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Abstract:  
 

We propose a real-time, mobile-interactive pipeline for direct Arabic-to-English Sign 

Language (ArSL-to-ESL) translation in the metaverse, preserving the visual-spatial 

nature of sign languages without textual intermediaries. Central to this system is a newly 

created bilingual mapping dataset between Arabic and English sign language, which 

enables accurate cross-lingual alignment of gestural patterns and forms the foundation 

for direct, grammar-preserving translation. The system captures gestures via VR headsets 

or smartphone cameras at 90 fps (1080p, H.264), with on-device preprocessing 

(OpenCV) optimized via NNAPI or Core ML. A quantized YOLOv11 (int8) model with 

Kalman tracking achieves 92% accuracy on the mapping dataset with <11 ms inference 

on mobile GPUs. Visual features are encoded via 14×14 patch embedding into 256D 

tokens and processed by GenSL-Trans a lightweight (14M params) vision Transformer 

(8 heads, FFN=1024) to map sign gestures directly to target ESL representations. The Bi-

LSTM, BERT, and GPT-2 decoders generate spatiotemporal sequences with adaptive on-

device/cloud execution. A CNN-based renderer with Conv2DT layers and U-Net skips 

produces 224×224 px video frames, driving a lightweight 3D avatar streamed via glTF 

and rendered in real time using WebXR, accessible on mobile browsers (iOS/Android) 

or VR headsets, with end-to-end latency <180 ms. Mobile interactivity allows touch-

based control (start/stop, speed, expressions, feedback), ensuring accessibility and 

personalization. By integrating on-device AI, direct gesture-to-gesture translation, and 

immersive rendering, our system provides an inclusive communication bridge for Deaf 

users across Arabic- and English-speaking communities. 

 

1. Introduction 
 

Arabic Sign Language (ArSL) is a complete visual-

gestural language, central to the identity and 

communication of Deaf communities across the 

Arab world. Unlike spoken or written Arabic, ArSL 

conveys meaning through coordinated hand 

movements, facial expressions, and body posture—

modalities that are inherently spatial, temporal, and 

multimodal. Despite growing interest in AI-driven 

accessibility, ArSL remains marginalized, 

particularly in emerging immersive environments 

like the Metaverse, where real-time, avatar-mediated 

interaction could revolutionize inclusion. Yet, most 

existing sign language translation systems fail to 

respect the nature of sign languages: they do not 

translate gesture to gesture, but instead rely on an 

intermediate textual representation. This two-step 

pipeline sign-to-text, then text-to-sign—is not only 

inefficient but fundamentally flawed. It forces a 

visual language into a linear, symbolic format, 

discarding non-manual features (e.g., eyebrow 

raises, mouth morphemes) that carry grammatical 

and emotional meaning. This results in semantic 

loss, expressive flattening, and increased latency, 

undermining the fluidity required for natural 

communication in immersive or mobile contexts. 

Worse, this paradigm assumes written language 

proficiency, excluding many Deaf users who may 

not be literate in Arabic or English. 

http://www.ijcesen.com/
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The core challenge is therefore clear: How can we 

design a real-time, direct ArSL-to-English Sign 

Language (ESL) translation system that operates 

natively in the visual domain bypassing text entirely 

while preserving linguistic richness, cultural 

context, and temporal dynamics, and enabling 

seamless deployment on mobile devices for 

everyday use?Despite progress in gesture 

recognition, nearly all current approaches remain 

trapped in the text-mediated paradigm. CNN-based 

models ([9];[13]; [1]) achieve high accuracy in 

isolated sign classification but treat signs as static 

images, ignoring temporal flow. RNNs and LSTMs 

help model sequences ([12]; [7]), and hybrid CNN-

RNN architectures [6] improve continuous signing 

recognition. [8] developed an end-to-end ArSL-to-

spoken Arabic system with 93.7% accuracy but still 

relies on intermediate text generation, preventing 

true visual-to-visual translation. Avatar-based 

systems ([3]; [4]) animate ArSL from written input 

using syntactic rules and gesture dictionaries, but are 

not designed for direct sign-to-sign translation. They 

require pre-translated text and lack the capacity to 

handle spontaneous signing or multilingual output. 

Even advanced ontology-based methods ([5]; [2]) 

enhance translation quality by modeling context, yet 

remain bound to text-driven pipelines, limiting their 

use in real-time, immersive settings.Critically, no 

mainstream system performs end-to-end visual 

translation from ArSL to ESL gestures. This gap 

persists because most research focuses on 

recognition, not cross-lingual visual synthesis. 

Emerging gloss-free models like GFSLTVLP [10] 

and SLQA [14] represent a shift toward direct visual 

understanding, using self-supervised learning to 

bypass manual annotations. SignBT [11] leverages 

back-translation to improve fluency. These are 

promising steps, but they remain largely 

experimental, server-dependent, and not optimized 

for mobile deployment or metaverse integration. 

