

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.4 (2025) pp. 7130-7142
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

GenSL-Trans: Direct Visual-to-Visual Arabic-to-English Sign Language Translation

via Mobile-Optimized Unet-Transformers in Immersive Environments

Hadj Ahmed BOUARARA1*, Kadda BENYAHIA2 , Rahmani Mohamed Elhadi3

1 GeCoDe Laboratory, Tahar Moulay University, Saida , Algeria
* Corresponding Author Email: Hadjahmed.bouarara@univ-saida.dz - ORCID: 0000-0002-4973-4385

2 GeCoDe Laboratory, Tahar Moulay University, Saida , Algeria

Email: benyahiak@gmail.com- ORCID: 0000-0002-6394-0855

 3 GeCoDe Laboratory, Tahar Moulay University, Saida , Algeria

Email: r_m_elhadi@yahoo.fr- ORCID: 0000-0001-5924-9888

Article Info:

DOI: 10.22399/ijcesen.3821

Received : 22 July 2025

Accepted : 21 September 2025

Keywords

Mobile Interactive

Direct Sign Language Translation

Metaverse

Transformer

GPT

BERT

Abstract:

We propose a real-time, mobile-interactive pipeline for direct Arabic-to-English Sign

Language (ArSL-to-ESL) translation in the metaverse, preserving the visual-spatial

nature of sign languages without textual intermediaries. Central to this system is a newly

created bilingual mapping dataset between Arabic and English sign language, which

enables accurate cross-lingual alignment of gestural patterns and forms the foundation

for direct, grammar-preserving translation. The system captures gestures via VR headsets

or smartphone cameras at 90 fps (1080p, H.264), with on-device preprocessing

(OpenCV) optimized via NNAPI or Core ML. A quantized YOLOv11 (int8) model with

Kalman tracking achieves 92% accuracy on the mapping dataset with <11 ms inference

on mobile GPUs. Visual features are encoded via 14×14 patch embedding into 256D

tokens and processed by GenSL-Trans a lightweight (14M params) vision Transformer

(8 heads, FFN=1024) to map sign gestures directly to target ESL representations. The Bi-

LSTM, BERT, and GPT-2 decoders generate spatiotemporal sequences with adaptive on-

device/cloud execution. A CNN-based renderer with Conv2DT layers and U-Net skips

produces 224×224 px video frames, driving a lightweight 3D avatar streamed via glTF

and rendered in real time using WebXR, accessible on mobile browsers (iOS/Android)

or VR headsets, with end-to-end latency <180 ms. Mobile interactivity allows touch-

based control (start/stop, speed, expressions, feedback), ensuring accessibility and

personalization. By integrating on-device AI, direct gesture-to-gesture translation, and

immersive rendering, our system provides an inclusive communication bridge for Deaf

users across Arabic- and English-speaking communities.

1. Introduction

Arabic Sign Language (ArSL) is a complete visual-

gestural language, central to the identity and

communication of Deaf communities across the

Arab world. Unlike spoken or written Arabic, ArSL

conveys meaning through coordinated hand

movements, facial expressions, and body posture—

modalities that are inherently spatial, temporal, and

multimodal. Despite growing interest in AI-driven

accessibility, ArSL remains marginalized,

particularly in emerging immersive environments

like the Metaverse, where real-time, avatar-mediated

interaction could revolutionize inclusion. Yet, most

existing sign language translation systems fail to

respect the nature of sign languages: they do not

translate gesture to gesture, but instead rely on an

intermediate textual representation. This two-step

pipeline sign-to-text, then text-to-sign—is not only

inefficient but fundamentally flawed. It forces a

visual language into a linear, symbolic format,

discarding non-manual features (e.g., eyebrow

raises, mouth morphemes) that carry grammatical

and emotional meaning. This results in semantic

loss, expressive flattening, and increased latency,

undermining the fluidity required for natural

communication in immersive or mobile contexts.

Worse, this paradigm assumes written language

proficiency, excluding many Deaf users who may

not be literate in Arabic or English.

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
mailto:iskenderakkurt@sdu.edu.tr
https://orcid.org/0000-0002-6394-0855
https://orcid.org/0000-0001-5924-9888

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7131

The core challenge is therefore clear: How can we

design a real-time, direct ArSL-to-English Sign

Language (ESL) translation system that operates

natively in the visual domain bypassing text entirely

while preserving linguistic richness, cultural

context, and temporal dynamics, and enabling

seamless deployment on mobile devices for

everyday use?Despite progress in gesture

recognition, nearly all current approaches remain

trapped in the text-mediated paradigm. CNN-based

models ([9];[13]; [1]) achieve high accuracy in

isolated sign classification but treat signs as static

images, ignoring temporal flow. RNNs and LSTMs

help model sequences ([12]; [7]), and hybrid CNN-

RNN architectures [6] improve continuous signing

recognition. [8] developed an end-to-end ArSL-to-

spoken Arabic system with 93.7% accuracy but still

relies on intermediate text generation, preventing

true visual-to-visual translation. Avatar-based

systems ([3]; [4]) animate ArSL from written input

using syntactic rules and gesture dictionaries, but are

not designed for direct sign-to-sign translation. They

require pre-translated text and lack the capacity to

handle spontaneous signing or multilingual output.

Even advanced ontology-based methods ([5]; [2])

enhance translation quality by modeling context, yet

remain bound to text-driven pipelines, limiting their

use in real-time, immersive settings.Critically, no

mainstream system performs end-to-end visual

translation from ArSL to ESL gestures. This gap

persists because most research focuses on

recognition, not cross-lingual visual synthesis.

Emerging gloss-free models like GFSLTVLP [10]

and SLQA [14] represent a shift toward direct visual

understanding, using self-supervised learning to

bypass manual annotations. SignBT [11] leverages

back-translation to improve fluency. These are

promising steps, but they remain largely

experimental, server-dependent, and not optimized

for mobile deployment or metaverse integration.

