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Abstract:  

 

This paper describes a controlled pre-silicon Design-for-Test (DFT) feedback loop 

mechanism that allows faster GPU productisation with less test cost. DFT is redefined in 

a one-time metallic achievement into an Observe → Analyze → Decide → Act → Verify 

loop nested within CI/CD. A typical telemetry model allows combining ATPG coverage, 

fault-simulation results, timing and power constraints, diagnosis artifacts, and 

provenance to perform auditable automation. The three levers that are the primary focus 

of controller policies are constraint tuning, timing-aware test-point insertion, and 

selective pattern regeneration, which have been verified for verification gains using A/B 

comparisons to frozen baselines under quality gates. Screening gains are observed on 

typical GPU partition types (streaming-multiprocessor cluster, L2 cache slice, and HBM 

PHY wrappers): +1.6 to 2.8 percentage-point stuck-at and +1.0 to 2.2 percentage-point 

transition coverage; 22 to 38 percent reduced patterns; tens of percent tester time savings; 

and fewer suspect sets in diagnosis. Orchestration capabilities: Content-addressed 

storage, checkpointed compute, license-aware scheduling, keep throughput and 

reproducibility, dashboards expose Pareto tradeoffs and undetected-fault heatmaps to 

concentrate the compute. The limitations include the cell-aware run time, high X-density, 

multi-clock interactions, analog adjacency, seed sensitivity, and inter-tool naming drift, 

which are all alleviated by incremental engines, cache reuse, schema normalization, 

ECO-safe edit windows, power-aware X-filling, and controlled rollbacks. Future research 

will focus on multi-objective controllers, LBIST/MBIST, and in-field telemetry, 

collection of fabrication/test-floor data, cross-generation transfer learning, and open 

benchmarks to achieve sustained comparability and reproducibility across GPU families 

at scale. 

 

1. Introduction 
 

Recent GPUs have tens of billions of transistors, 

heavily pipelined execution units, and a multiported 

array of SRAMs. Design-for-test is emphasized at 

this architectural scale due to a drop off in 

controllability and observability as logic depth, 

clock gating, and power partitioning rise. Shift 

operations are made difficult by long scan chains and 

by shared clock domains, and asynchronous 

boundary mixes with clean launch and capture. 

Large limbs test limitations tend to jeopardize IR-

drop and thermal margins, leading to restrictions on 

hastening convergence. The tester channel 

limitations limit choices in compression. Nasty 

schedules scale up the expense of every pattern. DFT 

complexity grows together with the number of cores 

and high-bandwidth memory added to the designs. 

There must be a feedback loop to convert telemetry 

to action that enhances coverage, minimizes pattern 

count, and rapid productisation without breaking 

performance constraints, power limits, or area. 

The issue of minimizing the restriction of test cost 

subject to coverage, power, and schedule constraints 

of product release is handled. The solution has to 

increase stuck-at and transition coverage of sign-off 

levels, minimize pattern count without 

compromising the level of diagnostic resolution, 

comply with shift and capture power constraints, and 

reduce latency between telemetry and action. The 

DFT coverage is pre-silicon logic: logic scan 

insertion and compression, automatic test pattern 

generation, and fault simulation. Analog and mixed-

signal DFT is reserved only for digital wrappers of 

PHYs and sensors. The direction puts the focus away 

from deterministic stimuli with conditional pseudo-

random seeding, where it compacts favorably. Some 

of the assumptions are RTL freeze windows, 
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controlled ECO entry, sign-off requirements, 

repeatable runs due to version-controlled 

configurations, and vendor-independent integration. 

Content-addressed artifacts infrastructure and farm 

scheduling allow repeatable decision making and 

traceability. 

A stuck-at fault causes a node to assume logic zero 

or one as a permanent value. Transition and path-

delay faults represent timing faults identified 

through launch-capture sequences. Cell-aware 

testing enriches fault models with library defect 

mechanisms. Compression refers to integrated 

deterministic decompression, test compaction, and 

streaming that minimize tester memory and 

channels. The test-point insertion introduces the 

controllability or visibility at specified nets. The 

feedback loop represents an Observe Analyze 

Decide Act Verify cycle that is part of CI/CD. 

Telemetries are eaten, policies prioritize actions, and 

artifacts are recreated, and findings against quality 

gates are compared. The most critical metrics are 

stuck-at coverage (Csa), transition coverage (Ctr), 

pattern count (PC), test time (Ttest), and a proxy of 

DPPM. 

This paper adds a concrete architecture of pre-silicon 

DFT feedback, a normalized data model of covering 

and constraining and the provenance thereof, 

controller policies to tune constraints and rank test-

points, and quality gates that safeguard timing, 

power, and reproducibility. Anticipated deltas will 

be practical: one to three percent absolute coverage 

gain on challenging blocks using dedicated test 

points and more polished constraints; twenty to forty 

percent decrease in pattern count by use of selective 

compaction and adjusted masking; twenty to thirty 

percent decrease in tester time by reduction of 

pattern sets. Other effects are increased farm use of 

the mathematical model, reduced late ECOs, and 

more comprehensible engineering audit trails. As 

compared to ad-hoc flows, the feedback loop serves 

as a replacement by eliminating one-shot decision-

making and replacing it with a measured iteration, 

allowing a data-driven trade-off of his position and 

objectives in performance and area. 

Chapter 2 provides a review of contemporary work 

on big-DFT on SoCs and GPUs, characterization of 

ATPG progress and fault modeling, and the 

feedback-driven orchestration. Chapter 3 explains 

approaches, including the overview of the system, 

fault models, and pattern optimization, test-point and 

scan planning, and KPIs that drive decisions. In 

Chapter 4, the architecture of the feedback loop and 

the integration of the tool chain are stated, including 

telemetry, controllers, orchestration, and quality 

gates. Chapter 5 documents experiments of GPU 

blocks, baselines, coverage results, run time, 

scalability, and test cost. The results concerning 

productisation are interpreted in Chapter 6, trade-

offs and constraints are analyzed, and portability is 

outlined. Chapter 7 suggests future developments of 

multi-objective controllers and post-silicon data 

fusion. Chapter 8 ends with recommendations. 

 

2. Literature Review 
 

2.1 DFT for Large SoCs/GPUs: Scan, 

Compression, LBIST/MBIST 
 

Three realities converge to influence design-for-test 

(DFT) of modern graphics processing units (GPUs): 

extreme sequential depth, power-integrity 

constraints, test-application compliance, and Post-

silicon validation timing pressures to shorten sign-

off windows. Different genres of scan-based DFT 

embody the way that these pressures were 

incorporated into the standard methodology. 

Classical full-scan converted combinational to 

sequential q problems, inserting scan cells as needed 

into the design; however, the shift time and tester 

memory scaled with the number of flip-flops. Scan-

compression architectures broke this linearity, 

compressors at the outputs, and decompressors at the 

inputs of scan paths [23]. Correlation is diffused 

through linear phase shifters, and excitation is 

enhanced, whereas response compactors are based 

on XOR delay pin counts and shift time. 

Compression results in stricter limits on non-known 

(X)-management and on compactor aliasing, and 

sign-off targets optimize the size of practical 

compactor matrices, bound mask allowables, and 

investigate aliasing budgets. Hierarchical scan-

based DFT is signed off as shown in the figure 

above, replicated into the parent block, and 

integrated at the top level, where glue logic, memory 

testing, and interconnect needs are tied off. They 

support GPU realities of extreme depth and 

sequentiality, power-integrity demands, and short 

post-silicon schedules through this staged flow; they 

also support scan-compression tapes. Scan chains 

are fed with decompressors at ingress to a block, and 

responses are gathered out with compactors at 

egress, using linear phase shifters to diffuse 

correlation and compactors based on XOR to reduce 

shift time. Since compression constrains X-

management and aliasing budgets, every hierarchy 

gate plans and optimizes compactor matrix sizes, 

masks, and coverage goals before signifying artifacts 

to the next hierarchy level. 

The chain engineering grew up with compression. 

Timing-aware stitching places lock-up latches 

across domains, constrains the longest chain to
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Figure 1: Hierarchical scan-based DFT sign-off and block replication 

 

encompass the head of shift time, and aligns chains 

to routing resources to limit congestion and skew. 

With GPUs in the tens of chained millions of 

transistors, a dozen asynchronous or mesochronous 

clock domains operate in parallel; scan planning is 

then considered alongside floorplanning, and 

endpoint-to-endpoint routing of chains, clock trees, 

and power grids are co-optimized. Testing, designers 

will accept mission-mode-aware constraints 

(keeping isolation, retention, and power-gating 

intent), such that the test modes are an accurate 

model of real operation and do not have unrealistic 

controllability/observability. 