Moreover, mobile interactivity is consistently 

overlooked. Deaf users need systems that run on 

their smartphones devices they already own and use 

daily. They require on-device processing, low-

latency feedback, touch-based controls, and the 

ability to adjust avatar behavior in real time. A 

mobile interface should not just capture input, but 

empower users to initiate translation, correct errors, 

or customize expression transforming passive tools 

into active communication partners.This work 

addresses these gaps by proposing a mobile-first, 

end-to-end visual pipeline for direct ArSL-to-ESL 

translation. Using a vision transformer (GenSL-

Trans) with patch-based encoding, it maps visual 

                                                           

 

sign inputs directly to ESL latent representations, 

bypassing text and glosses. A generative decoder 

produces spatiotemporal sign sequences, rendered 

by a CNN with temporal convolutions and U-Net 

architecture. The output drives a lightweight 3D 

avatar streamed via glTF and animated in real time 

using WebXR, accessible on both VR headsets and 

mobile browsers. Crucially, mobile interactivity 

enables user agency: touch gestures allow control 

over translation speed, avatar expressiveness, and 

context adaptation. By eliminating text 

intermediaries and centering mobile accessibility, 

our system ensures that sign language translation is 

not only technically advanced but inclusive, 

responsive, and usable in real-world settings 

 

2. Mapping dataset ArSL ↔ ESL 
 

As part of our direct translation approach between 

Arabic Sign Language (ArSL) and English Sign 

Language (ESL) in immersive environments, we 

selected three publicly annotated datasets, each 

compatible with manual sign detection or 

recognition tasks. These resources are not limited to 

isolated letters, but serve as a foundation for lexical 

sign or full-word recognition. The ArSL21L* dataset 

[15] contains 14,202 images representing the 32 

letters of the ArSL alphabet (see figure 2), but it also 

includes an immersive avatar designed to extend this 

base toward the modeling of more complex gestures. 

Although initially structured for alphabetic sign 

recognition, this dataset can be repurposed for 

learning gesture patterns corresponding to words 

(see Figure 1).The ArSL18L† corpus [16] provides 

54,049 images from over 40 signers. Its volume 

makes it particularly suitable for pre-training sign 

recognition models, including scenarios extended to 

the lexical level. The annotations allow for flexible 

use in gesture classification tasks. Finally, the ASL-

YOLO dataset [17] contains 5,200 images covering 

24 letters of the ASL alphabet (excluding dynamic 

letters), but its annotations and capture conditions 

(multiple distances, angles, and movements) provide 

a testing ground for isolated gesture detection and 

their combination into meaningful units. This corpus 

is often used in recognition models that can be 

extended to segmentation or word reconstruction in 

ASL.  

 

2.1 Cross-linguistic correspondence approach 

For bidirectional ArSL–ESL translation, we 

developed a gesture alignment strategy based on ISO 

233 phonetic transliteration, enabling
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Figure 1.  words Arabic Sign Language  [18] 

 

 

Figure 2.  alphabet and numbers of arabic sign language dataset [19] 

structured mapping through phonetic and visual 

sign similarity. Of the 32 ArSL letters, 18 have 

direct gestural equivalents in ASL (Direct 

category), forming the core of the mapping. Three 

letters (C1) are matched via visual gesture 

similarity despite phonetic differences. Another 

three (C2) rely on phonetic substitution, linking 

ArSL phonemes to similar ASL sounds. The 

remaining eight (C3) lack direct equivalents and 

require alternative solutions such as motion-based 

gesture synthesis or designed artificial signs to 

ensure coherent representation in automated 

translation. 

 

2.2 Handling imbalances and generating 

balanced correspondences 

 

In order to balance the distribution of sign 

languages and to cover the gap between the 

meanings conveyed in ArSL but not in ESL, we 

used more advanced data augmentation techniques 

and methods: whole-sentence translation, adaptive 

scaling for lighting conditions, symmetrical 

transformations that result in mirror images and the 

creation of new gestures through GANs. By 

changing these transformations around, we were 

able to create balanced ArSL ↔ ESL pairs centered 

at phonemes shared between both standards, or 

previously untreated audio segments from one side 

with corresponding video on the other. With this 

enriched dataset, models are more resilient to 

variability in signing. Furthermore, the 

continuation of morphology and coherence of 

language is maintained. This ensures reliable 

translation by the user within an immersive 

environment. 
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3. Proposed solution : GenSL-Trans  
 

Our proposed solution (illustrated in Figure 3) is 

integrated into a Metaverse environment to 

facilitate real-time, inclusive communication 

between deaf users, with seamless support for 

mobile interaction enabling on-the-go access and 

user control. The system enables direct translation 

between Arabic Sign Language (ArSL) and 

English Sign Language (ESL), eliminating the 

need for intermediate textual transcription. By 

leveraging smartphones as both input and output 

devices, users can capture gestures via the mobile 

camera and receive translated sign language 

animations through an interactive 3D avatar 

displayed directly on their screen—empowering 

them to initiate, adjust, and personalize the 

translation process through touch-based controls, 

making the system accessible, responsive, and truly 

user-centered. 

 

 
Figure 3. General Architecture of Our AR/EN Sign Language Translation Pipeline: ArSL ↔ ESL in Real Time for the 

Metaverse with Mobile Interaction. 

Integrating mobile devices (smartphones, AR 

glasses) into a direct ArSL-to-ESL translation 

system within the metaverse enhances accessibility 

and real-time communication for Deaf and hard-of-

hearing users. Leveraging on-device AI, 3D 

avatars, and sensor data, the system enables real-

time, low-latency (<200 ms) translation of sign 

language in everyday environments — without 

interpreters. Mobile deployment ensures wide 

accessibility, especially in underserved regions. 

