

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 6091-6108
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Pre-Silicon DFT Feedback Loops: Enhancing GPU Productisation Efficiency

Karan Lulla*

Senior Board Test Engineer, NVIDIA, SantaClara, CA, USA

* Corresponding Author Email: karanvijaylulla08@gmail.com - ORCID: 0009-0007-7491-4138

Article Info:

DOI: 10.22399/ijcesen.3778

Received : 27 June 2025

Accepted : 11 August 2025

Keywords

Pre-silicon DFT feedback loops,

GPU productisation,

Automatic Test Pattern Generation

(ATPG),

Fault simulation,

Test-point insertion (TPI).

Abstract:

This paper describes a controlled pre-silicon Design-for-Test (DFT) feedback loop

mechanism that allows faster GPU productisation with less test cost. DFT is redefined in

a one-time metallic achievement into an Observe → Analyze → Decide → Act → Verify

loop nested within CI/CD. A typical telemetry model allows combining ATPG coverage,

fault-simulation results, timing and power constraints, diagnosis artifacts, and

provenance to perform auditable automation. The three levers that are the primary focus

of controller policies are constraint tuning, timing-aware test-point insertion, and

selective pattern regeneration, which have been verified for verification gains using A/B

comparisons to frozen baselines under quality gates. Screening gains are observed on

typical GPU partition types (streaming-multiprocessor cluster, L2 cache slice, and HBM

PHY wrappers): +1.6 to 2.8 percentage-point stuck-at and +1.0 to 2.2 percentage-point

transition coverage; 22 to 38 percent reduced patterns; tens of percent tester time savings;

and fewer suspect sets in diagnosis. Orchestration capabilities: Content-addressed

storage, checkpointed compute, license-aware scheduling, keep throughput and

reproducibility, dashboards expose Pareto tradeoffs and undetected-fault heatmaps to

concentrate the compute. The limitations include the cell-aware run time, high X-density,

multi-clock interactions, analog adjacency, seed sensitivity, and inter-tool naming drift,

which are all alleviated by incremental engines, cache reuse, schema normalization,

ECO-safe edit windows, power-aware X-filling, and controlled rollbacks. Future research

will focus on multi-objective controllers, LBIST/MBIST, and in-field telemetry,

collection of fabrication/test-floor data, cross-generation transfer learning, and open

benchmarks to achieve sustained comparability and reproducibility across GPU families

at scale.

1. Introduction

Recent GPUs have tens of billions of transistors,

heavily pipelined execution units, and a multiported

array of SRAMs. Design-for-test is emphasized at

this architectural scale due to a drop off in

controllability and observability as logic depth,

clock gating, and power partitioning rise. Shift

operations are made difficult by long scan chains and

by shared clock domains, and asynchronous

boundary mixes with clean launch and capture.

Large limbs test limitations tend to jeopardize IR-

drop and thermal margins, leading to restrictions on

hastening convergence. The tester channel

limitations limit choices in compression. Nasty

schedules scale up the expense of every pattern. DFT

complexity grows together with the number of cores

and high-bandwidth memory added to the designs.

There must be a feedback loop to convert telemetry

to action that enhances coverage, minimizes pattern

count, and rapid productisation without breaking

performance constraints, power limits, or area.

The issue of minimizing the restriction of test cost

subject to coverage, power, and schedule constraints

of product release is handled. The solution has to

increase stuck-at and transition coverage of sign-off

levels, minimize pattern count without

compromising the level of diagnostic resolution,

comply with shift and capture power constraints, and

reduce latency between telemetry and action. The

DFT coverage is pre-silicon logic: logic scan

insertion and compression, automatic test pattern

generation, and fault simulation. Analog and mixed-

signal DFT is reserved only for digital wrappers of

PHYs and sensors. The direction puts the focus away

from deterministic stimuli with conditional pseudo-

random seeding, where it compacts favorably. Some

of the assumptions are RTL freeze windows,

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6092

controlled ECO entry, sign-off requirements,

repeatable runs due to version-controlled

configurations, and vendor-independent integration.