A power-sensitive test was essential because scan 

toggle is frequently much more common than 

functional switching. Low-toggle X-filling and 

weighted-random fills minimize concurrent 

switching, launch-on-shift capture distributes the 

activity, and constraint pruning prevents risky 

overlaps between test clocks. Flows target per-

pattern toggle density, peak capture current, scan cell 

switching cap enforcement, and patterns that violate 

IR-drop, electromigration, or thermal limits, and 

place them in quarantine. Since GPUs focus on high-

frequency cores and dense SRAMs, the controls 

allow avoidance of false failure at the silicon and 

lower pessimism during pre-silicon fault simulation. 

Built-in self-test (BIST) augments scan. Logic BIST 

(LBIST) tests combinational logic based on on-chip-

generated pseudorandom patterns [14]. It can be 

tested at nearly full speed and with a few tests 

familiar to the tester, thus it sacrifices determinism 

to throughput and can be used to screen structure in 

the lab and test in the field. Memory BIST (MBIST) 

runs March-type algorithms to address stuck-at, 

transition, and coupling errors and orchestrate 

redundancy recovery of yield loss. MBIST is not 

optional in GPUs where register files, caches, and 

fabric buffers consume the majority of array space; 

however, deterministic logic ATPG and its 

associated structural coverage expansion, diagnosis 

resolution, and pattern compaction budgeting are the 

primary tools. The BIST system uses TPG, CUT, 

and RA blocks that coordinate the Logic BIST 

(LBIST) and Memory BIST (MBIST) operations as 

shown in Figure 2 below. The BIST controller drives 

tests, initiating and finishing tests, and generating 

pass/fail outcomes, using pseudorandom patterns 

and March-style algorithms, MBIST and LBIST.

 

 
Figure 2: An Overview of LBIST/MBIST block 

 

2.2 ATPG & Fault Simulation: Coverage Closure 

Techniques 
Closure of that coverage on multi-billion-gate GPUs 

depends on the interaction between deterministic 

and pseudorandom pattern generation, compaction, 

unknowns treatment, and fault modeling. 

Deterministic ATPG addresses specific fault lists, 

enumerating the justification/propagation space with 

explicit mode constraints. Structural dominators, 

dynamic implication learning, conflict-directed 
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backtracking, and cautious branching heuristics give 

the technique scalability. Deterministic approaches 

observe launch/capture timing (launch-on-capture as 

opposed to launch-on-shift), respect power caps. 

They can selectively point to particular cones that 

are sources of residual undetected errors. 

Pseudorandom generation, in LBIST or weighted-

random ATPG, explores large areas of the state 

space quickly, enhances path diversity, and can be 

used as a source of seeds, but can stall on 

reconvergent logic unless the logic is test-pointed 

(TPI) or subjected to deterministic top-up. 

Compaction is constraining and enabling. Spatial 

compactors decrease the number of pins and time 

compactors can compress several capture cycles into 

signatures, although they cause an aliasing risk. The 

probability of aliasing is an analytic quantity when 

the compactor dimension, the expected X-masking, 

and a fault model are known; sign-off limits the 

number of bits masked in a pattern and within a 

pattern set. Since the excessive masking suffers the 

drawback of destroying observability, contemporary 

flows follow the masked-to-observed quotients and 

mark inconvenient schemes that are unlikely to lead 

to effective diagnosis. The method of pattern 

compaction (both static and dynamic) reduces the 

count of vectors through the combination of 

compatible assignments and cutting off dominated 

patterns without loss of detectability or diagnostic 

syndromes [4].  

Unpredictable management is the chief of realism. 

Examples of X-sources are uninitialized memories, 

mixed-signal wrappers, clock-domain crossings, 

asynchronous resets, and power-gated islands. X-

bounding, incomplete scan on recalcitrant sequential 

beings, wrapper logic to sensitize an unsteady 

interface, and test-mode clamps all guard against this 

by the designers. X-filling at the ATPG layer aims to 

take assignments that minimize X-propagation and 

enhance compaction subject to power constraints; 

structural untestability and environmental 

untestability (i.e., constraint conflicts), as well as 

tool artifacts, are reported at the infrastructure layer. 

Such a taxonomy makes it more possible to target 

interventions, e.g., TPI on poor observability, 

constraint relaxation on environmental untestability, 

or waiving on provably redundant faults. 

With the scaling of the technology, fault modeling 

has become more complex. In addition to stuck-at 

and transition/path-delay, cell-aware test generates 

transistor-level defect libraries based on SPICE-

tested standard cells, resulting in a better match to 

actual defect distributions at sophisticated nodes. 

Small-delay defect model and path sensitization look 

at marginal timing escapes pertinent to highly 

pipelined GPU processors [10, 30]. The price is a 

bigger fault universe and stress on ATPG and sims 

runtimes; most groups hence gate cell-aware usage 

on libraries/components where there has been 

proven value, or they run it as a late-stage 

incremental top-up. To maintain their cadence, fault 

simulation engines co-evolved in parallel and 

concurrent simulation to take advantage of word-

level parallelism and event-driven activity, statistic 

fault dropping to terminate previously found faults, 

and incremental engines to reuse correlation paths 

between related patterns. These accelerations 

transform multi-day regressions to overnight cycles 

on a typical compute farm and generate low-

granularity telemetry--per-fault detection counts, 

per-pattern toggle/capture metrics, and masked-bit 

distributions--that power the feedback loop. 

 

2.3 Feedback Loops in EDA Flows and CI/CD for 

Hardware 
 

Continuous integration has recast the way an 

organization views DFT as a single effort into a 

governed feedback loop. One useful loop consumes 

nightly coverage and fault-simulation telemetry, 

normalises logs across tools, and archives artefacts 

in content-addressed storage in such a way that any 

output can be revived off hashes of inputs, scripts, 

and version-specific tools. Automated quality gates 

determine promotions: a candidate pattern set can 

only proceed to the next stage when a configured 

delta has increased structural coverage, power 

metrics are contained within budget, compaction 

ratios are satisfied, and there are no timing-sensitive 

scan stitching regressions. Rollbacks are symmetric 

rollbacks: an artifact-dependent regression outside 

of tolerances is automatically rolled back to the 

previous good artifact [37]. CI dashboards display 

trendlines in coverage, count of patterns, ratios of 

mask bits, test-time forecasts, and compute 

utilization to allow teams to regulate license pools 

and farm schedules. 

Security and governance are part of test artifacts 

since they expose internal design and potentially 

reflect sensitive microarchitectural information. 

DevSecOps concepts such as automated static 

reviews, dynamic testing, and software composition 

analysis are generalized into the hardware one, the 

policy-as-code gates, through which the promotion 

of unsafe patterns is prohibited, and traceability of 

every published pattern set can be traced back to its 

origin [8]. Practically, this becomes mandatory 

metadata (design revision, constraint bundle, tool 

versions, seeds), signature verification of artifacts, 

and change approvals by roles when the change that 

impacts observability paths and any logs shared 

externally are redacted. The result is an auditable, 

reproducible loop in which the pipeline enforces the 
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coverage growth, power safety, and IP hygiene at the 

same time, avoiding ad-hoc human review. 

 

2.4 Data-Driven / Learning-Based Test 

Optimization 
 

Data-driven approaches are gaining popularity as a 

method of making three everyday decisions that 

come to scale with designs: where to add test points, 

how to optimize ATPG constraints, and which 

patterns to cache within tester memory and timing 

budgets. In the case of TPI, attributes would be 

SCOAP-style controllability/observability, netlist-

graph centrality (betweenness, eigenvector scores), 

reconvergence depth, the cardinalities of fan-in/fan-

out, the estimated cone toggling due to random fill, 

historical detectability of faults arriving at a node, 

and closeness to known X-sources. Supervised 

ranking models can rank TPI candidates to maximize 

incremental coverage per area-power cost and can 

satisfy time guardrails. State records the current 

KPIs, coverage, the number of patterns, masked-bit 

budgets, and power peaks. In contrast, actions alter 

capture windows, X-mask budgets, clocking modes, 

and compaction parameters in sequence [18].  In 

their bandit and Bayesian optimization approaches, 

expensive evaluations are concentrated in high-

leverage settings through the use of surrogate models 

trained on previous runs. Reinforcement learning 

can plan loop actions, such as whether to regenerate 

patterns, insert points, or relax a constraint, by carb 

quality gates and resource budgets. 

Pattern ranking counteracts the tester limitation of 

discarding redundant vectors, but not the loss of 

detectability and diagnostic resolution. Isolated 

characteristics comprise the per-pattern contribution 

to coverage, overlapping with neighbors, and 

estimated torture, peak current, and diversity of 

diagnostic syndrome. Robust reductions are also 

attained in a two-stage scheme, fast static ranking 

augmented by focused fault simulations of the 

activated top-K candidates, with no re-simulation of 

the entire set. Whether the emerging machine-

learning literature concerning large models can 

represent heterogeneous inputs and compute over 

them to provide value on targeted queries, it is a 

trend motivated to create multi-signal 

representations of DFT telemetry [32]. To do so in 

practice, a layered data model - raw artifacts, 

normalized to a consistent schema, represented as 

dense vectors to enable learning on graphs, counters, 

bitmaps, and logs with no custom feature 

engineering per tool. 