Context-aware models improve accuracy using 

gaze, motion, and environment cues. Users interact 

via immersive avatars in virtual hubs, supporting 

social engagement, language learning, and cross-

cultural communication. Optimized architectures 

(e.g., GenSL-Trans) ensure efficiency on mobile 

hardware. The scalable, interoperable design 

integrates with e-health, education, and 

collaboration platforms, paving the way for a 

global, inclusive communication network. The 

following table 1 highlights our key contributions 

and methodological advancements. 

The architecture supports dual-mode operation 

(VR and mobile) for flexible, accessible use by 

Deaf individuals. In VR, a headset with embedded 

cameras captures hand and forearm gestures at 90 

fps; on mobile, the smartphone’s camera enables 

on-the-go input. Video streams are processed with 

OpenCV: frames are extracted at a constant rate, 

resized to 224×224 pixels, normalized to float32 ∈ 

[0,1], and optimized for on-device inference using 

frameworks like TensorFlow Lite or Core ML. 

 

3.1  Input Mechanism & Mobile Interaction 

Gestures are captured via VR headset or 

smartphone camera, with automatic adaptation to 

lighting and distance. Frames are compressed and 

resized to 224×224 px. Mobile users receive real-

time visual feedback and use touch controls to 

start/stop recording, switch cameras, or adjust 

sensitivity—ensuring intuitive, user-friendly 

interaction.  

 

3.2 Hand Segmentation and Motion Tracking 

YOLOv11 (quantized for efficiency) detects hands 

using anatomical landmarks—edges, contours, and 
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Table 1. Overview of the different steps of GenSL-Trans 

Steps Method Technical details 

Acquisition (VR / 

Mobile) 

Hand and forearm 

capture 

 

Embedded cameras (90 fps): VR headsets and smartphones; 1080p H.264 

compressed stream; mobile-optimized mode for low light and software 

stabilization. 

Preprocessing Redimensionnement & 

normalisation 
OpenCV → 224 × 224 px, uint8 → float32 ∈ [0,1], executed locally on 

mobile SoC (e.g., Android NNAPI / Core ML) 

Detection + 

Tracking 

Segmentation mains Quantized YOLOv11 (int8) + Kalman; inference < 11 ms on mobile 

GPU; 92% mAP@0.5 on ArSL21L. 

Encoding Patch embedding + PE 14 × 14 patches (448 px) → emb. 256d. Learned position encoding, 

compatible with scale variations on mobile. 

GenSL-Trans Model visuel Transformer + 

Generatif Decoder 

Multi-Head = 8, FFN = 1024, LayerNorm. Lightweight model (14M 

parameters), optimized for on-device inference. 

Decoding Bi-LSTM / BERT / 

GPT-2 

mapping des états latents → frames ESL. mode hybride : local 

(lightweight Bi-LSTM) / cloud (GPT-2) selon la puissance du mobile 

Generative Generative CNN + up-

sampling 

Conv2DT × 3 + skip (type U-Net) → 224 × 224 px. Results displayed on 

a mobile screen with zoom and slow-motion playback options for 

enhanced comprehension of signs. 

Projection 3D Avatar in the 

Metaverse 

Streaming via glTF and WebXR enables real-time rendering of 3D 

avatars directly in mobile browsers (iOS/Android) or VR headsets 

without requiring native apps. This web-based approach ensures broad 

accessibility and seamless deployment across platforms. The system 

achieves an end-to-end latency of less than 180 ms, making the 

interaction highly responsive and suitable for natural, real-time 

communication in immersive environments. 

Mobile Interaction User control and real-

time feedback 

Touch interface: start/stop, avatar speed adjustment, facial expression 

selection, contextual correction via gesture or button; synchronization 

with the metaverse avatar. 

joints—combined with Kalman filtering for 

smooth, robust motion tracking across frames. The 

model handles motion blur and partial occlusion, 

runs in under 11 ms on mid-tier mobile GPUs, and 

enables real-time performance in both VR and 

mobile settings.  

 

3.3 Translation Model (GenSL-Trans)  

The core component, GenSL-Trans, performs 

direct Arabic to English sign language translation 

using a generative transformer, eliminating textual 

intermediaries. As illustrated in figure 4, it 

combines CNNs for spatial features, RNNs for 

temporal dynamics, and multi-head attention (8 

heads, FFN size 1024) to model long-range 

dependencies. A generative decoder produces 

latent ESL representations, rendered as animated 

avatars for immersive visualization. 

 

 

 

3.4 Patch Embedding and Positionnal 

Encoding (PE) 

the input image of size H*W is divided into non-

overlapping patches of size P*P, yielding (
𝐻

𝑃
) ×

(
𝑊

𝑃
) patches. Each patch is flattened and linearly 

embedded into a vector. To enhance local feature 

extraction, we apply a small CNN stem: conv2D 

→ max pool → conv2D → max pool, before 

feeding patches into the transformer. Positional 

encoding is added to preserve spatial information. 