Moreover, mobile interactivity is consistently

overlooked. Deaf users need systems that run on

their smartphones devices they already own and use

daily. They require on-device processing, low-

latency feedback, touch-based controls, and the

ability to adjust avatar behavior in real time. A

mobile interface should not just capture input, but

empower users to initiate translation, correct errors,

or customize expression transforming passive tools

into active communication partners.This work

addresses these gaps by proposing a mobile-first,

end-to-end visual pipeline for direct ArSL-to-ESL

translation. Using a vision transformer (GenSL-

Trans) with patch-based encoding, it maps visual

sign inputs directly to ESL latent representations,

bypassing text and glosses. A generative decoder

produces spatiotemporal sign sequences, rendered

by a CNN with temporal convolutions and U-Net

architecture. The output drives a lightweight 3D

avatar streamed via glTF and animated in real time

using WebXR, accessible on both VR headsets and

mobile browsers. Crucially, mobile interactivity

enables user agency: touch gestures allow control

over translation speed, avatar expressiveness, and

context adaptation. By eliminating text

intermediaries and centering mobile accessibility,

our system ensures that sign language translation is

not only technically advanced but inclusive,

responsive, and usable in real-world settings

2. Mapping dataset ArSL ↔ ESL

As part of our direct translation approach between

Arabic Sign Language (ArSL) and English Sign

Language (ESL) in immersive environments, we

selected three publicly annotated datasets, each

compatible with manual sign detection or

recognition tasks. These resources are not limited to

isolated letters, but serve as a foundation for lexical

sign or full-word recognition. The ArSL21L* dataset

[15] contains 14,202 images representing the 32

letters of the ArSL alphabet (see figure 2), but it also

includes an immersive avatar designed to extend this

base toward the modeling of more complex gestures.

Although initially structured for alphabetic sign

recognition, this dataset can be repurposed for

learning gesture patterns corresponding to words

(see Figure 1).The ArSL18L† corpus [16] provides

54,049 images from over 40 signers. Its volume

makes it particularly suitable for pre-training sign

recognition models, including scenarios extended to

the lexical level. The annotations allow for flexible

use in gesture classification tasks. Finally, the ASL-

YOLO dataset [17] contains 5,200 images covering

24 letters of the ASL alphabet (excluding dynamic

letters), but its annotations and capture conditions

(multiple distances, angles, and movements) provide

a testing ground for isolated gesture detection and

their combination into meaningful units. This corpus

is often used in recognition models that can be

extended to segmentation or word reconstruction in

ASL.

2.1 Cross-linguistic correspondence approach

For bidirectional ArSL–ESL translation, we

developed a gesture alignment strategy based on ISO

233 phonetic transliteration, enabling

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7132

Figure 1. words Arabic Sign Language [18]

Figure 2. alphabet and numbers of arabic sign language dataset [19]

structured mapping through phonetic and visual

sign similarity. Of the 32 ArSL letters, 18 have

direct gestural equivalents in ASL (Direct

category), forming the core of the mapping. Three

letters (C1) are matched via visual gesture

similarity despite phonetic differences. Another

three (C2) rely on phonetic substitution, linking

ArSL phonemes to similar ASL sounds. The

remaining eight (C3) lack direct equivalents and

require alternative solutions such as motion-based

gesture synthesis or designed artificial signs to

ensure coherent representation in automated

translation.

2.2 Handling imbalances and generating

balanced correspondences

In order to balance the distribution of sign

languages and to cover the gap between the

meanings conveyed in ArSL but not in ESL, we

used more advanced data augmentation techniques

and methods: whole-sentence translation, adaptive

scaling for lighting conditions, symmetrical

transformations that result in mirror images and the

creation of new gestures through GANs. By

changing these transformations around, we were

able to create balanced ArSL ↔ ESL pairs centered

at phonemes shared between both standards, or

previously untreated audio segments from one side

with corresponding video on the other. With this

enriched dataset, models are more resilient to

variability in signing. Furthermore, the

continuation of morphology and coherence of

language is maintained. This ensures reliable

translation by the user within an immersive

environment.

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7133

3. Proposed solution : GenSL-Trans

Our proposed solution (illustrated in Figure 3) is

integrated into a Metaverse environment to

facilitate real-time, inclusive communication

between deaf users, with seamless support for

mobile interaction enabling on-the-go access and

user control. The system enables direct translation

between Arabic Sign Language (ArSL) and

English Sign Language (ESL), eliminating the

need for intermediate textual transcription. By

leveraging smartphones as both input and output

devices, users can capture gestures via the mobile

camera and receive translated sign language

animations through an interactive 3D avatar

displayed directly on their screen—empowering

them to initiate, adjust, and personalize the

translation process through touch-based controls,

making the system accessible, responsive, and truly

user-centered.

Figure 3. General Architecture of Our AR/EN Sign Language Translation Pipeline: ArSL ↔ ESL in Real Time for the

Metaverse with Mobile Interaction.

Integrating mobile devices (smartphones, AR

glasses) into a direct ArSL-to-ESL translation

system within the metaverse enhances accessibility

and real-time communication for Deaf and hard-of-

hearing users. Leveraging on-device AI, 3D

avatars, and sensor data, the system enables real-

time, low-latency (<200 ms) translation of sign

language in everyday environments — without

interpreters. Mobile deployment ensures wide

accessibility, especially in underserved regions.

Context-aware models improve accuracy using

gaze, motion, and environment cues. Users interact

via immersive avatars in virtual hubs, supporting

social engagement, language learning, and cross-

cultural communication. Optimized architectures

(e.g., GenSL-Trans) ensure efficiency on mobile

hardware. The scalable, interoperable design

integrates with e-health, education, and

collaboration platforms, paving the way for a

global, inclusive communication network. The

following table 1 highlights our key contributions

and methodological advancements.

