resource) to flag deviations from 

role baselines and peer cohorts (e.g., nighttime 

mass chart access outside unit assignments). Use 

weak supervision (policy violations) and 

autoencoder reconstruction errors as 

unsupervised signals. 

 Endpoint/IoMT behavior. Unsupervised 

clustering and density estimation over process 

trees and device communications to detect 

firmware downgrade attempts, new service 

beacons, or anomalous data bursts. Incorporate 

device capability baselines (8259A) and 

telehealth topology (SP 1800-30). 

 Network/exfiltration. Flow-level models 

combining protocol metadata and content-free 

features to detect exfil patterns (long-duration 

low-rate flows, unusual destinations, encrypted 

upload surges). 

 Clinical text de-identification. Deploy 

RNN/CRF or transformer-based 

de-identification models (Dernoncourt et al.) 

with conservative thresholds; retain only 

de-identified text for analytics. 

 Adversarial risk management. For AI-enabled 

clinical tools (e.g., imaging triage), adopt robust 

training baselines, confidence-calibrated 

outputs, input-consistency checks, and model 

cards documenting threat models. Test with 

domain-specific adversarial examples per 

Finlayson et al. and strong attacks (e.g., CW) to 

ensure evaluation beyond gradient masking. 

Privacy-preserving learning stack. 

 Federated learning (FL). Partition by 

institution or business unit; exchange model 

updates, not raw PHI. 

 Secure aggregation. Apply practical protocols 

so servers see only aggregated updates; tolerate 

client dropout. 

 Differential privacy. Train with DP-SGD, 

setting ε budgets per use case (tighter for text 

PHI). Track cumulative privacy loss across 

rounds; adopt privacy amplification by 

subsampling. 

 Encrypted inference (where feasible). For 

sensitive inference tasks (e.g., high-risk 

re-identification vectors), evaluate HE (CKKS) 

or trusted enclaves; accept latency tradeoffs for 

batch workflows rather than interactive ones. 

System architecture and governance. 

 Zero Trust integration. Ingest model outputs 

as policy signals to adapt access e.g., step-up 

authentication or session isolation when 

anomaly scores exceed calibrated thresholds, 

consistent with SP 800-207. 
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 Model risk management. Maintain versioned 

datasets, lineage, and approvals; document 

intended use, limitations, and monitoring plans; 

apply canarying and shadow-mode deployment 

before enforcement. 

 Red-team and privacy reviews. Run periodic 

adversarial ML red-teams to probe 

evasion/counter-evasion; conduct privacy 

reviews assessing membership-inference risk 

and model inversion susceptibility (e.g., via 

confidence clipping and audit logs). 

 HIPAA & FDA alignment. Ensure safeguards 

map to HIPAA Security Rule 

administrative/technical controls; for 

device-resident analytics, follow FDA 

postmarket/premarket cybersecurity guidance 

including update/patch processes, threat 

modeling, and SBOM expectations. 

Evaluation plan and metrics. 

 Detection efficacy. AUROC/PR-AUC on 

labeled incidents and realistic simulations; 

time-to-detect and time-to-contain relative to 

baselines; analyst alert burden (alerts per 1,000 

users/day) and true-positive yield. 

 Privacy. Formal ε, δ budgets; empirical 

resistance to membership inference under 

white-/black-box settings; audit for attribute 

leakage via inversion. 

 Robustness. Attack success rates under 

CW/PGD and domain-specific perturbations; 

calibration error; detection of OOD inputs. 

 Operational fit. False-positive review time, 

escalation rates to IR, alignment with SOC 

playbooks; control mapping coverage (e.g., 

AU/IR/AC families in SP 800-53). 

Data sharing and sector learning. We propose a 

consortium-based FL deployment among regional 

hospital networks, without centralizing PHI. 

Updates are securely aggregated; each participant 

enforces local DP budgets tuned to risk tolerance. 