For example, an I image (4×4), to simplify things, 

where each element represents the value of a 

pixel. With P=2, we have 4 patches, as follows: 

𝐼 = [

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

] 

Patch 1 (top-left): [
1 2
5 6

]   

Patch 2 (top-right): [
3 4
7 8

]  

Patch 3 (bottom-left): [
9 10

13 14
] 

Patch 4 (bottom-right): [
11 12
15 16

] 

 Patch 1 flattened to a vector of size 4x1)   

mailto:mAP@0.5
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𝑃1 = [

1
2
5
6

]  

The embedding vector for the P1 patch is obtained 

by formula 1 :  

𝐸1 = 𝑊 × 𝑃1                                (1) 

𝐸1 = [

0.2 0.1 0.4 0.3
0.5 0.3 0.2 0.1
0.4 0.4 0.3 0.2
0.1 0.6 0.2 0.4

] [

1
2
5
6

] = [

4.2
2.7
3.9
4.7

] 

Positional encoding (PE) is included to convey 

information about the location of patches within 

the image, as the transformer encoder cannot 

inherently recognize spatial or sequential 

relationships. For each patch, we will generate a 

positional encoding vector. A common approach 

for this is to utilize trigonometric functions, as 

follows: 

PE(𝑃𝑂𝑆, 2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖
𝐷

) ,  

PE(𝑝𝑜𝑠, 2𝑖 + 1) = cos (
𝑝𝑜𝑠

100002𝑖/𝐷
) 

 

• D: is the encoding dimension.  

• POS: represents the position of the patch in 

the patch sequence. 

For this example, we will calculate a positional 

encoding on a dimension d=4 and for i=1,2,3,4 

(since we have 4 patches). For the first patch 

Position i=1: 

PE1,0 = sin(1) ≈ 0.841, PE1,1 = cos(1) ≈ 0.540 

Now we add the positional encodings to the 

embeddings of the corresponding patches using 

formula 2. 

   
 Patchfinal=Vectoremb+PE(pos)            (2) 

𝐸1′ = 𝐸1 + 𝑃𝐸1 = [

4.2
2.7
3.9
4.7

] + [

0.841
0.540

0
0

] = [

5.041
3.240

3.9
4.7

] 

3.5 Multi-Head Attention and Mapping gesture 

The multi-head attention mechanism enables the 

model to focus on key gesture regions (e.g., hands, 

fingers) simultaneously across different subspaces. 

Outputs from all heads are concatenated and 

normalized. To decode encoder features, we 

evaluated bidirectional LSTM, BERT, and GPT-2, 

leveraging their ability to fuse deep and contextual 

information for improved gesture representation 

and translation quality. 

3.5.1 Model 1 : Bidirectional LSTM (Mobile-

Optimized for Sign Language Translation) 

The model in table 2 is employed to capture 

dependencies between different parts of an image. 

It transforms the extracted features into a 

sequential representation by stacking multiple 

bidirectional LSTM layers, enabling a deeper 

understanding of complex spatial and temporal 

relationships. Additionally, an attention 

mechanism is integrated to focus on regions of 

interest within the image according to the 

contextual cues of the sign, thereby improving the 

interpretation of intricate gestures. Mobile 

interaction is incorporated into this model to allow 

real-time sign language translation through 

portable devices, facilitating seamless 

communication in dynamic environments. Below 

is a summary of the model presented in a table, 

detailing the layers, output shapes, and the number 

of parameters 

3.5.2 Model 2: BERT (Mobile-Optimized for 

Sign Language Translation) 

We leveraged a pre-trained BERT model (see table 

3), specifically TFBertModel from the Hugging 

Face Transformers library, to process sequential 

data in the context of sign language translation. 

While BERT is originally designed for natural 

language processing, we adapted it for visual tasks 

by representing sign language images or video 

frames as a sequence of patch-based embeddings. 

This transformation enables the model to interpret 

spatial-temporal patterns in signing as contextual 

sequences, capturing long-range dependencies 

crucial for accurate translation from Arabic Sign 

Language to English text To ensure compatibility 

with mobile applications, the BERT-based 

architecture has been optimized for on-device 

deployment. This includes model quantization, 

layer pruning, and conversion to lightweight 

formats such as TensorFlow Lite, significantly 

reducing computational load and memory usage. 

These optimizations allow efficient inference on 

smartphones and tablets, enabling real-time, offline 

sign language translation without relying on 

constant cloud connectivity. Additionally, the 

integration of mobile interaction features—such as 

camera feed processing, gesture segmentation, and 

user-friendly output display—ensures a seamless 

and responsive experience. The model is designed 
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to run efficiently on mobile hardware, supporting 

accessibility in real-world environments and 

empowering users with instant, portable 

communication tools for Arabic-to-English sign 

language translation. 

 

 

Table 2. GenSL-Trans configuration and number of parameters using bid-LSTM model decoder 