The architecture supports dual-mode operation

(VR and mobile) for flexible, accessible use by

Deaf individuals. In VR, a headset with embedded

cameras captures hand and forearm gestures at 90

fps; on mobile, the smartphone’s camera enables

on-the-go input. Video streams are processed with

OpenCV: frames are extracted at a constant rate,

resized to 224×224 pixels, normalized to float32 ∈

[0,1], and optimized for on-device inference using

frameworks like TensorFlow Lite or Core ML.

3.1 Input Mechanism & Mobile Interaction

Gestures are captured via VR headset or

smartphone camera, with automatic adaptation to

lighting and distance. Frames are compressed and

resized to 224×224 px. Mobile users receive real-

time visual feedback and use touch controls to

start/stop recording, switch cameras, or adjust

sensitivity—ensuring intuitive, user-friendly

interaction.

3.2 Hand Segmentation and Motion Tracking

YOLOv11 (quantized for efficiency) detects hands

using anatomical landmarks—edges, contours, and

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7133

Table 1. Overview of the different steps of GenSL-Trans

Steps Method Technical details

Acquisition (VR /

Mobile)

Hand and forearm

capture

Embedded cameras (90 fps): VR headsets and smartphones; 1080p H.264

compressed stream; mobile-optimized mode for low light and software

stabilization.

Preprocessing Redimensionnement &

normalisation
OpenCV → 224 × 224 px, uint8 → float32 ∈ [0,1], executed locally on

mobile SoC (e.g., Android NNAPI / Core ML)

Detection +

Tracking

Segmentation mains Quantized YOLOv11 (int8) + Kalman; inference < 11 ms on mobile

GPU; 92% mAP@0.5 on ArSL21L.

Encoding Patch embedding + PE 14 × 14 patches (448 px) → emb. 256d. Learned position encoding,

compatible with scale variations on mobile.

GenSL-Trans Model visuel Transformer +

Generatif Decoder

Multi-Head = 8, FFN = 1024, LayerNorm. Lightweight model (14M

parameters), optimized for on-device inference.

Decoding Bi-LSTM / BERT /

GPT-2

mapping des états latents → frames ESL. mode hybride : local

(lightweight Bi-LSTM) / cloud (GPT-2) selon la puissance du mobile

Generative Generative CNN + up-

sampling

Conv2DT × 3 + skip (type U-Net) → 224 × 224 px. Results displayed on

a mobile screen with zoom and slow-motion playback options for

enhanced comprehension of signs.

Projection 3D Avatar in the

Metaverse

Streaming via glTF and WebXR enables real-time rendering of 3D

avatars directly in mobile browsers (iOS/Android) or VR headsets

without requiring native apps. This web-based approach ensures broad

accessibility and seamless deployment across platforms. The system

achieves an end-to-end latency of less than 180 ms, making the

interaction highly responsive and suitable for natural, real-time

communication in immersive environments.

Mobile Interaction User control and real-

time feedback

Touch interface: start/stop, avatar speed adjustment, facial expression

selection, contextual correction via gesture or button; synchronization

with the metaverse avatar.

joints—combined with Kalman filtering for

smooth, robust motion tracking across frames. The

model handles motion blur and partial occlusion,

runs in under 11 ms on mid-tier mobile GPUs, and

enables real-time performance in both VR and

mobile settings.

3.3 Translation Model (GenSL-Trans)

The core component, GenSL-Trans, performs

direct Arabic to English sign language translation

using a generative transformer, eliminating textual

intermediaries. As illustrated in figure 4, it

combines CNNs for spatial features, RNNs for

temporal dynamics, and multi-head attention (8

heads, FFN size 1024) to model long-range

dependencies. A generative decoder produces

latent ESL representations, rendered as animated

avatars for immersive visualization.

3.4 Patch Embedding and Positionnal

Encoding (PE)

the input image of size H*W is divided into non-

overlapping patches of size P*P, yielding (
𝐻

𝑃
) ×

(
𝑊

𝑃
) patches. Each patch is flattened and linearly

embedded into a vector. To enhance local feature

extraction, we apply a small CNN stem: conv2D

→ max pool → conv2D → max pool, before

feeding patches into the transformer. Positional

encoding is added to preserve spatial information.

For example, an I image (4×4), to simplify things,

where each element represents the value of a

pixel. With P=2, we have 4 patches, as follows:

𝐼 = [

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

]

Patch 1 (top-left): [
1 2
5 6

]

Patch 2 (top-right): [
3 4
7 8

]

Patch 3 (bottom-left): [
9 10

13 14
]

Patch 4 (bottom-right): [
11 12
15 16

]

 Patch 1 flattened to a vector of size 4x1)

mailto:mAP@0.5

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7135

𝑃1 = [

1
2
5
6

]

The embedding vector for the P1 patch is obtained

by formula 1 :

𝐸1 = 𝑊 × 𝑃1 (1)

𝐸1 = [

0.2 0.1 0.4 0.3
0.5 0.3 0.2 0.1
0.4 0.4 0.3 0.2
0.1 0.6 0.2 0.4

] [

1
2
5
6

] = [

4.2
2.7
3.9
4.7

]

Positional encoding (PE) is included to convey

information about the location of patches within

the image, as the transformer encoder cannot

inherently recognize spatial or sequential

relationships. For each patch, we will generate a

positional encoding vector. A common approach

for this is to utilize trigonometric functions, as

follows:

PE(𝑃𝑂𝑆, 2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖
𝐷

) , 

PE(𝑝𝑜𝑠, 2𝑖 + 1) = cos (
𝑝𝑜𝑠

100002𝑖/𝐷
)

• D: is the encoding dimension.

• POS: represents the position of the patch in

the patch sequence.

For this example, we will calculate a positional

encoding on a dimension d=4 and for i=1,2,3,4

(since we have 4 patches). For the first patch

Position i=1:

PE1,0 = sin(1) ≈ 0.841, PE1,1 = cos(1) ≈ 0.540

Now we add the positional encodings to the

embeddings of the corresponding patches using

formula 2.