For telehealth RPM, apply the SP 1800-30 

architecture, instrument devices per 8259A 

baselines, and coordinate incident response via 

CISA information-sharing channels.Baseline 

visualizations and artifacts. Figure 1 

(OCR-reported breaches, selected years) 

contextualizes rising frequency; Figure 2 (IBM 

2022 costs) highlights sector-specific impact. These 

motivate investments in privacy-preserving ML as 

risk-reduction infrastructure and inform 

cost-benefit analyses for executive sponsors. 

4. Discussion 

Why ML, and why now? The breach trend and 

cost asymmetry indicate insufficient observability 

and responsiveness. ML can improve 

signal-to-noise by modeling fine-grained sequences 

and relationships (users↔patients↔applications) 

that static rules miss. In access monitoring, for 

instance, nurses on a unit often share similar 

temporal and resource access patterns; deviations 

mass access to off-unit patients or sudden 

after-hours bursts are detectable via sequence and 

peer-group models with lower false positives than 

naïve per-user thresholds. Similar gains arise in 

IoMT behavior profiling and anomalous egress 

detection.Privacy and compliance by design. 

Healthcare cannot simply “collect everything” to 

build better models; HIPAA’s minimum necessary 

standard and public trust demand restraint. FL, 

secure aggregation, and DP allow learning from 

many without exposing any a meaningful advance 

beyond central data lakes. Still, these techniques 

carry tradeoffs: DP introduces noise that can 

degrade utility, especially for minority patterns; FL 

can be attacked via poisoned updates; secure 

aggregation increases system complexity. 

Mitigations include per-client clipping/noise, 

by-zantine-robust aggregation, update attestation, 

and privacy budgeting with auditable 

accounting.Adversarial ML in clinical contexts. 

Finlayson et al. cautioned that medical incentives 

create real attack surfaces for adversarial examples 

(e.g., manipulating dermatology images to alter 

triage). Clinical-AI governance must therefore 

expand to explicitly consider adversarial risk: 

document threat models in model cards, require 

pre-submission robustness testing for 

device-embedded AI, and restrict overly confident 

outputs exposed to end users or APIs to reduce 

attack leverage and leakage. Robustness techniques 

(adversarial training, confidence calibration) should 

complement not replace clinical validation.Zero 

Trust as the operational wrapper. ML-derived 

risk signals are most valuable when they directly 

influence access decisions. In a Zero Trust 

architecture, signals can gate step-up 

authentication, session restrictions, and 

micro-segmentation. For example, an elevated 

anomaly score on an EHR session might (1) 

downgrade access to read-only, (2) re-verify 

identity with phishing-resistant MFA, and (3) 

dynamically restrict lateral movement. These 

actions can be codified as policy (SP 800-207), 

monitored via AU/SI controls (SP 800-53), and 

executed consistently across cloud and on-prem 

assets.Telehealth and IoMT realities. SP 1800-30 

demonstrates that a secure remote patient 

monitoring solution is achievable with commercial 

components, but it depends on accurate asset 
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inventories, update mechanisms, and role-based 

access to the RPM platform. ML can enhance this 

baseline by profiling device communications and 

alerting on behavioral drift, such as an oximeter 

initiating outbound connections to unknown hosts. 

The 8259A core baseline provides a minimal 

capability set (device identity, secure update, data 

protection) that, when present, significantly 

improves ML observability and control.Economics 

and national interest. From a board perspective, 

the IBM 2022 cost figures transform cyber risk 

from an abstract compliance problem into a 

quantifiable drag on care delivery and capital 

planning. Investing in privacy-preserving detection 

that reduces average time-to-detect and 

time-to-contain feeds directly into cost avoidance 

especially for ransomware, where hour-scale 

containment windows determine whether elective 

procedures and ICU operations are disrupted. At a 

national level, sector resilience reduces cascading 

risk to other lifeline sectors and maintains public 

trust during crises (e.g., 

pandemics).Interoperability and information 

sharing. A common argument against 

cross-enterprise ML is patient privacy. FL and DP 

directly address this, enabling algorithmic 

information sharing without raw PHI exchange. 