Layer (type) Output Shape Param # 
input_1 (InputLayer) (None, 224, 224, 3) 0 

rescaling (Rescaling) (None, 224, 224, 3) 0 

conv2d (Conv2D) (None, 112, 112, 64) 9,472 

max_pooling2d (MaxPooling2D) (None, 56, 56, 64) 0 

conv2d_1 (Conv2D) (None, 56, 56, 128) 73,856 

max_pooling2d_1 (MaxPooling2D) (None, 28, 28, 128) 0 

conv2d_2 (Conv2D) (None, 28, 28, 256) 295,168 

flatten (Flatten) (None, 200704) 0 

embedding (Embedding) (None, 200704, 256) 51,417,984 

add (Add) (None, 200704, 256) 0 

multi_head_attention (None, 200704, 256) 263,168 

add_1 (Add) (None, 200704, 256) 0 

layer_normalization (None, 200704, 256) 512 

bidirectional (Bidirectional) (None, 200704, 1024) 2,099,200 

attention (Attention) (None, 200704, 1024) 1,049,600 

add_2 (Add) (None, 200704, 1024) 0 

dense (Dense) (None, 200704, 1024) 1,049,600 

batch_normalization (None, 200704, 1024) 4,096 

reshape (Reshape) (None, 7, 7, 256) 0 

Conv2d_transpose (None, 14, 14, 256) 590,080 

Conv2d_transpose_1 (None, 28, 28, 128) 295,040 

Conv2d_transpose_2 (None, 56, 56, 64) 73,792 

Conv2d_3 (Conv2D) (None, 56, 56, 3) 195 

Total params 56,222,824 

Trainable params 56,218,952 

Non-trainable params 3,872 

.Table 3. GenSL-Trans configuration and number of parameters using BERT model decoder 

 

 

 

 

 

 

 

 

 

 

Layer (type) Output Shape Param # 
Input_1 (None, 224, 224, 3) 0 

Rescaling (None, 224, 224, 3) 0 

Conv2d (None, 112, 112, 64) 9,472 

Max_pooling2d (None, 56, 56, 64) 0 

conv2d_1 (None, 56, 56, 128) 73,856 

Max_pooling2d_1 (None, 28, 28, 128) 0 

conv2d_2 (None, 28, 28, 256) 295,168 

Flatten (Flatten) (None, 200704) 0 

Transformer_model (None, 200704, 256) 110,634,240 

Attention  (None, 200704, 256) 0 

add_1 (Add) (None, 200704, 256) 0 

Dense (Dense) (None, 200704, 1024) 263,168 

Batch_normalization (None, 200704, 1024) 4,096 

Reshape (Reshape) (None, 7, 7, 256) 0 

Conv2d_transpose (None, 14, 14, 256) 590,080 

Conv2d_transpose_1 (None, 28, 28, 128) 295,040 

Conv2d_transpose_2 (None, 56, 56, 64) 73,792 

Conv2d_3 (None, 56, 56, 3) 195 

Total params 111,858,993 

Trainable params 111,855,121 

Non-trainable params 3,872 
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3.5.3 Model 3: GPT-2 (Mobile-Adapted for Sign 

Language Generation) 

Our model (see table 4) uses a pre-trained 

TFGPT2LMHeadModel (Hugging Face) to 

generate English sign language gestures from 

encoded image patches. Visual input is split into 

patches, embedded, and fed sequentially into GPT-

2, which autoregressively generates high-level 

gesture features. These are upsampled via 

Conv2DTranspose layers to produce 224×224 

output frames. An InputLayer ensures 

compatibility between vision encoder and GPT-2 

decoder. The model has 530M parameters, with 

530M trainable.Optimized for mobile via 

distillation, quantization, and layer freezing, it 

enables efficient on-device inference on mid-tier 

smartphones with low latency. Integrated into a 

mobile app, it translates Arabic text/speech into 

real-time sign sequences, with playback controls 

and responsive rendering—supporting inclusive, 

offline-capable communication for Deaf users. 

3.6 Dense layer  

 

The Dense layer (1,024 units) generates a compact 

latent representation of the target sign gesture by 

encoding high-level features from convolutional 

and pooling layers. These layers extract 

hierarchical spatial and semantic patterns, 

represented as feature maps, which are flattened 

into a 1D vector before being projected into a 

condensed, meaningful latent space—suitable for 

downstream tasks like generation or classification. 

Table 4. GenSL-Trans configuration and number of parameters using GPT-2 model decoder 

Layer (type) Output Shape Param # 
input_1 (None, 224, 224, 3) 0 

rescaling (Rescaling) (None, 224, 224, 3) 0 

conv2d (Conv2D) (None, 112, 112, 64) 9,472 

max_pooling2d (None, 56, 56, 64) 0 

conv2d_1 (Conv2D) (None, 56, 56, 128) 73,856 

max_pooling2d_1 (None, 28, 28, 128) 0 

conv2d_2 (Conv2D) (None, 28, 28, 256) 295,168 

flatten (Flatten) (None, 200704) 0 

dense (Dense) (None, 1024) 205,005,824 

batch_normalization (None, 1024) 4,096 

gpt_input (InputLayer) (None, 1) 0 

gpt2 (None, 1, 50257) 124,439,808 

reshape (Reshape) (None, 7, 7, 256) 0 

conv2d_transpose (None, 14, 14, 256) 590,080 

conv2d_transpose_1 (None, 28, 28, 128) 295,040 

conv2d_transpose_2 (None, 56, 56, 64) 73,792 

conv2d_3 (Conv2D) (None, 56, 56, 3) 195 

Total params 530,107,503  

Trainable params 530,106,991 

Non-trainable params  511 

3.7 Generative Sign Language Video (Mobile-

Integrated Real-Time Synthesis) 

A generative CNN synthesizes realistic ESL 

gesture images, outputting pixel values in [0,1] via 

sigmoid activation, reshaped into 224×224×3 RGB 

frames. Conv2DTranspose layers progressively 

upscale the latent vector, preserving hand, face, and 

posture details. Skip connections (inspired by U-

Net) enhance sharpness by fusing low-level 

features. Generated frames are temporally 

sequenced, with optical flow or latent morphing 

ensuring smooth transitions. Post-processing 

improves clarity. Optimized for mobile, the 

pipeline supports real-time, on-device synthesis 

using lightweight models and hardware 

acceleration (GPU/NPU). The output can be 

played, shared, or rendered on 3D avatars in 

AR/Metaverse. This end-to-end system enables 

instant, accurate translation of Arabic text/speech 

into natural ESL video anytime, anywhere 

supporting inclusive communication for Deaf 

users. 