 Patchfinal=Vectoremb+PE(pos) (2)

𝐸1′ = 𝐸1 + 𝑃𝐸1 = [

4.2
2.7
3.9
4.7

] + [

0.841
0.540

0
0

] = [

5.041
3.240

3.9
4.7

]

3.5 Multi-Head Attention and Mapping gesture

The multi-head attention mechanism enables the

model to focus on key gesture regions (e.g., hands,

fingers) simultaneously across different subspaces.

Outputs from all heads are concatenated and

normalized. To decode encoder features, we

evaluated bidirectional LSTM, BERT, and GPT-2,

leveraging their ability to fuse deep and contextual

information for improved gesture representation

and translation quality.

3.5.1 Model 1 : Bidirectional LSTM (Mobile-

Optimized for Sign Language Translation)

The model in table 2 is employed to capture

dependencies between different parts of an image.

It transforms the extracted features into a

sequential representation by stacking multiple

bidirectional LSTM layers, enabling a deeper

understanding of complex spatial and temporal

relationships. Additionally, an attention

mechanism is integrated to focus on regions of

interest within the image according to the

contextual cues of the sign, thereby improving the

interpretation of intricate gestures. Mobile

interaction is incorporated into this model to allow

real-time sign language translation through

portable devices, facilitating seamless

communication in dynamic environments. Below

is a summary of the model presented in a table,

detailing the layers, output shapes, and the number

of parameters

3.5.2 Model 2: BERT (Mobile-Optimized for

Sign Language Translation)

We leveraged a pre-trained BERT model (see table

3), specifically TFBertModel from the Hugging

Face Transformers library, to process sequential

data in the context of sign language translation.

While BERT is originally designed for natural

language processing, we adapted it for visual tasks

by representing sign language images or video

frames as a sequence of patch-based embeddings.

This transformation enables the model to interpret

spatial-temporal patterns in signing as contextual

sequences, capturing long-range dependencies

crucial for accurate translation from Arabic Sign

Language to English text To ensure compatibility

with mobile applications, the BERT-based

architecture has been optimized for on-device

deployment. This includes model quantization,

layer pruning, and conversion to lightweight

formats such as TensorFlow Lite, significantly

reducing computational load and memory usage.

These optimizations allow efficient inference on

smartphones and tablets, enabling real-time, offline

sign language translation without relying on

constant cloud connectivity. Additionally, the

integration of mobile interaction features—such as

camera feed processing, gesture segmentation, and

user-friendly output display—ensures a seamless

and responsive experience. The model is designed

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

20

to run efficiently on mobile hardware, supporting

accessibility in real-world environments and

empowering users with instant, portable

communication tools for Arabic-to-English sign

language translation.

Table 2. GenSL-Trans configuration and number of parameters using bid-LSTM model decoder

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 224, 224, 3) 0

rescaling (Rescaling) (None, 224, 224, 3) 0

conv2d (Conv2D) (None, 112, 112, 64) 9,472

max_pooling2d (MaxPooling2D) (None, 56, 56, 64) 0

conv2d_1 (Conv2D) (None, 56, 56, 128) 73,856

max_pooling2d_1 (MaxPooling2D) (None, 28, 28, 128) 0

conv2d_2 (Conv2D) (None, 28, 28, 256) 295,168

flatten (Flatten) (None, 200704) 0

embedding (Embedding) (None, 200704, 256) 51,417,984

add (Add) (None, 200704, 256) 0

multi_head_attention (None, 200704, 256) 263,168

add_1 (Add) (None, 200704, 256) 0

layer_normalization (None, 200704, 256) 512

bidirectional (Bidirectional) (None, 200704, 1024) 2,099,200

attention (Attention) (None, 200704, 1024) 1,049,600

add_2 (Add) (None, 200704, 1024) 0

dense (Dense) (None, 200704, 1024) 1,049,600

batch_normalization (None, 200704, 1024) 4,096

reshape (Reshape) (None, 7, 7, 256) 0

Conv2d_transpose (None, 14, 14, 256) 590,080

Conv2d_transpose_1 (None, 28, 28, 128) 295,040

Conv2d_transpose_2 (None, 56, 56, 64) 73,792

Conv2d_3 (Conv2D) (None, 56, 56, 3) 195

Total params 56,222,824

Trainable params 56,218,952

Non-trainable params 3,872

.Table 3. GenSL-Trans configuration and number of parameters using BERT model decoder

Layer (type) Output Shape Param #
Input_1 (None, 224, 224, 3) 0

Rescaling (None, 224, 224, 3) 0

Conv2d (None, 112, 112, 64) 9,472

Max_pooling2d (None, 56, 56, 64) 0

conv2d_1 (None, 56, 56, 128) 73,856

Max_pooling2d_1 (None, 28, 28, 128) 0

conv2d_2 (None, 28, 28, 256) 295,168

Flatten (Flatten) (None, 200704) 0

Transformer_model (None, 200704, 256) 110,634,240

Attention (None, 200704, 256) 0

add_1 (Add) (None, 200704, 256) 0

Dense (Dense) (None, 200704, 1024) 263,168

Batch_normalization (None, 200704, 1024) 4,096

Reshape (Reshape) (None, 7, 7, 256) 0

Conv2d_transpose (None, 14, 14, 256) 590,080

Conv2d_transpose_1 (None, 28, 28, 128) 295,040

Conv2d_transpose_2 (None, 56, 56, 64) 73,792

Conv2d_3 (None, 56, 56, 3) 195

Total params 111,858,993

Trainable params 111,855,121

Non-trainable params 3,872

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7137

3.5.3 Model 3: GPT-2 (Mobile-Adapted for Sign

Language Generation)

Our model (see table 4) uses a pre-trained

TFGPT2LMHeadModel (Hugging Face) to

generate English sign language gestures from

encoded image patches. Visual input is split into

patches, embedded, and fed sequentially into GPT-

2, which autoregressively generates high-level

gesture features. These are upsampled via

Conv2DTranspose layers to produce 224×224

output frames. An InputLayer ensures

compatibility between vision encoder and GPT-2

decoder. The model has 530M parameters, with

530M trainable.Optimized for mobile via

distillation, quantization, and layer freezing, it

enables efficient on-device inference on mid-tier

smartphones with low latency. Integrated into a

mobile app, it translates Arabic text/speech into

real-time sign sequences, with playback controls

and responsive rendering—supporting inclusive,

offline-capable communication for Deaf users.