Additionally, model artifacts feature schemas, 

risk-scoring APIs, and anonymized telemetry 

statistics are shareable through CISA/HHS 

channels. As more institutions implement SP 

1800-30-like telemetry for telehealth, consistent 

schemas (e.g., device identity, firmware state) 

further facilitate cross-site learning.Alignment 

with regulation and standards. HIPAA’s Security 

Rule demands administrative, physical, and 

technical safeguards; the proposed methodology 

maps to technical safeguards (access controls, audit 

controls, integrity, transmission security) and 

bolsters administrative safeguards (risk 

management, workforce training) through 

model-informed policies and escalations. For 

device-embedded analytics, FDA guidance 

emphasizes threat modeling, SBOM, updateability, 

and coordinated vulnerability disclosure 

prerequisites for sustainable ML-enabled 

devices.Caveats and ethics. ML detection is 

probabilistic. False positives can burden clinicians 

and degrade trust; false negatives may create 

complacency. We therefore advocate 

socio-technical design clear analyst playbooks, 

clinician-friendly explanations (e.g., which access 

attributes were unusual), and rigorous post-incident 

reviews that feed model updates. Fairness also 

matters: access-risk models must avoid proxying 

for role seniority or shift timing in ways that 

unfairly target specific staff groups. Differential 

privacy must not be misused to claim absolute 

anonymity; ε must be contextualized, and residual 

re-identification risk communicated transparently. 

Finally, offensive research (red-teaming) should be 

governed by IRB-like ethics controls to avoid 

patient harm.A realistic path. Many health systems 

already aggregate logs for compliance. The 

incremental path is to (1) standardize schemas and 

retention; (2) pilot anomaly detection on EHR/IAM 

with privacy-preserving pipelines; (3) integrate 

signals into policy engines; (4) expand to IoMT and 

network; and (5) participate in regional FL 

consortia. This staged approach delivers early wins 

(reduced inappropriate access) while building 

toward sector-scale learning. 

 

Table 1. Threat-to-Control Mapping (abbreviated). 

Threat vector Representative signals ML control (privacy-preserving 

where feasible) 

Standards alignment 

Inappropriate EHR 

access / credential 

misuse 

Unusual chart access 

sequences; off-unit mass 

access; odd times/locations 

Sequence/peer-group anomaly 

detection; risk-based access; 

federated training with secure 

aggregation + DP 

HIPAA Security Rule 

(AC, AU), NIST SP 

800-53 (AC, AU, IA), 

ZTA continuous 

verification 

Ransomware staging 

/ lateral movement 

New SMB/RDP use; 

beaconing; privilege 

escalation 

Unsupervised endpoint and 

flow-based models; 

micro-segmentation triggers 

NIST SP 800-53 (SI, SC), 

ZTA policy enforcement; 

CISA ransomware trends 

guidance 

Telehealth/IoMT 

compromise 

Firmware downgrades; 

anomalous device comms 

Device-behavior profiling; graph 

models across RPM topology 

NIST SP 1800-30; 

NISTIR 8259A device 

baseline 

Data exfiltration via 

SaaS/cloud 

Long-duration encrypted 

uploads; rare destinations 

Flow-sequence anomaly models; 

auto-isolation actions 

NIST SP 800-207 policy 

signals; SP 800-53 

SC-7/AC-4 

Adversarial 

manipulation of 

clinical AI 

Inconsistent inputs; 

high-confidence 

misclassifications 

Robust training; input-consistency 

and confidence controls; 

red-teaming 

FDA cybersecurity 

guidance; robust 

evaluation practices 
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Table 2. Measurement Plan. 