 

2.5 Gaps and Open Challenges for GPU 

Productisation 

However, there are a few barriers between the 

laboratory-level loops and production-level 

deployments at GPU scale, even though progress is 

ongoing. The first is scale as such. Tens of millions 

of flip-flops throughout netlists generate scan 

architectures involving thousands of chains, 

multiplying the compression ratio into large ratios of 

high-stress aliasing assumptions. By orders of 

magnitude, cell-aware fault lists widen the target 

space and take ATPG as well as simulation run times 

into hundreds of CPU-hours per iteration; lacking 

incremental simulation, checkpointing, and result 

caches, loop cadence becomes impossible to sustain. 

The other one is the fidelity of telemetry. Reports 

should robustly separate structural untestability, 

environmental conflict, and tool artifact; otherwise, 

controllers are optimizing the wrong things [1]. Tool 

normalization cannot be trivially addressed, as tools 

differ in naming, hierarchy, and formatting in 

synthesis, scan insertion, ATPG, and fault 

simulation; stable names and robust actionable 

mappers are needed to assign undetected faults to 

stable causes. 

There is cross-interoperability. One loop blocks 

logic synthesis, scan insertion, ATPG, fault 

simulation, static timing, and place-and-route, each 

with semantically inconsistent artifacts. There may 

be little prospect of relating coverage deficiencies to 

particular nets or constraints without a persistent 

schema and dependable mapping of instance names 

between different compile tasks. Correlation 

services will need to resolve differences in renames 

and flattening; visualization should switch away 

from instance-level diagnostic results to layout-

sensitive heatmaps so that physical concerns can be 

considered to inform TPI, re-stitching decisions. 

Four is governance. Artifacts of tests should be 

versioned, reproducible, and access-controlled 

[39]. Scan configurations and pattern sets, as well as 

BIST microcode, can leak valuable design 

information in an inappropriately handled system; 

they are also a high-value form of intellectual 

property requiring policy-based store and destroy 

policies. Operations telemetry security research 

focuses on the security implications of data streams 

themselves, leaving the system as an attack surface, 

data conveyed or staged without adequate 

guarantees; corresponding reasoning impels 

encryption, role-based access, and audited 

promotion gates to dataflow pipelines (Malik & 

Prashasti, 2023). 

Coupling in organizations is difficult. Feedback 

loops intersect with RTL design, physical 

implementation, verification, silicon bring-up, and 

product engineering. When quality gates and 

budgets lack clear ownership, local optimizations 

can hurt global performance [35]. A timing team 
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may lock coverage growth by blocking 

corresponding scan re-stitch, or a DFT team may 

maximize compression at the cost of unintentionally 

adding ATE memory consumption. The hard tester 

limitations introduced by productisation are vector 

memory limits, loading/unloading latencies, sharing 

among multiple sites, and interface delays, which 

curtail what may be suggested by the loop. A 

realistic agenda has standardized, content-targeted 

artifacts surviving tool changes; incremental 

automated test program generation and simulation 

keyed by dependency graphs; diagnostic-sensitive 

compaction which maintains localization depth in 

high compression; and multi-objective controllers 

constrained to be utterly harmless in the sense that 

coverage gains never increase pattern count, power, 

or tester time past the budgets. 

 

3. Methods and Techniques 
 

3.1 System Overview: Signals, Artifacts, Decision 

Points 
 

Implemented as a production pipeline, the pre-

silicon DFT feedback loop consumes 

representations of the design. It produces measurable 

test artifacts that can be understood within large-

scale, long-term constraints, then freely commits to 

its next course of action within the constraints of 

explicit guards. Synthesizable RTL and gate-level 

netlists (.v/.sv), static timing and test constraints 

(.sdc and .tcl), ATPG reports, fault-simulation 

(FSIM) logs, and power caps explicitly limiting peak 

shift and capture activity are inputs [34]. The 

pipeline normalizes logs and reports into a schema 

that includes design ID, netlist, constraint hashes, 

seeds, tool versions, and the compile flags to make 

runs reproducible and comparable across builds. The 

materialized artifacts are coverage databases 

indexed by fault model and cone, complete 

provenance (pattern IDs, source seeds, and mask 

budgets), pattern sets, scan-chain maps, and 

prioritized lists of test-point insertion (TPI) 

candidate sites. Decision points have to be 

positioned at the stable interfaces: tuning a constraint 

before an ATPG, editing TPI before scan stitching, 

and selectively regenerating patterns after diagnosis 

or FSIM regression. Orchestration work maintains 

entities to content-based storage and tags the 

checksums and timing waivers; promotion 

regulations specify minimum coverage delta and 

prohibit net negative slack. Telemetry is distributed 

in the form of time-series dashboards and a per-

block Pareto chart, to enable engineers to audit the 

reason that the loop behaved in that particular way. 

These practices in governance and scaling resemble 

the stable practice of communication-system 

architecture, in which standardized interface, 

provenance, and quality gates are the precondition to 

safe automation [28]. 

 

3.2 Fault Models & Objectives 
 

The loop demands a specific goal per block and per 

fault model. Typical targets are stuck-at coverage Csa 

≥ 98 % Csa  ≥98% and transition/path-delay coverage 

Ctr ≥ 90%, with cell-aware tests selectively enabled 

as highlighted in Table 1 below. Cell-aware 

inclusion is supported by a policy dependent on 

library maturity and runtime budget: when defect 

susceptibility/field-return signatures are available on 

a per-cell basis and imply subsets of standard cells, 

only those libraries are enabled cell-awarely; 

otherwise, low-risk libraries are excluded to contain 

ATPG/FSIM effort. The objectives are stored as 

service-level objectives (SLOs) per block, maximum 

allowable pattern count, minimum scan shift under 

power limits, and launch/capture timing windows.  

 

Table 1: An Overview of Fault Models, Coverage Objectives, Risk Factors, and Actions for DFT 

Target Fault 

Model 
Coverage Objective Risk Factors Action/Adjustment 

Stuck-at Csa ≥ 98% 
Undetected faults, architectural 

criticality, observability 

Adjust constraints (e.g., 

masks, timing) 

Transition/Path-

delay 
Ctr ≥ 90% 

Fan-out, gated clocks, multi-

domain crossings 

Insert TPIs or regenerate 

patterns 

Cell-aware Tests 

Selective based on cell 

maturity and runtime 

budget 

Library maturity, field-return 

signatures, defect susceptibility 

Insert TPIs or regenerate 

patterns 

FSIM telemetry is accumulated per cycle by cone to 

identify undetected targets [2].  Deep logic, lots of 

fan-out, gated clocks, or crossings of many clock 

domains are highlighted as high-risk. A risk score is 

a composite of the undetected faults count, 

architectural criticality (e.g., coherence fabric, 

schedulers, command processors), and estimated 

observability. The controller can then select between 
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three possible courses of action, namely to adjust 

constraints (such as relax unknown masks, change 

at-speed timing) or insert TPIs to make the design 

more controlled/observed, or to regenerate targeted 

patterns with more effort in narrowly scoped cones. 

The statistical result is assessed objectively through 

seeds; termination criteria are achieved when 

statistical coverage gain is marginal to an hour, with 

its coverage per hour lower than a gradient, or when 

re-patterns would generate SLO violations 

approaching the risk-weighted, failed to be 

discovered faults within permissibility. 

 

3.3 Pattern Optimization: Compaction, X-Filling, 

Power-Aware 
 

Static compaction removes unnecessary patterns by 

retesting aggregate detection sets and extracting 

patterns that do not contribute any unique detections. 

Dynamic compaction, applied in ATPG, works by 

trying to increase the detect set of every pattern by 

solving to add further targets subject to mask and 

compressor constraints [36]. Compressed scan 

mixes aliasing and X propagation; the loop thus 

models channel aliasing directly, adds explicit per-

channel unknown budgets, and ensures that the 

amount of X loaded by compaction does not exceed 

what the decompressor at response time can handle. 

X-filling has power and noise controls. Random fill 

seeks to maximize opportunistic detection and may 

increase shift activity; biased fill maximizes the use 

of toggling under low-cone activity; low-toggle fill 

minimizes IR-drop and supply droop at some cost to 

detection headroom. The controller chooses a fill 

strategy on a block-by-block basis by guessing 

which will run out first: power or the number of 

patterns. Once shift power approaches the level of 

the cap, loop favors low-toggle-fill and selectively 

increases ATPG effort on rigid cones to prevent a 

global count-inflation. Stop rules are data-driven: the 

marginal coverage gain δC/Δtime is tracked per 

action, and the loop halts compaction or regeneration 

when the derivative falls below a configured floor. 

This kind of adaptive choice design is compatible 

with principles of dynamic inference- prioritizing 

solutions based on intermediate cues and dedicating 

computer resources to a domain until that investment 

produces quantifiable payoffs [22]. 