3.6 Dense layer

The Dense layer (1,024 units) generates a compact

latent representation of the target sign gesture by

encoding high-level features from convolutional

and pooling layers. These layers extract

hierarchical spatial and semantic patterns,

represented as feature maps, which are flattened

into a 1D vector before being projected into a

condensed, meaningful latent space—suitable for

downstream tasks like generation or classification.

Table 4. GenSL-Trans configuration and number of parameters using GPT-2 model decoder

Layer (type) Output Shape Param #
input_1 (None, 224, 224, 3) 0

rescaling (Rescaling) (None, 224, 224, 3) 0

conv2d (Conv2D) (None, 112, 112, 64) 9,472

max_pooling2d (None, 56, 56, 64) 0

conv2d_1 (Conv2D) (None, 56, 56, 128) 73,856

max_pooling2d_1 (None, 28, 28, 128) 0

conv2d_2 (Conv2D) (None, 28, 28, 256) 295,168

flatten (Flatten) (None, 200704) 0

dense (Dense) (None, 1024) 205,005,824

batch_normalization (None, 1024) 4,096

gpt_input (InputLayer) (None, 1) 0

gpt2 (None, 1, 50257) 124,439,808

reshape (Reshape) (None, 7, 7, 256) 0

conv2d_transpose (None, 14, 14, 256) 590,080

conv2d_transpose_1 (None, 28, 28, 128) 295,040

conv2d_transpose_2 (None, 56, 56, 64) 73,792

conv2d_3 (Conv2D) (None, 56, 56, 3) 195

Total params 530,107,503

Trainable params 530,106,991

Non-trainable params 511

3.7 Generative Sign Language Video (Mobile-

Integrated Real-Time Synthesis)

A generative CNN synthesizes realistic ESL

gesture images, outputting pixel values in [0,1] via

sigmoid activation, reshaped into 224×224×3 RGB

frames. Conv2DTranspose layers progressively

upscale the latent vector, preserving hand, face, and

posture details. Skip connections (inspired by U-

Net) enhance sharpness by fusing low-level

features. Generated frames are temporally

sequenced, with optical flow or latent morphing

ensuring smooth transitions. Post-processing

improves clarity. Optimized for mobile, the

pipeline supports real-time, on-device synthesis

using lightweight models and hardware

acceleration (GPU/NPU). The output can be

played, shared, or rendered on 3D avatars in

AR/Metaverse. This end-to-end system enables

instant, accurate translation of Arabic text/speech

into natural ESL video anytime, anywhere

supporting inclusive communication for Deaf

users.

4. Results and discussion

To evaluate the effectiveness of our interlingual

translation pipeline, we conducted a series of

experiments using three distinct neural

architectures: GPT, BERT, and Bi-LSTM, each

applied to detection and generation tasks under

comparable conditions. Our goal was to assess how

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7138

well each model handles gestural sequence

recognition and produces accurate target-language

representations. We trained each model on a shared

dataset composed of aligned ArSL–ESL sign pairs,

using data augmentation techniques. The dataset

was split into 70% training, 15% validation, and

15% test sets. Metrics such as accuracy, F1-score

(for detection), and BLEU score (for generation)

were used to measure performance. The best results

are illustrated in the following tables and figures.

Table 5. Best results of GenSL-Trans with Variation in Patch Size.

Patch Size Accuracy F1-Score Generation

BLEU Score

Generation

METEOR Score

Generation

ROUGE Score

64x64 85% 0.83 0.70 0.74 0.72

128x128 86% 0.84 0.72 0.76 0.74

224x224 88% 0.87 0.75 0.80 0.78

256x256 89% 0.86 0.74 0.79 0.77

320x320 90% 0.88 0.76 0.81 0.79

448x448 90% 0.88 0.77 0.81 0.80

512x512 89% 0.86 0.76 0.80 0.78

640x640 88% 0.85 0.75 0.78 0.76

1024x1024 87% 0.84 0.74 0.77 0.75

1280x1280 86% 0.82 0.72 0.75 0.73

The results illustrated in the table 5 show that

increasing patch size generally improves both

classification and generation performance up to a

point. From 64×64 to 448×448, we observe steady

gains, with 448×448 achieving the best overall

results across all metrics (Accuracy = 90%, F1 =

0.88, BLEU = 0.77, METEOR = 0.81, ROUGE =

0.80). Beyond this size, performance plateaus or

slightly drops, despite higher visual resolution.

This decline may result from increased

computational cost, potential overfitting, and input

redundancy. Very large patches like 1024×1024 or

1280×1280 provide no significant benefit and may

even degrade model generalization. Thus, 448×448

is identified as the optimal patch size, offering the

best trade-off between accuracy, translation

quality, and efficiency. These findings support the

development of practical and scalable sign

language translation systems.The results

demonstrate that the learning rate has a significant

impact on both classification and generation

performance. As the learning rate decreases from

0.1 to 0.0001, there is a consistent improvement in

all metrics. The best overall performance is

achieved at 0.0001, with the highest classification

accuracy (91%) and F1-score (0.89), as well as

peak generation scores (BLEU = 0.78, METEOR =

0.82, ROUGE = 0.81). At higher learning rates

(especially above 0.01), the model shows signs of

training instability, resulting in lower scores across

all evaluation criteria. Conversely, learning rates

below 0.0001 (e.g., 0.00005 or 0.00001) also lead

to slight performance drops, likely due to slower

convergence or underfitting. Therefore, a learning

rate of 0.0001 offers the best trade-off, providing

stable training and optimal translation quality. This

value can be considered the most suitable choice

for fine-tuning models in the context of sign

language translation.