4. Results and discussion  

To evaluate the effectiveness of our interlingual 

translation pipeline, we conducted a series of 

experiments using three distinct neural 

architectures: GPT, BERT, and Bi-LSTM, each 

applied to detection and generation tasks under 

comparable conditions. Our goal was to assess how 
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well each model handles gestural sequence 

recognition and produces accurate target-language 

representations. We trained each model on a shared 

dataset composed of aligned ArSL–ESL sign pairs, 

using data augmentation techniques. The dataset 

was split into 70% training, 15% validation, and 

15% test sets. Metrics such as accuracy, F1-score 

(for detection), and BLEU score (for generation) 

were used to measure performance. The best results 

are illustrated in the following tables and figures.

Table 5. Best results of GenSL-Trans with Variation in Patch Size. 

Patch Size Accuracy F1-Score Generation 

BLEU Score 

Generation 

METEOR Score 

Generation 

ROUGE Score 

64x64 85% 0.83 0.70 0.74 0.72 

128x128 86% 0.84 0.72 0.76 0.74 

224x224 88% 0.87 0.75 0.80 0.78 

256x256 89% 0.86 0.74 0.79 0.77 

320x320 90% 0.88 0.76 0.81 0.79 

448x448 90% 0.88 0.77 0.81 0.80 

512x512 89% 0.86 0.76 0.80 0.78 

640x640 88% 0.85 0.75 0.78 0.76 

1024x1024 87% 0.84 0.74 0.77 0.75 

1280x1280 86% 0.82 0.72 0.75 0.73 

The results illustrated in the table 5 show that 

increasing patch size generally improves both 

classification and generation performance up to a 

point. From 64×64 to 448×448, we observe steady 

gains, with 448×448 achieving the best overall 

results across all metrics (Accuracy = 90%, F1 = 

0.88, BLEU = 0.77, METEOR = 0.81, ROUGE = 

0.80). Beyond this size, performance plateaus or 

slightly drops, despite higher visual resolution. 

This decline may result from increased 

computational cost, potential overfitting, and input 

redundancy. Very large patches like 1024×1024 or 

1280×1280 provide no significant benefit and may 

even degrade model generalization. Thus, 448×448 

is identified as the optimal patch size, offering the 

best trade-off between accuracy, translation 

quality, and efficiency. These findings support the 

development of practical and scalable sign 

language translation systems.The results 

demonstrate that the learning rate has a significant 

impact on both classification and generation 

performance. As the learning rate decreases from 

0.1 to 0.0001, there is a consistent improvement in 

all metrics. The best overall performance is 

achieved at 0.0001, with the highest classification 

accuracy (91%) and F1-score (0.89), as well as 

peak generation scores (BLEU = 0.78, METEOR = 

0.82, ROUGE = 0.81). At higher learning rates 

(especially above 0.01), the model shows signs of 

training instability, resulting in lower scores across 

all evaluation criteria. Conversely, learning rates 

below 0.0001 (e.g., 0.00005 or 0.00001) also lead 

to slight performance drops, likely due to slower 

convergence or underfitting. Therefore, a learning 

rate of 0.0001 offers the best trade-off, providing 

stable training and optimal translation quality. This 

value can be considered the most suitable choice 

for fine-tuning models in the context of sign 

language translation. 

 
Figure. 5. Best results of GenSL-Trans with Variation 

of Epoch Number. 

The results in figure 5 show that model 

performance improves steadily up to 100 epochs, 

with classification accuracy rising from 84% to 

92% and the F1-score reaching 0.90. Translation 

quality, measured by BLEU, METEOR, and 

ROUGE, also increases significantly. Beyond 100 

epochs, performance plateaus and begins to decline 

after 150 epochs, with accuracy dropping to 87% 

by 500 epochs indicating overfitting. Thus, 100 

epochs offer the optimal balance between learning 

and generalization. Smaller batch sizes, 

particularly 16 and 32, yield the best performance. 

Batch size 16 achieves the highest classification 
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accuracy (90%) and F1-score (0.88), along with 

strong generation scores (BLEU: 0.77, METEOR: 

0.81, ROUGE: 0.79), likely due to more frequent 

weight updates and better generalization. In 

contrast, larger batches (e.g., 1024 or 2048) lead to 

performance degradation, with accuracy falling to 

83–84%, suggesting reduced 

generalization.Experiments on GPT-2, BERT, and 

Bi-LSTM models for bidirectional English–Arabic 

sign language translation identified optimal 

hyperparameters: an image patch size of 448×448 

pixels, a learning rate of 0.0001, 100 epochs, and a 

batch size of 16–32. These settings ensure high 

translation accuracy, training stability, and 

computational efficiency. Finally, a video 

generation phase uses a U-Net-based CNN 

architecture to produce smooth and realistic sign 

language video sequences from the translated 

outputs. This completes the pipeline into a 

functional system for accurate, end-to-end visual 

translation. These results establish a strong 

foundation for future developments in automated 

sign language translation . 