Objective Metric(s) Target / comment 

Reduce attacker dwell 

time 

Mean time-to-detect, mean time-to-contain Downward trend vs. pre-deployment 

baseline 

Maintain analyst 

workload 

Alerts/1,000 users/day; true-positive yield No net increase in total investigation 

time 

Bound privacy risk (ε, δ) budgets; empirical membership-inference 

AUC 

ε within policy; AUC ≈ 0.5 under attack 

Improve robustness Attack success rate under CW/PGD; calibration 

error 

↓ Attack success; better calibration on 

OOD 

Standards alignment Control coverage and mapping Documented mapping to SP 800-53 / 

ZTA 

 

Figure 1. Reported U.S. healthcare data breaches (≥500 records), selected years (2014, 2015, 2021). Source: 

HIPAA Journal analyses. 

 

Figure 2. Average cost of a data breach (IBM 2022): Healthcare ($10.1M) vs. all industries ($4.35M). 



Nazmul Hasan, Imran Hossain Rasel, Moshiour Rahman, Kamrul Islam, Muhibbul Arman, Nusrat Jahan/ IJCESEN 8-3(2022)85-93 

 

92 

 

4. Conclusions 

 
Patient-data protection is inseparable from national 

security when healthcare is a designated critical 

infrastructure. Breach trends and costs underscore 

the urgency, while policy and standards (PPD-21, 

NIST SP 800-53/207, SP 1800-30) provide the 

governance scaffold. Pre-July-2022 research 

demonstrates that ML can sharpen detection across 

identity, device, and network layers but only if 

engineered for privacy and robustness from the 

outset. Federated learning with secure aggregation, 

differential privacy, and encryption-assisted 

inference can enable collaborative learning without 

centralizing PHI; adversarial testing and Zero Trust 

integration ensure that models not only score risk 

but also enforce safer access. Our methodology 

translates these ideas into deployable pipelines, 

metrics, and governance. The goal is not perfect 

prevention; it is resilience shorter dwell times, 

faster containment, and protection of clinical 

continuity. By investing in secure ML as security 

infrastructure, U.S. healthcare organizations can 

reduce patient harm, meet regulatory obligations, 

and contribute to national preparedness against 

escalating cyber threats. 

Limitations and Future Directions  

This paper synthesizes pre-July-2022 evidence and 

proposes a deployment methodology, but it does 

not present prospective clinical trials of ML 

defenses. Real-world efficacy depends on local 

context: EHR/IAM logging fidelity, device 

inventory accuracy, and SOC processes vary 

widely. Privacy-preserving methods incur overhead 

and tradeoffs: DP can degrade minority-pattern 

detection; FL complicates debugging; secure 

aggregation and HE add latency and operational 

complexity. Adversarial robustness for clinical AI 

remains an active research area robust training can 

reduce accuracy or fail under adaptive 

attacks.Evaluation is another limitation. Label 

scarcity for true security incidents can bias results 

toward synthetic tests; cross-site generalization 

requires careful domain adaptation. Measurement 

should therefore combine retrospective incident 

labels, red-team exercises, and controlled 

simulations, with governance formulas that accept 

model uncertainty (e.g., using risk signals to require 

step-up authentication rather than outright 

blocking).Future work should: (1) develop 

federated benchmarks for healthcare security 

telemetry with standard schemas and privacy 

budgets; (2) explore Byzantine-robust and 

attack-aware FL aggregation to resist poisoned 

updates; (3) advance privacy accounting tools 

usable by non-specialists; (4) integrate formal 

methods for safety constraints in clinical AI; (5) 

evaluate human-in-the-loop interfaces that explain 

anomalies to clinicians and analysts to reduce alert 

fatigue; and (6) connect economic models (e.g., 

IBM-style cost drivers) to security-control ROI to 

support sustained investment. Finally, regulators 

and standards bodies could extend SP 

1800-30-style practice guides to include 

privacy-preserving analytics playbooks and 

adversarial evaluation protocols for 

FDA-regulated AI devices providing concrete, 

testable expectations that vendors and providers can 

meet. 
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