Figure. 5. Best results of GenSL-Trans with Variation

of Epoch Number.

The results in figure 5 show that model

performance improves steadily up to 100 epochs,

with classification accuracy rising from 84% to

92% and the F1-score reaching 0.90. Translation

quality, measured by BLEU, METEOR, and

ROUGE, also increases significantly. Beyond 100

epochs, performance plateaus and begins to decline

after 150 epochs, with accuracy dropping to 87%

by 500 epochs indicating overfitting. Thus, 100

epochs offer the optimal balance between learning

and generalization. Smaller batch sizes,

particularly 16 and 32, yield the best performance.

Batch size 16 achieves the highest classification

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7139

accuracy (90%) and F1-score (0.88), along with

strong generation scores (BLEU: 0.77, METEOR:

0.81, ROUGE: 0.79), likely due to more frequent

weight updates and better generalization. In

contrast, larger batches (e.g., 1024 or 2048) lead to

performance degradation, with accuracy falling to

83–84%, suggesting reduced

generalization.Experiments on GPT-2, BERT, and

Bi-LSTM models for bidirectional English–Arabic

sign language translation identified optimal

hyperparameters: an image patch size of 448×448

pixels, a learning rate of 0.0001, 100 epochs, and a

batch size of 16–32. These settings ensure high

translation accuracy, training stability, and

computational efficiency. Finally, a video

generation phase uses a U-Net-based CNN

architecture to produce smooth and realistic sign

language video sequences from the translated

outputs. This completes the pipeline into a

functional system for accurate, end-to-end visual

translation. These results establish a strong

foundation for future developments in automated

sign language translation .

Table. 6. Best results of GenSL-Trans with variations in patch size and their impact on output video generation and

complexity.

Patch Size Blue

Score

METEOR

Score

ROUGE

Score

Perplexity Cumulative

Loss

#time #param

64x64 0.70 0.74 0.72 15.2 1.05 1h 30m 22,283,544

128x128 0.72 0.76 0.74 14.5 1.02 1h 45m 22,283,544

224x224 0.75 0.80 0.78 13.5 0.98 2h 10m 22,283,544

256x256 0.74 0.79 0.77 14.0 1.00 2h 20m 22,283,544

320x320 0.76 0.81 0.79 13.0 0.96 2h 30m 22,283,544

448x448 0.77 0.81 0.80 12.5 0.94 3h 00m 22,283,544

512x512 0.76 0.79 0.78 13.1 0.97 3h 10m 22,283,544

640x640 0.75 0.78 0.77 13.4 0.99 3h 40m 22,283,544

1024x1024 0.74 0.76 0.75 14.3 1.01 4h 00m 22,283,544

1280x1280 0.72 0.74 0.72 15.0 1.04 4h 30m 22,283,544

Increasing the patch size improves generative

performance (as reflected in BLEU, METEOR, and

ROUGE scores), but also leads to higher perplexity

and longer training times. The model achieves

optimal performance with a patch size of 448×448;

beyond this point, computational cost increases

significantly with diminishing returns in

performance.The learning rate significantly

influences both the quality of generated sequences

and the stability of training in the GenSL-Trans

model. A rate of 0.0001 achieves the best overall

performance, yielding peak BLEU (0.78),

METEOR (0.82), and ROUGE (0.81) scores, along

with the lowest perplexity (12.3) and cumulative

loss (0.93), indicating accurate, fluent generation

and stable convergence. In contrast, higher rates

(0.01–0.1) cause training instability, poor

generalization, and degraded outputs, while lower

rates (0.00005–0.00001) slow convergence

without meaningful gains, increasing

computational cost. Thus, 0.0001 offers the

optimal balance between efficiency, accuracy, and

stability. When deployed in mobile or edge

environments such as real-time sign language

translation on smartphones or AR/VR headsets this

well-optimized training regime enables compact,

robust models that support low-latency inference,

efficient quantization, and smooth on-device

interaction, making the system highly suitable for

inclusive, mobile-based assistive communication

tools in real-world immersive applications. As

illustrated in table 7, the optimal number of epochs

for generation is 100. Beyond 100 epochs,

performance begins to degrade, suggesting a risk of

overfitting. Training time also increases with the

number of epochs. Additionally, smaller batc h

sizes (16 and 32) yield the best performance in

terms of BLEU, METEOR, and ROUGE scores.

They also enable smoother learning with lower

perplexity and reduced cumulative loss, although

they slightly increase training time. From a mobile

interaction perspective, these training choices have

direct implications: a model trained with 100

epochs and an optimal batch size achieves a

balanced trade-off between accuracy and inference

efficiency, making it well-suited for deployment on

mobile or edge devices. The resulting model can be

optimized for fast, low-latency inference—critical

for real-time sign language translation in mobile

AR/VR headsets or smartphones—where

responsiveness, energy efficiency, and seamless

user interaction are essential for inclusive

communication in immersive environments.

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

19

Table. 7. Best Performance of GenSL-Trans with Varying Number of Epochs and Its Impact on Video Generation

Quality and Model Complexity.

Epochs BLEU

Score

METEOR

Score

ROUGE

Score

Perplexity Cumulative

Loss

Time #param

30 0.68 0.72 0.70 15.8 1.10 1h 00m 22,283,544

50 0.75 0.80 0.78 14.0 1.02 1h 40m 22,283,544

70 0.76 0.81 0.79 13.5 0.98 2h 00m 22,283,544

100 0.78 0.82 0.81 12.3 0.93 2h 30m 22,283,544

120 0.77 0.81 0.79 12.6 0.95 3h 00m 22,283,544

150 0.76 0.80 0.78 13.2 0.98 3h 20m 22,283,544

200 0.75 0.79 0.77 13.4 1.01 4h 00m 22,283,544

250 0.74 0.78 0.76 13.7 1.03 4h 30m 22,283,544

300 0.73 0.76 0.74 14.0 1.06 5h 00m 22,283,544

500 0.72 0.74 0.72 15.2 1.10 7h 00m 22,283,544

Table. 8. Comparative between three used translation

models (GPT, BERT and Bi-LSTM).