 

3.4 Testability Enhancements: TPI & Scan Chain 

Strategies 
 

The SCOAP (structural controllability and 

observability) measures that are calculated node by 

node are assigned to proposals and then summed per 

cone in the TPI proposals. Observability Candidates 

that optimize observability of profound 

reconvergent logic, or controllability of stubborn 

enables, are preferred, within timing and area 

budgets [12]. The loop supports observe points that 

gate internal nodes into compression channels, 

control points to gate seldom-activated signals, and 

hybrid points to re-time challenging nodes closer to 

scan nodes. Ability to fix each proposed point 

against Budgets of setup/hold, placement 

constraints, and test-mode isolation rules; in multi-

clock areas, lock-up latches are used to bridge phase 

differences and extended detours—scan-chain 

optimization. Scan-chain strategies are co-

optimized: The goal of length balancing is to reduce 

peak shift time by minimizing chromosome length, 

and at the same time, re-stitching reduces detours 

around long macros and crowded routing. The 

controller uses placement/timing hints to avoid 

creating critical paths, and is careful of ECO 

windows by grouping TPIs and chain edits into 

reviewable patches. Formal equivalence means that 

there can be no functional change with test mode 

disabled: static timing checks, scan-enable, and test 

clock timing. Any edits that are accepted are noted 

with justification, forecasted coverage lift, and 

rollback strategies so that subsequent cycles can 

automatically roll back lower-yielding changes. 

 

3.5 Metrics & KPIs 

 

KPIs make the loop accountable and enable 

principled trade-offs. Coverage is reported per 

model and per block as 

C=detected faults/total faults, with confidence 

intervals across seeds, effort levels, and library 

mixes. Coverage is also stratified by cone depth and 

safety criticality to separate shallow from deep gaps. 

Test time is approximated by 𝑇test ≈ ∑𝑖 (𝐿𝑖/𝑓shift) + 

𝑁cap ⋅ 𝑡cap  

, where 𝐿𝑖 is scan-chain length i, 𝑓shift is programmed 

shift frequency under power limits, 𝑁cap is the 

number of capture cycles per pattern (including at-

speed launches), and 𝑡cap is capture dwell plus tester 

overhead. The cost proxy scales with ATE time: 

ATE$ ∝ 𝑇test × units, letting finance translate Δ 

pattern count into budget impact. Secondary KPIs 

include ATPG/FSIM runtime, farm utilization, 

diagnostic resolution (median suspect count and 

localization depth), and flakiness rate—the fraction 

of patterns that intermittently fail under identical 

conditions. Dashboards display Pareto fronts of 

coverage versus pattern count, violin plots of per-

block test time, and heat maps of undetected faults 

by cone. Quality gates enforce minimum Δ coverage 

for promotions, maximum allowed Δ pattern count, 

and zero timing violations for accepted edits [25]. 

These metrics close the loop by turning every action 

into measurable change against explicit targets. 
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Table 2: Key Metrics and KPIs for Pre-Silicon DFT Feedback Loop Evaluation 

Metric Description Formula/Calculation Use/Impact Visualization 

Coverage 

Reported per model and 

per block as C = detected 

faults/total faults, 

stratified by cone depth. 

C = detected faults / total 

faults 

Coverage is 

stratified by cone 

depth and safety 

criticality, showing 

shallow vs deep 

gaps. 

Pareto front of 

coverage vs. 

pattern count, 

violin plots of test 

time 

Test Time 

Approximated by 𝑇test ≈ 

∑𝑖 (𝐿𝑖/𝑓shift) + 𝑁cap ⋅ 
𝑡cap, where 𝐿𝑖 is scan-

chain length, 𝑓shift is 

shift frequency. 

𝑇test ≈ ∑𝑖 (𝐿𝑖/𝑓shift) + 

𝑁cap ⋅ 𝑡cap 

Test time impacts 

pattern count and 

tester utilization, 

scaling with scan-

chain length. 

Heat maps of 

undetected faults 

by cone, violin 

plots 

Cost Proxy 

ATE$ ∝ 𝑇test × units, 

translates Δ pattern 

count into budget 

impact. 

ATE$ ∝ 𝑇test × units 

Cost proxy 

translates pattern 

count change into 

financial impact. 

Impact on budget 

from Δ pattern 

count 

Secondary 

KPIs 

ATPG/FSIM runtime, 

farm utilization, 

diagnostic resolution 

(median suspect count), 

flakiness rate. 

ATPG/FSIM runtime, farm 

utilization, diagnostic 

resolution, flakiness rate 

Supports analysis of 

test process 

efficiency and 

pattern reliability. 

Farm utilization, 

runtime efficiency, 

diagnostic metrics 

Quality 

Gates 

Enforces minimum Δ 

coverage for 

promotions, maximum 

allowed Δ pattern count, 

zero timing violations. 

Minimum Δ coverage, max 

Δ pattern count, zero timing 

violations 

Quality gates ensure 

no silent regressions 

in coverage or 

timing. 

Dashboard of 

metrics for quality 

assuran 

4. Pre-Silicon DFT Feedback-Loop 

Architecture & Toolchain Integration 
 

4.1 Loop Stages: Observe → Analyze → Decide 

→ Act → Verify 
 

The feedback loop is designed as a closed-loop 

control loop that constantly decreases the 

uncertainty about design-for-test (DFT) choices. 

Through telemetry gathered in the Observe stage, the 

automatic test pattern generation (ATPG) and fault 

simulation (FSIM) capture telemetry: per-fault 

detection labels, non-detected cone identifiers, 

pattern lineage, compaction ratio, X-mask density, 

scan-shift timing margins, IR-drop indicators, and 

diagnosis logs based on synthesized fail signatures 

[7]. Records are date-stamped and are keyed by 

design revision, constraint set, and tool build to 

allow true rollbacks. The Analyze step carries out 

schema validation, de-duplication, and anomaly 

detection (such as abrupt regression of coverage in a 

single block, pattern inflation abnormality without 

explanation). The models used to rank and estimate 

the marginal benefit coverage gain per minute of 

ATPG/FSIM, or tester-time savings per unit of 

pattern compaction. The Decide phase uses policies: 

tune try constraint when the coverage is flat yet 

timing headroom is present; schedule test-point 

insertion when the undetected set accumulates on 

low-observability cones; regenerate pattern to 

targeted fault lists should compaction stall. The stage 

of the Act is the implementation of changes under 

guardrails and checkpoints. To validate coverage 

lift, stable timing, and bounded pattern growth, 

Verify makes A/B comparisons with a frozen 

baseline. This staged architecture reflects the same 

in the more mature algorithm-driven dispatch 

processes in other operations areas, as capture of 

events, weighting, assignment, and validation are 

choreographed to maximize throughput with audit 

[20]. 

 

4.2 Telemetry & Data Model 
 

Scale, audit, and reproducibility are possible due to 

a unified telemetry model. Every artifact has a 

design_id, a block_id, a loop semantic version, 

RTL/netlist, constraints repository git commit 

hashes, and tool versions, run seed, and farm 

context. At the pattern level, there is pattern_id, 

parent seed, compaction stage, X-mask bits, activity 

of capturing (all toggle counts and peak), expected 
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tester time, and references to ATPG/FSIM logs. 

Fault-level tables contain data on the fault ID, 

physical locations (cell/pin/path), type of fault 

(stuck-at, transition, cell-aware), whether it is 

detected or not, and detection patterns, as well as 

diagnostic ambiguity groups. Design, run, pattern, 

fault, and diagnosis tables have been formatted to a 

normalized form to prevent duplication; analytics 

views to be used in dashboards are built out wide.  

Content-addressed storage subjects configuration 

manifests and input netlists to SHA hashes such that 

artifacts will be immutable and reproducible; any re-

run with the same manifest must produce bit-

identical outputs. Checksums are also checked when 

uploading, and provenance links the precise tool 

binaries and container images taken. Since test assets 

would centralize sensitive structural information, 

making them a potential indication of attack surface, 

the data plane adopts a security-by-design stance: 

encryption at rest and during transit, these access 

controls decouple read/write/delete access at the 

role-level, and key rotation about compliance 

windows. It diverts to IoT security practice: Threat-

model- In model-based threat modeling, it is 

assumed that network boundaries are untrusted, a 

minimal attack surface is maintained, and 

authentication and least privilege apply to all 

telemetry producers and consumers [13]. 

 

4.3 Loop Actions 
 

Loop actions make adjustments in constraints, 

topology, or patterns, measuredly. Constraint tuning 

is used to transform the feasible region of an 

ATPG/FSIM under timing and power: Standard 

windows on long paths, Lock-in capture windows 

and launch windows on cross-domain boundaries, 

peak-power ceilings on a per-capture basis, and 

bounding the X-mask budget to prevent design 

hiding of real defects. Individual constraint changes 

are simple reviewable patches following the design; 

pre-checks perform static timing on scan and capture 

clocks and estimate IR-drop based on per-pattern 

toggle profiles; post-checks ensure the coverage 

achieved and the delta in the pattern scans fall within 

any specified constraints. Test-point insertion (TPI) 

is used when the errors are on the untested low-

observability or low-controllability cones.  