 
Table. 6. Best results of GenSL-Trans with variations in patch size and their impact on output video generation and 

complexity. 

Patch Size Blue 

Score 

METEOR 

Score 

ROUGE 

Score 

Perplexity Cumulative 

Loss 

#time #param 

64x64 0.70 0.74 0.72 15.2 1.05 1h 30m 22,283,544 

128x128 0.72 0.76 0.74 14.5 1.02 1h 45m 22,283,544 

224x224 0.75 0.80 0.78 13.5 0.98 2h 10m 22,283,544 

256x256 0.74 0.79 0.77 14.0 1.00 2h 20m 22,283,544 

320x320 0.76 0.81 0.79 13.0 0.96 2h 30m 22,283,544 

448x448 0.77 0.81 0.80 12.5 0.94 3h 00m 22,283,544 

512x512 0.76 0.79 0.78 13.1 0.97 3h 10m 22,283,544 

640x640 0.75 0.78 0.77 13.4 0.99 3h 40m 22,283,544 

1024x1024 0.74 0.76 0.75 14.3 1.01 4h 00m 22,283,544 

1280x1280 0.72 0.74 0.72 15.0 1.04 4h 30m 22,283,544 

Increasing the patch size improves generative 

performance (as reflected in BLEU, METEOR, and 

ROUGE scores), but also leads to higher perplexity 

and longer training times. The model achieves 

optimal performance with a patch size of 448×448; 

beyond this point, computational cost increases 

significantly with diminishing returns in 

performance.The learning rate significantly 

influences both the quality of generated sequences 

and the stability of training in the GenSL-Trans 

model. A rate of 0.0001 achieves the best overall 

performance, yielding peak BLEU (0.78), 

METEOR (0.82), and ROUGE (0.81) scores, along 

with the lowest perplexity (12.3) and cumulative 

loss (0.93), indicating accurate, fluent generation 

and stable convergence. In contrast, higher rates 

(0.01–0.1) cause training instability, poor 

generalization, and degraded outputs, while lower 

rates (0.00005–0.00001) slow convergence 

without meaningful gains, increasing 

computational cost. Thus, 0.0001 offers the 

optimal balance between efficiency, accuracy, and 

stability. When deployed in mobile or edge 

environments such as real-time sign language 

translation on smartphones or AR/VR headsets this 

well-optimized training regime enables compact, 

robust models that support low-latency inference, 

efficient quantization, and smooth on-device 

interaction, making the system highly suitable for 

inclusive, mobile-based assistive communication 

tools in real-world immersive applications. As 

illustrated in table 7, the optimal number of epochs 

for generation is 100. Beyond 100 epochs, 

performance begins to degrade, suggesting a risk of 

overfitting. Training time also increases with the 

number of epochs. Additionally, smaller batc h 

sizes (16 and 32) yield the best performance in 

terms of BLEU, METEOR, and ROUGE scores. 

They also enable smoother learning with lower 

perplexity and reduced cumulative loss, although 

they slightly increase training time. From a mobile 

interaction perspective, these training choices have 

direct implications: a model trained with 100 

epochs and an optimal batch size achieves a 

balanced trade-off between accuracy and inference 

efficiency, making it well-suited for deployment on 

mobile or edge devices. The resulting model can be 

optimized for fast, low-latency inference—critical 

for real-time sign language translation in mobile 

AR/VR headsets or smartphones—where 

responsiveness, energy efficiency, and seamless 

user interaction are essential for inclusive 

communication in immersive environments. 
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Table. 7. Best Performance of GenSL-Trans with Varying Number of Epochs and Its Impact on Video Generation 

Quality and Model Complexity. 

Epochs BLEU 

Score 

METEOR 

Score 

ROUGE 

Score 

Perplexity Cumulative 

Loss 

Time  #param 

30 0.68 0.72 0.70 15.8 1.10 1h 00m 22,283,544 

50 0.75 0.80 0.78 14.0 1.02 1h 40m 22,283,544 

70 0.76 0.81 0.79 13.5 0.98 2h 00m 22,283,544 

100 0.78 0.82 0.81 12.3 0.93 2h 30m 22,283,544 

120 0.77 0.81 0.79 12.6 0.95 3h 00m 22,283,544 

150 0.76 0.80 0.78 13.2 0.98 3h 20m 22,283,544 

200 0.75 0.79 0.77 13.4 1.01 4h 00m 22,283,544 

250 0.74 0.78 0.76 13.7 1.03 4h 30m 22,283,544 

300 0.73 0.76 0.74 14.0 1.06 5h 00m 22,283,544 

500 0.72 0.74 0.72 15.2 1.10 7h 00m 22,283,544 

 

Table. 8. Comparative between three used translation 

models (GPT, BERT and Bi-LSTM). 

Mode

l 

Translatio

n 

Accuracy 

F1-

Scor

e 

   BLEU 

(Generation

) 

Inferenc

e Time 

(avg) 

GPT 0.813 0.809 0.74 210ms 

BER

T 

91.3% 0.89 0.62 180ms 

Bi-

LST

M 

87.5% 0.85 0.59 95ms 

 

 

Figure 6. The ROC curve of GENSL-Trans with three 

translation models (GPT, BERT, BI-LSTM)  

The table 8 explains that the BERT-mobile model 

outperformed other models in sign detection, 

owing to its deep bidirectional context encoding. 