Mode

l

Translatio

n

Accuracy

F1-

Scor

e

 BLEU

(Generation

)

Inferenc

e Time

(avg)

GPT 0.813 0.809 0.74 210ms

BER

T

91.3% 0.89 0.62 180ms

Bi-

LST

M

87.5% 0.85 0.59 95ms

Figure 6. The ROC curve of GENSL-Trans with three

translation models (GPT, BERT, BI-LSTM)

The table 8 explains that the BERT-mobile model

outperformed other models in sign detection,

owing to its deep bidirectional context encoding.

GPT achieved the best scores in sign generation,

demonstrating its strength in coherent output

synthesis. Bi-LSTM, while lighter and faster,

showed reduced performance on longer or

ambiguous sequences, but still provided

competitive results.The ROC curve analysis (see

figure 6) compares three models integrated

with the GenSL-Trans module for sign

language classification. GPT + GenSL-Trans

achieves the highest performance with an AUC

of 0.99, indicating near-perfect class

discrimination, as its curve closely approaches

the top-left corner of the ROC space. BERT +

GenSL-Trans follows closely with an AUC of

0.98, showing strong performance, especially

at low false positive rates, confirming its

robustness in real-world scenarios. In contrast,

Bi-LSTM + GenSL-Trans lags behind with an

AUC of 0.91, exhibiting reduced sensitivity

and less optimal generalization, particularly in

distinguishing subtle gesture variations. These

results highlight the superiority of

Transformer-based architectures when

combined with spatial-temporal encoders like

GenSL-Trans.For mobile and on-device

deployment, the high AUC and low false

positive rate of GPT + GenSL-Trans and

BERT + GenSL-Trans are critical: they enable

fast, accurate gesture recognition with minimal

errors, even in noisy or dynamic environments.

This reliability supports real-time feedback in

mobile AR/VR or wearable systems, where

users depend on immediate and correct

responses for seamless communication.

Although GPT delivers the best performance,

BERT offers a better efficiency-accuracy

trade-off, making it more suitable for resource-

constrained mobile devices due to its smaller

footprint and lower latency. Thus, BERT +

GenSL-Trans emerges as the preferred choice

for inclusive, real-time sign language

interfaces in mobile assistive applications.

5. Conclusion

The end-to-end pipeline for direct sign language

translation from ArSL (Arab Sign Language) to

ESL (English Sign Language) has demonstrated

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7141

strong technical consistency and functional

efficiency within an immersive virtual

environment. From motion capture using VR

cameras to real-time projection onto a 3D avatar in

the metaverse, each component operates

cohesively with low latency and high visual

fidelity, enabling natural and responsive

communication. At the motion detection and

tracking stage, the integration of a quantized

YOLOv11 model with a Kalman filter achieved

outstanding performance, reaching 92% accuracy

on the ArSL21L dataset. This high precision

ensures reliable detection and tracking of hand and

body keypoints, providing a robust foundation for

subsequent feature extraction and translation.For

visual encoding, a patch-based embedding strategy

was employed to extract localized spatial features

from video frames, which were then processed by

GenSL-Trans a lightweight, customized Vision

Transformer architecture specifically designed for

sign language sequences. With only 14 million

parameters and optimized for mobile execution,

GenSL-Trans efficiently captures both spatial

configurations and temporal dynamics, enabling

accurate modeling of complex, continuous signing.

The most significant performance improvements,

however, were observed at the linguistic decoding

stage. Here, a BERT-based decoder outperformed

alternatives such as Bi-LSTM and GPT-2 in

contextual accuracy, fluency, and long-range

coherence. BERT’s bidirectional architecture

enables deep contextual understanding, allowing

the system to resolve ambiguities and preserve

grammatical structure across extended sequences a

crucial requirement for generating natural and

intelligible sign language outputs. This highlights

the transformative potential of pre-trained

language models in sign-to-sign translation, where

semantic and syntactic fidelity are paramount.All

experiments were conducted using a newly

developed bilingual mapping dataset bridging

ArSL and ASL (American Sign Language), which

enables direct, grammar-preserving translation

without reliance on spoken language

intermediaries. This dataset serves as a

foundational resource for cross-sign-language

alignment and facilitates the training of models that

generalize across linguistic and regional variations

in signing. Furthermore, the entire model stack

from gesture encoding to video generation was

designed with mobile deployment in mind.

Techniques such as model quantization, parameter

minimization, and on-device acceleration (via

NNAPI and Core ML) ensure real-time inference

on smartphones and standalone VR headsets,

making the system accessible and

scalable.Addionally, the audiovisual rendering

pipeline employs a CNN-based upsampling

network with U-Net skip connections to generate

smooth, high-resolution (224×224 px) video

sequences. These drive a lightweight 3D avatar

streamed via glTF and rendered in real time using

WebXR, accessible on mobile browsers

(iOS/Android) or VR devices. Critically, the

system achieves an end-to-end latency of less than

180 ms, well within the threshold for natural,

interactive dialogue. These results not only validate

the technical feasibility of real-time ArSL→ESL

translation in immersive environments but also

underscore the importance of integrating robust

vision models, optimized Transformers, and

context-aware decoders. By combining a high-

quality cross-lingual dataset, mobile-efficient

architectures, and immersive rendering, this work

establishes a scalable, inclusive framework for the

future of accessible communication in the

metaverse.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] M. Alamri and S. Lajmi, "Design a smart platform

translating Arabic sign language to English

language," Int. J. Power Electron. Drive Syst., vol.

14, no. 4, pp. 4759–4774, Dec. 2024, doi:

10.11591/ijece.v14i4.pp4759-4774.

[2] E. K. Elsayed and D. R. Fathy, "Sign language

semantic translation system using ontology and

deep learning," Int. J. Adv. Comput. Sci. Appl.,

vol. 11, no. 1, pp. 137–144, 2020, doi:

10.14569/IJACSA.2020.0110118.