The ranking of candidates is based on structural 

metrics (SCOAP), incremental timing cost, and the 

estimated coverage lift. ECO-safe insertion: the 

alterations are limited to specific windows, lock-up 

latches, and scan stitching, which are automatically 

rebalanced. The functional view that formal 

equivalence operates on does not allow any 

behavioral drift [24]. Pattern regeneration is 

performed on failing cones or newly introduced 

faults; Incremental ATPG involves re-seeding with 

scores at the previous pass; dynamic compaction is 

re-done on only those pattern subsets that are 

affected. FSIM too is incremental: witness matrices 

are cached and only deltas are recomputed. In any 

action, there are rollback points that are 

operationalized as rules, such that any step back in 

coverage, number of patterns, or time of scans will 

automatically restore the last known-good state. 

 

4.4 Toolchain Integration 
 

Front-end, DFT, and back-end tools are linked with 

tight contracts. Based on synthesis and static timing 

analysis (STA), the loop absorbs timing views, false-

path and Multi-cycle exceptions, clock and 

definition, and power intent so that pattern 

generation never contradicts design assumptions. 

The loop feeds scan inserts and ATPG with chain-

length targets, compression configuration (channels, 

decompressor seeds), scan clocking constraints, 

capture windows, and power caps; it yields chain 

maps and pattern sets, coverage databases, and X-

mask reports. FSIM consumes patterns and fault lists 

to generate witness matrices, diagnostic groups, and 

per-pattern detection vectors; these are supplied to 

diagnosis-driven TPI and pattern pruning. Hooks 

Place-and-route (P&R) hooks support timing-aware 

TPI and scan re-stitching: DEF/LEF and parasitic 

data imported to make sure that candidate test points 

do not get congested or take long detours, and 

incremental ECO routes checked pre-sign-off to see 

that they are clean concerning DRC checks.  

API/CLI-based APIs and contracts contain strict exit 

codes and well-structured logs (JSON) to facilitate 

the orchestrator to categorize failures (license 

starvation, design checksum mismatch, timing 

violation, solver-timeout) and automatically recover. 

Long ATPG/FSIM computations are checkpointed: 

solver states together with intermediate compaction 

buffers are stored so that jobs that are preempted 

resume without wasting hours. Policy controls pools 

of licenses and their queues in farms (burst windows 

for exploratory loops, quotas for production 

promotion, and preemption rules to ensure sign-off 

runs are not wasted). Design hash, constraint hash, 

and tool build are incorporated into cache keys, 

which means that reuse is predictable and safe [40]. 

The API/CLI-based pipeline automates design 

validation, policy enforcement, and deployment, as 

shown in the figure below. It balances design tests 

and settings with source control so failures (such as 

license starvation, checksum mismatch, timing 

violations) are logged and automatically resolved. 

Preempting is performed in long computations by 

checkpointing to continue tasks without wastage of 

time.
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Figure 3: API/CLI-based pipeline ensuring automated validation, error categorization, and recovery 

 

4.5 Orchestration & Quality Gates 
 

Hardware cadences are adjusted in CI/CD pipelines 

around which the loop rides. Pipelines will run 

nightly, on push to DFT-critical branches, and when 

guardrail metrics are broken (coverage drop, test-

time spikes, FSIM flakiness). Both stages (scan 

insertion + ATPG, FSIM, verification, and 

packaging) generate irrevocable manifests and KPIs, 

which are sent to a central registry. Promotion 

among artifacts, from feature to integration, needs 

evidence: statistically significant coverage lift 

compared with baseline with low effect size; fixed 

pattern growth (such as 100PC 150% unless 

compensated by tester-time reduction); no new 

timing violations on scan or functional clocks; and 

unchanged FSIM pass rates with retry budget under 

limit [38]. Jobs that use gating are compared in A/B 

under the same seeds and hardware, and a 

confidence interval is computed on Δcoverage, 

Δpattern count, Δtest time, and Δdiagnosis 

ambiguity. Coverage and pattern tracker lines by 

block, Pareto charts of undetected cones, burn-down 

of test cost, and target, farm, and license utilization 

are tracked on dashboards. Fail-fast rules will halt 

loops when there is no marginal gain past user-

specified thresholds, and auto-rollback will rollback 

to the last set of promoted artifacts in case a gate 

fails. Promotion dumps the artifacts to a signed 

manifest (design hash, constraint hash, tool builds, 

license lists) so downstream teams (post-silicon 

bring-up and ATE engineering) can get an on-

demand recreation of the actual test content. The 

combination of these practices in orchestration and 

gating changes DFT into a feedback system where 

the results can be predicted reliably, and more 

importantly, audited in a way that is repeatable and 

predictable [26]. 

 

5. Experiments and Results 
 

5.1 Designs & Setup 
 

To reveal a set of testability profiles, the evaluation 

applied three representative GPU partitions. The 

former used a configuration of four compute units 

that shared a common front end, warp schedulers, 

and a scoreboard; the deep pipelines and control 

networks with many paths out of each compute unit, 

back in time, created X-dominant cones. A 2 MB L2 

cache slice containing a directory controller, tag/data 

SRAM macros with redundancy repair, and coherent 

interconnect endpoints was the second one; this 

block has large memory macros as well as an 

intermediate depth control logic. The third included 

high-bandwidth-memory (HBM) PHY logic 

wrappers with lane training state machines, 

boundary-scan bridges, and DFT logic, which 

interface with analog macros; in this case, low shift 

frequencies and stringent power budgets tend to rule 

the day [11]. The three netlists were synthesized to a 

5 nm PDK that has multi-corner multi-mode 

constraints. 

 

 
Figure 4: Data encryption flow: CPU sequential vs. GPU parallel encryption based on data size 
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The figure above shows an example of the process 

of data encryption in terms of size and type. The 

procedure begins with analysis of the input data, 

which is then segmented into small/meta data blocks 

or large data blocks. Small/meta blocs are encrypted 

sequentially by the CPU, and large data blocks are 

encrypted in parallel by the GPU. The encrypted 

blocks combine to give the final encrypted data 

output. This strategy is optimum in terms of the data 

characteristics to achieve efficient processing and 

security of encryption. 

Scan insertion demonstrated chain lengths of 8.5k-

12.2k flops per domain uncompressed, 100x-200x 

compression targets against IR-drop budget limits. 

The toolchain was composed of commercial 

synthesis/STA, scan/ATPG with static and dynamic 

compaction, and a parallel fault simulator. The Jobs 

were run on a 256 render farm (96 GB RAM/slot). 

Reproducibility was pinned to seeds, compression 

targets, and power caps [15]. The partitions were 

podded in both a loop-disabled and loop-enabled 

mode, and the telemetry (coverage, pattern metadata, 

diagnosis, and timing histograms) were persisted to 

a content-addressed store, making replays 

deterministic. 

 

5.2 Baselines & Protocols 
 

The stitching of the baseline scan chains was done 

with a fixed scan count, conservative X-mask 

budgets, and one ATPG/fault-simulation pass was 

applied per model: stuck-at, transition/path-delay, 

and a more focused cell-aware pass on the high-risk 

libraries. Hard failures (infeasible compression or 

scan-chain timing violations) could be manually 

edited. The loop organization performed N cycles 

(N[\[5, 8]) until convergence of the quality gate. 

Each cycle performed: (1) observe- ingest coverage 

and diagnosis, (2) analyze- rank possible actions, (3) 

decide- select a set of changes under guardrails, (4) 

act- apply test-point insertion (TPI), tuning of 

constraints, or selective regeneration of patterns), 

and (5) verify- re-run ATPG and fault simulation on 

canary cones, and pass to complete regressions only 

if deltas exceeded thresholds (gates applied). Quality 

gates enforced ΔC≥0.3 pp when below target, 

ΔPC≤0% unless a coverage target justified growth, 

no timing regressions on scan paths, and 

reproducibility of results under fixed seeds. 

Confidence intervals were estimated over five seeds 

per partition; all reported means include 95% 

bootstrap CIs for ΔC (coverage change), ΔPC 

(pattern-count change), and ΔT_test (tester-time 

change). Evaluation of loop best practices in 

feedback systems (namely, explicit success criteria, 

artifact provenance, and staged promotion) was a 

key consideration in loop design to prevent unstable 

or noisy improvements [6]. 