GPT achieved the best scores in sign generation, 

demonstrating its strength in coherent output 

synthesis. Bi-LSTM, while lighter and faster, 

showed reduced performance on longer or 

ambiguous sequences, but still provided 

competitive results.The ROC curve analysis (see 

figure 6) compares three models integrated 

with the GenSL-Trans module for sign 

language classification. GPT + GenSL-Trans 

achieves the highest performance with an AUC 

of 0.99, indicating near-perfect class 

discrimination, as its curve closely approaches 

the top-left corner of the ROC space. BERT + 

GenSL-Trans follows closely with an AUC of 

0.98, showing strong performance, especially 

at low false positive rates, confirming its 

robustness in real-world scenarios. In contrast, 

Bi-LSTM + GenSL-Trans lags behind with an 

AUC of 0.91, exhibiting reduced sensitivity 

and less optimal generalization, particularly in 

distinguishing subtle gesture variations. These 

results highlight the superiority of 

Transformer-based architectures when 

combined with spatial-temporal encoders like 

GenSL-Trans.For mobile and on-device 

deployment, the high AUC and low false 

positive rate of GPT + GenSL-Trans and 

BERT + GenSL-Trans are critical: they enable 

fast, accurate gesture recognition with minimal 

errors, even in noisy or dynamic environments. 

This reliability supports real-time feedback in 

mobile AR/VR or wearable systems, where 

users depend on immediate and correct 

responses for seamless communication. 

Although GPT delivers the best performance, 

BERT offers a better efficiency-accuracy 

trade-off, making it more suitable for resource-

constrained mobile devices due to its smaller 

footprint and lower latency. Thus, BERT + 

GenSL-Trans emerges as the preferred choice 

for inclusive, real-time sign language 

interfaces in mobile assistive applications. 

 

5. Conclusion  
 

The end-to-end pipeline for direct sign language 

translation from ArSL (Arab Sign Language) to 

ESL (English Sign Language) has demonstrated 
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strong technical consistency and functional 

efficiency within an immersive virtual 

environment. From motion capture using VR 

cameras to real-time projection onto a 3D avatar in 

the metaverse, each component operates 

cohesively with low latency and high visual 

fidelity, enabling natural and responsive 

communication. At the motion detection and 

tracking stage, the integration of a quantized 

YOLOv11 model with a Kalman filter achieved 

outstanding performance, reaching 92% accuracy 

on the ArSL21L dataset. This high precision 

ensures reliable detection and tracking of hand and 

body keypoints, providing a robust foundation for 

subsequent feature extraction and translation.For 

visual encoding, a patch-based embedding strategy 

was employed to extract localized spatial features 

from video frames, which were then processed by 

GenSL-Trans a lightweight, customized Vision 

Transformer architecture specifically designed for 

sign language sequences. With only 14 million 

parameters and optimized for mobile execution, 

GenSL-Trans efficiently captures both spatial 

configurations and temporal dynamics, enabling 

accurate modeling of complex, continuous signing. 

The most significant performance improvements, 

however, were observed at the linguistic decoding 

stage. Here, a BERT-based decoder outperformed 

alternatives such as Bi-LSTM and GPT-2 in 

contextual accuracy, fluency, and long-range 

coherence. BERT’s bidirectional architecture 

enables deep contextual understanding, allowing 

the system to resolve ambiguities and preserve 

grammatical structure across extended sequences a 

crucial requirement for generating natural and 

intelligible sign language outputs. This highlights 

the transformative potential of pre-trained 

language models in sign-to-sign translation, where 

semantic and syntactic fidelity are paramount.All 

experiments were conducted using a newly 

developed bilingual mapping dataset bridging 

ArSL and ASL (American Sign Language), which 

enables direct, grammar-preserving translation 

without reliance on spoken language 

intermediaries. This dataset serves as a 

foundational resource for cross-sign-language 

alignment and facilitates the training of models that 

generalize across linguistic and regional variations 

in signing. Furthermore, the entire model stack 

from gesture encoding to video generation  was 

designed with mobile deployment in mind. 

Techniques such as model quantization, parameter 

minimization, and on-device acceleration (via 

NNAPI and Core ML) ensure real-time inference 

on smartphones and standalone VR headsets, 

making the system accessible and 

scalable.Addionally, the audiovisual rendering 

pipeline employs a CNN-based upsampling 

network with U-Net skip connections to generate 

smooth, high-resolution (224×224 px) video 

sequences. These drive a lightweight 3D avatar 

streamed via glTF and rendered in real time using 

WebXR, accessible on mobile browsers 

(iOS/Android) or VR devices. Critically, the 

system achieves an end-to-end latency of less than 

180 ms, well within the threshold for natural, 

interactive dialogue. These results not only validate 

the technical feasibility of real-time ArSL→ESL 

translation in immersive environments but also 

underscore the importance of integrating robust 

vision models, optimized Transformers, and 

context-aware decoders. By combining a high-

quality cross-lingual dataset, mobile-efficient 

architectures, and immersive rendering, this work 

establishes a scalable, inclusive framework for the 

future of accessible communication in the 

metaverse. 
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