[3] N. Aouiti and M. Jemni, "Translation system from

Arabic text to Arabic sign language," J. Arabic

Hadj Ahmed BOUARARA, Kadda BENYAHIA , Rahmani Mohamed Elhadi/ IJCESEN 11-4(2025)7130-7142

7142

Islamic Stud., vol. 3, no. 2, pp. 57–70, 2018, doi:

10.33633/JAIS.V3I2.2041.

[4] A. A. Alethary, A. H. Aliwy, and N. S. Ali,

"Automated Arabic-Arabic sign language

translation system based on 3D avatar technology,"

Int. J. Adv. Appl. Sci., vol. 11, no. 4, pp. 383–396,

Dec. 2022, doi: 10.11591/ijaas.v11.i4.pp383-396.

[5] A. M. Almasoud and H. S. Al-Khalifa, "A

proposed semantic machine translation system for

translating Arabic text to Arabic sign language," in

Proc. 5th Int. Conf. Pervasive Technol. Related to

Assistive Environ., Heraklion, Greece, Jun. 2011,

pp. 1–8, doi: 10.1145/2107556.2107579.

[6] A. Boukdir, M. Benaddy, A. Ellahyani, O. E.

Meslouhi, and M. Kardouchi, "Isolated video-

based Arabic sign language recognition using

convolutional and recursive neural networks,"

Arabian J. Sci. Eng., vol. 47, no. 2, pp. 2187–2199,

2022. doi: 10.1007/s13369-021-05979-8.

[7] R. S. Abdul Ameer, M. A. Ahmed, Z. T. Al-Qaysi,

M. M. Salih, and M. L. Shuwandy, "Empowering

communication: A deep learning framework for

Arabic sign language recognition with an attention

mechanism," Computers, vol. 13, no. 6, p. 153,

Jun. 2024. doi: 10.3390/computers13060153.

[8] K. M. Nahar, A. Almomani, N. Shatnawi, and M.

Alauthman, "A robust model for translating Arabic

sign language into spoken Arabic using deep

learning," Intell. Autom. Soft Comput., vol. 37, no.

3, pp. 2037–2057, 2023. doi:

10.32604/iasc.2023.038175.

[9] S. Hayani, M. Benaddy, O. El Meslouhi, and M.

Kardouchi, "Arab sign language recognition with

convolutional neural networks," in Proc. 2019 Int.

Conf. Comput. Sci. Renew. Energy (ICCSRE),

Marrakech, Morocco, Jul. 2019, pp. 1–4. doi:

10.1109/ICCSRE47301.2019.8963530.

[10] B. Zhou, Z. Chen, A. Clapés, J. Wan, Y. Liang, S.

Escalera, and D. Zhang, "Gloss-free sign language

translation: Improving from visual-language

pretraining," in Proc. IEEE/CVF Int. Conf.

Comput. Vis. (ICCV), Oct. 2023, pp. 20 871–

20 881. doi: 10.1109/ICCV51070.2023.01925.

[11] H. Zhou, W. Zhou, W. Qi, J. Pu, and H. Li,

"Improving sign language translation with

monolingual data by sign back-translation," in

Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2021, pp. 1316–1325. doi:

10.1109/CVPR51954.2021.00136.

[12] 1E. Mahmoud, K. Wassif, and H. Bayomi,

"Transfer learning and recurrent neural networks

for automatic Arabic sign language recognition,"

in Adv. Mach. Learn. Technol. Appl., ser. AISC,

vol. 1490, A. E. Hassanien et al., Eds. Springer,

Cham, 2022, pp. 47–59. doi: 10.1007/978-3-030-

95065-2_5.

[13] Y. Saleh and G. Issa, "Arabic sign language

recognition through deep neural networks fine-

tuning," in Proc. Int. Conf. Adv. Intell. Syst. Signal

Process. (AISSP), 2020, pp. 45–50. [Online].

Available:

https://www.researchgate.net/publication/344347

972

[14] L. Gao, W. Feng, P. Shi, R. Han, D. Lin, and L.

Wan, "Sign language translation with hierarchical

memorized context in question answering

scenarios," Neural Comput. Appl., 2024. doi:

10.1007/s00521-024-10042-5.

[15] G. Latif, J. Alghazo, N. Mohammad, R. AlKhalaf,

and R. AlKhalaf, "Arabic Alphabets Sign

Language Dataset (ArASL)," Mendeley Data, v. 1,

2018. [Online]. Available:

https://doi.org/10.17632/y7pckrw6z2.1

[16] G. Latif et al., "ArSL21L – Arabic Sign Language

Letter Dataset," Mendeley Data, 2024. [Online].

Available:

https://data.mendeley.com/datasets/f63xhm286w/

1

[17] J. Béres, L. Makra, and A. Gulyás, "YOLOv3-

based real-time sign language hand gesture

detection," in Proc. 12th IEEE Int. Conf. on

Computational Cybernetics (ICCC), Hungary,

2020, pp. 1–6. doi:

10.1109/ICCC49849.2020.9252075.

[18] R. Ameer, M. A. Ahmed, Z. Al-Qaysi, M. Salih,

and M. Shuwandy, "Empowering Communication:

A Deep Learning Framework for Arabic Sign

Language Recognition with an Attention

Mechanism," Computers, vol. 13, no. 6, p. 153,

2024. doi: 10.3390/computers13060153.

[19] A. B. H. Amor, O. El Ghoul, and M. Jemni, "An

EMG dataset for Arabic sign language alphabet

letters and numbers," Data in Brief, vol. 51, p.

109770, 2023, doi: 10.1016/j.dib.2023.109770 .

https://www.researchgate.net/publication/344347972
https://www.researchgate.net/publication/344347972
https://doi.org/10.17632/y7pckrw6z2.1
https://data.mendeley.com/datasets/f63xhm286w/1
https://data.mendeley.com/datasets/f63xhm286w/1
https://doi.org/10.1016/j.dib.2023.109770