 

5.3 Coverage & Pattern Outcomes 
 

Stuck-at coverage across the three partitions saw 

gains of 1.6-2.8 percentage points vs. baseline, and 

transition coverage 1.0-2.2 percentage points. The 

SM cluster had the most significant movement 

(ΔC_sa = +2.8 pp; ΔC_tr = +2.2 pp, CI widths <0.4 

pp) with the loop, which added three observations on 

multi-fan-out control nets in warp scheduling and 

issue logic. There were localised defects close to the 

crossbar arbitration and scoreboard writeback that 

went unnoticed until diagnosis; the increased 

observability subsumed previous cones dominated 

by pathologies to X with aggressively increased X-

filling but power limits not breached. The slice at L2 

was better mainly as a result of constraints tuning, 

namely expanding excessively conservative capture 

windows on low-skew domains and narrowing 

launch constraints where false path assumptions 

obscured productive transitions, with resultant 0.9 

pp and 1.4 pp overall improvements in C_sa and 

C_tr, respectively. As shown in Table 3, HBM 

wrappers had a relatively small coverage advantage 

(ΔC_sa = +1.6 pp; ΔC_tr = +1.0 pp) due to analog-

adjacent logic constraining realistic TPIs; however, 

the pattern regeneration selectivity mode on lanes 

was used on lane-training controllers to eliminate 

patterns after masking was eliminated.  

 

Table 3: Coverage and pattern reductions with key improvements across GPU partitions 

Partition 
Stuck-at 

Coverage (ΔC_sa) 

Transition 

Coverage (ΔC_tr) 

Pattern 

Reduction 
Key Improvement Factors 

SM Cluster +2.8 pp +2.2 pp -34% (±3%) 
Increased observability on multi-

fan-out nets and X-filling 

L2 Slice +0.9 pp +1.4 pp -38% (±4%) 
Constraint tuning on capture and 

launch windows 

HBM 

Wrappers 
+1.6 pp +1.0 pp -22% (±3%) 

Pattern regeneration selectivity and 

elimination of masking 
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The number of overall patterns decreased 

significantly: SM −34% (CI ±3%), L2 −38% (±4%), 

and HBM −22% (±3%). Refined constraints have 

helped drive efficiencies in static and dynamic 

compaction, such as minimizing mask burst not 

needed to reach FIFO boundaries to increase fill 

densities and eliminating vectors with low utility. 

Tail analysis was done on the worst-detectable 2% 

of faults per partition. When these tail faults 

converted to detectable faults in the SM cluster, 61% 

did so only after TPI, with the rest concentrated 

heavily on gated clocks that would involve 

architectural modifications. On the L2 slice, 49% of 

tail-faults were ameliorated by timing-window 

settings in two fabric domains, and 32% were 

unidentified by the absence of extra wrappers on 

black-box SRAM macros. The residual tail faults 

found in the HBM wrappers concentrated in 

boundary-scan bridges associated with analog 

macros and supported the loop policy of refusing to 

go invasive where timing risk or interface risk lay 

above the cost/amortization point. 

 

 
Figure 5: Coverage and Pattern Reduction Outcomes across GPU Partitions 

 

5.4 Runtime & Scalability 
 

The time consumed was measured on a stage-by-

stage basis, i.e., ATPG, fault simulation, diagnosis, 

and reporting, and normalized against gate count. 

ATPG wall-clock/cycle fell following the second 

iteration since the loop reused caches and restricted 

regeneration to afflicted cones; the initial step had 

the overhead of constructing the telemetry store and 

resolving scan-chain maps. Pattern-count decreases 

were well correlated with fault-simulation time; TPI 

candidate-evaluating cycles provided an 812% 

inductive expense to calculate and match suspect 

sets [16]. Average farm utilization was increased by 

62% (baseline) to 78% (loop) due to the orchestrator 

emitting numerous short cone-scoped jobs rather 

than single long monolithic runs, and because fewer 

jobs were locked up in the queue head-of-line 

blocking at once. License saturation events were 

reduced to 2.1% of wall time as the scheduler 

enforced concurrency limits per tool family, and 

delivered highly prioritized jobs based on their 

estimated ΔC/Δtime. CI latency per loop was 7.6 

hours (SM), 6.9 hours (L2), and 4.1 hours (HBM); 

end-to-end wall-clock to convergence was 2.4 (SM) 

to 3.1 (HBM) days, depending on N and promotion 

answers. It was essential to treat each design 

partition as a separately orchestrated part: fine-

grained cross-partition boundaries, tool phases, and 

artifact life cycles decreased cross-coupling and 

avoided retries that could cascade through other 

partitions and lead to an engineering lesson in tune 

with context-boundary practices to manage 

complexity in other large systems [3]. 

 

5.5 W Test Cost & Diagnosis 

 

The modelling of tester time was based on counts of 

post-compaction patterns, per-domain chain length, 

and shift/capture parameters. 𝑇test ≈ ∑𝑖 (𝐿𝑖 /𝑓shift) + 

𝑁cap ⋅ 𝑡cap Ttest. In the SM cluster, a pattern reduction 

of -34 percent that involved low chain rebalancing 

resulted in a 29 percent decrease in 𝑇test. A 33 percent 

decrease was obtained by the pattern reduction, 

which was minus 38 percent in the L2 slice with 

similar chains in the background. The HBM 

wrappers achieved −22% patterns and a 17% 𝑇test 

drop, bounded by low shift frequency and long 

capture dwell times near analog macros. Fall-limited 

and constrained by the low frequency of shift, long 

dwelling around analog macros. At a blended ATE 

rate of a quarter million dollars with a run rate for 

the volume of one million board production, the total 

cost-saving made by the combination of the three 

partitions equaled a low-seven-figure decrease in  
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Table 4: An Overview of Test Cost, Memory Footprint Reduction, and Diagnostic Improvements across 

GPU Partitions 

Partition 

Pattern 

Reduction 

(%) 

Test Time 

Reduction 

(%) 

Tester Memory 

Footprint 

Reduction (%) 

Cost Savings 

(Low Seven-

Figure Estimate) 

Diagnostic Quality 

Improvement 

SM Cluster -34 -29 -19 Yes 
23% reduction in 

suspect-set size 

L2 Slice -38 -33 N/A Yes 
17% reduction in 

suspect-set size 

HBM 

Wrappers 
-22 -17 N/A Yes 

Reduced false positives 

with pattern de-

duplication 

direct test cost, without the bonus of increasing 

payloads through the tester faster.  Footprints of 

Tester memory proportionately declined with the 

number of patterns (from -19 to -35 percent), with 

reduced load/unload overheads and closer multi-site 

staging. There was a rise in diagnostic quality, too: 

under SM, media suspect-set sizes were reduced by 

23%, under L2 by 17%, and RMA accelerated triage. 

Within the SM cluster, better localization near 

crossbar arbitration has reduced ambiguous suspects 

from 5.1 to 3.8 nets per event. L2, the masking 

artefacts within directories are eliminated by state 

machines, reducing the spurious candidates that used 

to consume cycles in debugging. The case of HBM 

wrappers was similar in that the size of the suspect 

set varied minimally, as there was a limited 

observability due to analog-adjoining bridges. Still, 

there were fewer false positives as noisy masks were 

eliminated via pattern de-duplication [29]. When 

considered together, these findings show that the 

loop, in addition to its time and cost advantages, also 

increases the precision of diagnosis, so it decreases 

bring-up time and allows finding the yield in a 

shorter time.

 

 
Figure 6: Test Cost and Diagnosis Metrics across GPU Partitions: Pattern, Test Time, and Memory 

Reduction 

6. Discussion 
 

6.1 Interpreting Results for Productisation 
 

Reductions in fault coverage, pattern count, and 

tester time that are observed reduce the 

productisation timeline of graphics processing units. 

Early closure of controllability and observability 

gaps minimizes late design churn, due to the fewer 

change requests that are needed once timing has 

been fixed by place-and-route. Reduced pattern 

volume also reduces the automatic test equipment 

time/device, reducing marginal cost, and allowing 

the qualification lots to be screened with less new 

capital investment required. There is also less block-

merging feedback: nightly regressions provide 

actionable deltas, enabling design owners to debate 

corrections before route congestions freeze a 

deadlock. Risk burn-down is a further consequence 

of transmuting guesswork into quantitative terms: 

undiagnosed faults translate into targeted ATPG 

targets, unstable power profiles into explicit 

constraints, and the ambiguity set in diagnosis is 

reduced as patterns are re-ranked to maximize 

diagnosability. The loop re-contextualizes DFT as a 

controlled process of governance rather than a one-
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time milestone where policies dictate incremental 

decision-making and telemetry validates the results. 

Other nearby control issues indicate that closed-loop 

decision-making can be preferred to open-loop 

heuristics in scenarios where rewards are not 

immediate, and the state space is huge; 

reinforcement-learning approaches to optimising 

traffic reveal the importance of continual sensing, 

policy update, and action constraints [31]. 

 

6.2 Trade-offs: PPA vs. Testability, Schedule 

Risk, License Budget 
 

The trade-offs have to be assessed based on 

performance, power, and area versus testability on 

the one hand and schedule and license budget on the 

other hand. It is essential that test-point insertion can 

be valuable on a design where marginal coverage lift 

unarguably exceeds incremental timing and area cost 

on key cones. Added observation or control points 

used on high-frequency shader datapaths might 

violate retiming assumptions or cause buffering, 

which dilutes slack. Extra logic on crossbars can 

make chains of multiplexors longer and increase 

capture power (as well as reduce parallelism and 

incur additional potential crosstalk) [5]. The loop 

prioritises candidates based on predictable coverage 

gain/picosecond of slack used and disregards test 

points that impinge on multi-corner violations, 

electromigration hotspots, or other nets that are 

security-sensitive. Schedule risk: when ATPG or 

fault simulation monopolises licenses, farm slots; 

orchestration can mitigate by sharding cones, 

checkpointing long runs, and prioritising actions that 

deliver the steepest coverage gradient as early as 

possible. Budgets Tool budgets are first-class 

constraints: policies constrain parallelism to prevent 

license starvation of synthesis and timing, and 

encourage compaction or constraint tuning before 

wholesale regeneration when queues overflow. 

Proliferation of patterns is limited by pattern 

controllers that impose per-loop bounds on the 

addition of new elements and that must be A/B 

verified against a baseline after which they may be 

promoted. However, this can cause a pattern to 

become stuck in one corner and never be able to 

optimize. 

 

6.3 Limitations & Threats to Validity 
 

Several limitations and threats to validity should be 

brought up. The extent of gains is governed by 

structural rigidity: streaming multiprocessor 

clusters, with uniform scan top and balanced chains, 

behave more favorably to stitching with 

compression properties than do their disarranged 

control structures with large numbers of 

asynchronous boundaries. Aggressive power-gating 

of designs, a large number of clock domains, high X-

density, and mask volatility lead to reduced 

compaction efficacy and the necessity of 

conservative capture windows, increasing pattern 

count. Sensitivity to seed in ATPG may skew pattern 

counts and coverage; protocols ought to check 

several seeds in each block, and highlight bounds of 

confidence [21]. Tool-specific behaviors endanger 

external validity: model coverage with cell-

awareness and X-mask handling issues may differ 

between library versions and between engine 

versions, altering how easy-to-miss cones are. To 

alleviate this, the experiments need to pin versions 

of the tools used, store configuration hashes, and 

publish provenance of any artefact that is gained via 

the loop. Measurement is also prone to collider bias 

when only profitable runs are kept; an action-

promoted or rejected should occur on a dashboard. 

Lastly, human-in-the-loop effects are a fact: the 

designer can modify RTL or constraints at the last 

minute in reaction to telemetry, which can lead to 

confusion in casual assignments. Separation 

between exploratory branches and release candidates 

should be done in governance, and pre-registered 

decision policies are expected. 

 

6.4 Portability to Other IPs/SoCs & Mixed-Signal 
 

The observe, analyze, decide, act, verify abstraction 

is generalized to digital intellectual property in 

general, including image signal processors, video 

codecs, and neural accelerators, in addition to GPUs 

[33]. Portability relies on adapter layers that 

standardize heterogeneous tool logs in terms of 

mapping to a standard schema, aligning semantics of 

separate ATPG engine coverage, and registering 

design hierarchy to scan-chain and compression 

constructs. Orchestration at the system-on-chip level 

requires honoring multi-IP concurrency and vendor 

boundaries: third-party blocks will frequently come 

packed with encrypted models, requiring wrapper-

level actions instead of in-depth insertion of test 

points. The compression ratios and length would 

vary by IP; the controller would be expected to pick 

action sets per block- e.g prefer constraint tuning on 

high-speed PHY wrappers but on compaction in 

compute clusters. Mixed-signal environments need 

adaptation layers: analogue macros will typically 

open up with boundary-scan or wrapper interfaces; 

the loop must see these as a contract point where the 

digital pattern in syncs with the analogue stimulus 

and measurement recipes. The power-sensitive 

policies must be retuned, as the AMS islands enact a 

more restrictive capture window and IR-drop limits. 

Process is also portable: quality gates, provenance, 

and rollback rules must be agreed upon in teams 
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Figure 7: Functional verification of mixed-signal SoCs: Integration of digital and analog components 

 

before sharing compute and license pools, or a single 

aggressor block can consume all resources. The 

figure above explains the flow of functional 

verification of a mixed-signal SoC, including digital 

logic, AMS IP, and power management. It highlights 

the demands imposed by system-on-chip level 

adapter layers and orchestration, catering to 

concurrency, encrypted models, and synchronisation 

between digital and analog sources, and adaptations 

to compression ratios, power-sensitive policies, and 

process portability. 

 

6.5 Interaction with Post-Silicon Bring-Up & 

Yield Learning 
 

Round-trip with post-silicon broadens the loop in a 

design toolchain to a learning system. Simulation 

builds should be passed through to the pre-silicon 

warehouse using the same identifiers as test bins or 

test flow packets - allowing cross-domain joins and 

time-aware analysis in the warehouse. In the case 

where the recurrent fail signatures are correlated 

with specific cones or physical neighbourhoods, the 

controller will then prioritize constraint changes, 

pattern regeneration in a selective region, or 

inserting test-points in those areas during the 

following spin. The size of the same diagnostic 

ambiguity group becomes a significant predictor: 

smaller groups reduce the time spent isolating the 

root causes and speed the process of corrective 

actions in RTL and process corners. Data plumbing 

reflects telemetry-centric areas: standard schemas 

and lineage, immutable access controls make 

volume streams usable. Telematics modernisation 

demonstrates the transformational effect of asset 

levels sensing and communication operations; 

analogous processes in the timely DFT update and 

resource location [19]. To preclude circularity, 

governance decouples research sandboxes and 

release pipelines, and demands A/B validation in the 

case of post-silicon knowledge, suggesting pattern or 

constraint alteration. With practice, the system 

learns priors, such as fault-prone cones, brittle 

masks, and unsafe capture windows, and shortens 

ramps in the future. 

 

7. Future Work  
 

7.1 Multi-Objective Controllers 
 

Future research ought to define multi-objective 

controllers, which jointly optimize structural fault 

coverage, number of patterns, tester time, peak shift, 

capture power, and test-memory footprint. 

Scalarization is a practical baseline to combine 

targets into a utility U = w_c·C − w_pc·PC − 

w_t·T_test − w_p·P_peak − w_m·Mem with hard 

constraints on minimum transition and cell-aware 

coverage on safety-relevant cones. Weights should 

be extracted as business value curves, such as 

marginal tester-second saving per pattern at 

expected volume, and as requirements of the safety 

requirements that capped the undetected fault risk. 

Trade-offs, however, are concealed in scalarization; 

thus, future controllers ought to calculate Pareto 

fronts by constrained Bayesian optimization or 

multi-armed bandit definitions, which introduce 

candidate trades (such as adding observation points 

to the cone or improving coverage of the block or 

marching patterns of the seed) and choose them 

based on hypervolume gains. To maintain wall-clock 

latency not exceedingly significant, the controller 

ought to be asynchronous: suggest small batches, 

analyze based on partial ATPG and fault-simulation 

report concluding agreements with early-stopping 

rules, and encourage only incoming actions that pass 

quality gates. Context attributes are per-cone 

controllability/observability parameters, local slack 

vectors, scan-chain length, compression-ratio, 

historical diagnosis hits, and approximate IR-drops 

vulnerability. Action models must provide estimated 

Δcoverage, Δpatterns, Δtest-time, and Δpower with 

calibrated uncertainty; Thompson sampling can 

trade off exploration of new cones with exploitation 

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C19


Karan Lulla/ IJCESEN 11-3(2025)6091-6108 

 

6106 

 

of historically successful edits. Telemetry should 

also be versioned and reproducible to promote 

closed-loop learning over releases, which is also in 

line with predictive analytics on continuous 

improvement [9]. 

 

7.2 Integrating LBIST/MBIST & In-Field 

Telemetry 
 

A second work stream must combine LBIST/MBIST 

statistics, in-field telemetry, and pre-silicon 

analytics. LBIST pass/fail maps, MISR residue 

distributions, and MBIST fail-address histograms 

must be summed at die, lot, wafer, and tester setup 

and then reprojected to logical cones via wrapper 

metadata, address decoders, and per-array mapping 

table. Those distributions may guide constraining 

and pattern priorities. Cones that repeatedly were 

implicated by LBIST must get deterministic ATPG 

with narrower launch/capture windows; those that 

occur frequently with marginal IR-drop should result 

in low-toggle X-filling and power-aware chain 

ordering; ones that offer minimal marginal 

diagnostic information should be demoted.  

The same schema should stream in-field telemetry: 

error counters, ECC syndromes, and scrubbing logs; 

thus, pre-silicon risk models can be updated by post-

deployment behavior. The loop ought to use 

evidence-based scheduling of notifications: to 

prevent both alert fatigue and farm thrash, include 

batching of related triggers, throttle bursts at peak 

times during tape-in windows, and send alerts only 

when a trend threshold is hit. It has been 

demonstrated that such scheduling yields better 

downstream results in other areas of operation by 

transmitting the correct signals with correct cadence 

that can be implemented at engineering gates as well 

[27]. In practice, the pipeline must have customer 

data privacy controls, cryptographically signed test 

assets, and lineage in place such that any promoted 

action can be line-traced to the specific telemetry 

that necessitated it.

 

 
Figure 8: Column redundancy scheme for repairable memories with failure and repair mapping 

 

The figure above represents a column redundancy 

design used to repairable memories with failing and 

duplicate columns on the left and right. This setup 

makes it fault-tolerant with redundant columns 

repair and memory integrity. It supports the memory 

inputs and memory outputs efficiently, as well as 

managing the address, row, and decoder signals to 

maintain a correct redundancy in the event of 

failures relevant to handling in-field telemetry and 

pre-silicon risk models concerning LBIST/MBIST 

integration. 

 

7.3 Cross-Generation Transfer Learning 
 

Cross-generation regularities in GPU design should 

be used in future loops. Transfer learning provides a 

warm start on three high-leverage artifacts. In the 

first test-point priors: learn a mapping between the 

graph-level features controllability, observability, 

reconvergence degree, depth, switching propensity, 

and neighborhood slack to expected utility, 

measured as incremental coverage per incremental 

pattern normalized by area and timing cost. When a 

program is started, fill the new family with the best 

percentile of these candidates and see which 

controller takes and what he rebuffs them on the 

results of gains. Constraint priors: train networks 

that forecast power-safe capture windows, chain 

ordering policies, and X-mask budgets relative to 

block-class descriptors (such as cache slice, SIMD 

core, DMA engine) and library/process properties; 

use these networks to initialize the loop to prevent 

cold-start stalls. Pattern ranking: train scoring 

functions that predict diagnostic value and 

anticipated tester-memory footprint such that 

regeneration prioritizes patterns that are on the steep 

section of the coverage-versus-cost curve. To reduce 

negative transfer, the loop ought to conduct canary 

tests on small slivers of fabric, keep uncertainty 

estimates, and gate promotions on invariant checks: 

no timing regressions, no scan-enable overflows, 

and no more unsafe switching. Meta-learning 
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between families is also beneficial to time-to-

benefit, adapting hyperparameters--batch sizes, rates 

of exploration, and early-stop threshold points, 

based on a small number of gradient-like steps 

across initial cycles of a novel program. 

 

7.4 Fab/Test-Floor Data Fusion 
 

A fourth research axis is on integrating fab and test-

floor data into pre-silicon artifacts. Design databases 

should be merged with STDF bins, diagnosis-

derived failure bitmaps, shmoo plots, tester limits, 

and wafer maps. Gate-level netlists, scan-chain 

maps, pattern metadata, parasitics, and timing slacks 

should be normalized. There are three products that 

the fusion pipeline should emit.  

 Cone attribution: probabilistically project fail 

signatures to suspect cones via diagnosis 

likelihoods and layout-philosophical priors, and 

promote them into a degree ATPG-fault 

simulation procedure that aggressively favors 

high-payoff direction like addition of observation 

points or tightening of constraints.  

 Optimisation of screens: approximate per-

pattern yield leverage by regressing bin escapes 

on the presence or absence of candidate patterns 

across volume lots, and penalising the tester-time 

cost; patterns with modest utility can be removed 

or substituted by their compressed equivalents in 

the loop.  

 Variation-aware policies: integrate wafer-level 

process indication metrics into power models to 

forecast IR-drop hotspots during shift and capture 

and autonomously recommend chain re-ordering, 

power staggering, or clock-stagger recipes.  

 Every join must be reproducible: materialize 

all content-addressed artifacts, schema-version 

all tables, and calculate all confidence interval 

loss-streams on every attribution to instill trust in 

engineers when accepting loop actions. 

 

7.5 Open Benchmarks & Reproducibility 
 

One needs community standards with which to 

compare loops and that do not overfit to proprietary 

idiosyncrasies. Future efforts suggest an open corpus 

in the form of tiered disclosure of fully open 

synthetic GPU-like netlists and realistic scan and 

compression; partially open designs with 

anonymized cone graphs and redaction of libraries; 

evaluation-only encrypted design representations 

under data-use agreements. Versioned inputs 

(netlists, constraints, library views) and expected 

outputs (coverage, pattern sets, timing limits), and 

canonical scripts should be shipped in a manifest at 

each tier [17]. To achieve reproducibility, 

containerized toolchains, checksummed artifacts, 

and seed pinning should be adopted; confidence 

intervals and ablations should be provided in the 

results. A suite of KPIs to be published: fault model 

coverage, number of patterns per detected fault, 

tester-seconds per unit under test, diagnostic 

resolution, and CI latency. A blinded submission 

mechanism may avert over-tuning, and parameters 

applied in obtaining results are saved in audit trails. 

 

8. Conclusion 
 

This paper demonstrates that pre-silicon DFT may 

productize GPU products more swiftly and at less 

cost and risk, since it is deployed as a controlled 

feedback loop instead of an isolated activity. The 

approach organizes DFT as an Observe → Analyze 

→ Decide → Act → Verify loop integrated into 

CI/CD. A normalized telemetry model enables 

ATPG coverage, fault-simulation evidence, and 

timing and power characteristics, diagnosis, and 

artifact provenance to be unified, enabling controller 

policies to prioritize safe high-leverage actions. 

Guardrails enact constraint tuning, selective pattern 

regeneration, and timing-aware test-point insertion, 

and are checked against frozen baselines. The 

quality gates below encourage changes that enhance 

coverage at a minimum cost to test, but do not break 

timing or power, leaving reproducibility and sign off 

intact. 

The loop returned practically meaningful 

performance within representative GPU partitions, 

including an SM cluster, an L2 cache slice, and 

HBM PHY wrappers. Absolute stuck-at coverage 

improved by approximately 1.6 to 2.8 points, 

whereas transition coverage also increased by 

approximately 1.0 to 2.2 points. The number of 

patterns decreased by 22 to 38 percent and produced 

a 10 percent or more decrease in tester time, since 

test time increases with the length of the scan and the 

time to capture. These gains were maintained at very 

low IR-drop budgets by power-sensitive X-filling 

and chain designs. Diagnostic and quality were also 

enhanced: when suspect sets were smaller and cone 

attribution easier to read in compute and cache logic, 

bringing up friction was less, and the yield-learning 

curve was quicker. 

In practice, the loop automates ad-hoc judgment to 

facilitate auditability. Artifacts are replayable 

through content-addressed storage and immutable 

manifests; long ATPG and fault-simulation jobs 

become responsive with checkpointed compute and 

farm-aware scheduling, and sign-off jobs cannot 

starve their license. Dashboards show Pareto fronts 

of coverage to the number of patterns and focused 

maps of undetected-fault densities by cone (or cone 

pairs), to direct the limited licenses and CPU-hours 

to the fastest marginal coverage slope. Silent 
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backsliding is guarded against by promotion gates, 

like minimum coverage delta, bounded pattern 

growth, and zero timing regressions on scan and 

functional clocks. Since artifacts are signed and 

versioned, downstream teams can re-create the 

accurate sets of patterns when needed. 

The thresholds and trade-offs are upfront. Cell-

aware campaign widens the fault universe and 

emphasizes runtime; X-density, multiple clock-

domains, and analog adjacency limit compaction and 

free point insertion; tool naming drift and sensitivity 

seeding pose challenges to subsequent 

comparability. The pipeline mitigates these via 

incremental ATPG and fault-simulation and cache 

reuse, schema-level normalisation and version 

pinning, ECO-safe edit windows, conservative 

policies around mixed-signal interfaces, power-

aware fills, and license control. The controller blocks 

promotion and automatically back-tracks to the last 

known-good artifact to safely close the loop in the 

case of an action that may jeopardize performance, 

power, or schedule. 

In the case of the practitioners, a realistic path of 

adoption can be found. Telemetry and provenance: 

standardise the telemetry and provenance across 

tools, set service-level objectives and promotion 

gates based on coverage targets, tester-second 

budgets, and schedule risk, containerise/checksum 

the flow to ensure replayability. Start with the loop 

around constraint tuning and selective regeneration, 

and later move to timing-aware test-point insertion 

within the confines of formal and timing guardrails. 

Orchestrate small blocks so that they all appear as 

independent programmes to guard against head-of-

line blocking, and impose license budgets to defend 

sign-off. Measure every alteration using A/B testing 

in steady states and simultaneously to transform the 

intuition into quantified, auditable improvement. 

The findings inspire objective extensions that have 

definite operations. Multi-objective controllers can 

optimize coverage, time, power, and memory on 

clear Pareto fronts, as opposed to scalarised 

substitutes. An integration of LBIST and MBIST 

statistics and in-field telemetry can be used to guide 

pre-silicon focus and eliminate low-usefulness 

patterns. Transfer learning may warm-start test-point 

and constraint priors, cross-generation. Variation-

aware screening can be energized by fab and test-

floor data. Fair comparison and reproducibility can 

be pegged on open, tiered benchmarks using 

containerized toolchains. Overall, closed-loop pre-

silicon DFT converts noisy telemetry into bounded, 

reversible effects that enhance coverage, minimize 

patterns, compress schedules, and reinforce 

governance over modern GPU programmes at scale 

and sustained impact. 
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