Content-addressed artifacts infrastructure and farm

scheduling allow repeatable decision making and

traceability.

A stuck-at fault causes a node to assume logic zero

or one as a permanent value. Transition and path-

delay faults represent timing faults identified

through launch-capture sequences. Cell-aware

testing enriches fault models with library defect

mechanisms. Compression refers to integrated

deterministic decompression, test compaction, and

streaming that minimize tester memory and

channels. The test-point insertion introduces the

controllability or visibility at specified nets. The

feedback loop represents an Observe Analyze

Decide Act Verify cycle that is part of CI/CD.

Telemetries are eaten, policies prioritize actions, and

artifacts are recreated, and findings against quality

gates are compared. The most critical metrics are

stuck-at coverage (Csa), transition coverage (Ctr),

pattern count (PC), test time (Ttest), and a proxy of

DPPM.

This paper adds a concrete architecture of pre-silicon

DFT feedback, a normalized data model of covering

and constraining and the provenance thereof,

controller policies to tune constraints and rank test-

points, and quality gates that safeguard timing,

power, and reproducibility. Anticipated deltas will

be practical: one to three percent absolute coverage

gain on challenging blocks using dedicated test

points and more polished constraints; twenty to forty

percent decrease in pattern count by use of selective

compaction and adjusted masking; twenty to thirty

percent decrease in tester time by reduction of

pattern sets. Other effects are increased farm use of

the mathematical model, reduced late ECOs, and

more comprehensible engineering audit trails. As

compared to ad-hoc flows, the feedback loop serves

as a replacement by eliminating one-shot decision-

making and replacing it with a measured iteration,

allowing a data-driven trade-off of his position and

objectives in performance and area.

Chapter 2 provides a review of contemporary work

on big-DFT on SoCs and GPUs, characterization of

ATPG progress and fault modeling, and the

feedback-driven orchestration. Chapter 3 explains

approaches, including the overview of the system,

fault models, and pattern optimization, test-point and

scan planning, and KPIs that drive decisions. In

Chapter 4, the architecture of the feedback loop and

the integration of the tool chain are stated, including

telemetry, controllers, orchestration, and quality

gates. Chapter 5 documents experiments of GPU

blocks, baselines, coverage results, run time,

scalability, and test cost. The results concerning

productisation are interpreted in Chapter 6, trade-

offs and constraints are analyzed, and portability is

outlined. Chapter 7 suggests future developments of

multi-objective controllers and post-silicon data

fusion. Chapter 8 ends with recommendations.

2. Literature Review

2.1 DFT for Large SoCs/GPUs: Scan,

Compression, LBIST/MBIST

Three realities converge to influence design-for-test

(DFT) of modern graphics processing units (GPUs):

extreme sequential depth, power-integrity

constraints, test-application compliance, and Post-

silicon validation timing pressures to shorten sign-

off windows. Different genres of scan-based DFT

embody the way that these pressures were

incorporated into the standard methodology.

Classical full-scan converted combinational to

sequential q problems, inserting scan cells as needed

into the design; however, the shift time and tester

memory scaled with the number of flip-flops. Scan-

compression architectures broke this linearity,

compressors at the outputs, and decompressors at the

inputs of scan paths [23]. Correlation is diffused

through linear phase shifters, and excitation is

enhanced, whereas response compactors are based

on XOR delay pin counts and shift time.

Compression results in stricter limits on non-known

(X)-management and on compactor aliasing, and

sign-off targets optimize the size of practical

compactor matrices, bound mask allowables, and

investigate aliasing budgets. Hierarchical scan-

based DFT is signed off as shown in the figure

above, replicated into the parent block, and

integrated at the top level, where glue logic, memory

testing, and interconnect needs are tied off. They

support GPU realities of extreme depth and

sequentiality, power-integrity demands, and short

post-silicon schedules through this staged flow; they

also support scan-compression tapes. Scan chains

are fed with decompressors at ingress to a block, and

responses are gathered out with compactors at

egress, using linear phase shifters to diffuse

correlation and compactors based on XOR to reduce

shift time. Since compression constrains X-

management and aliasing budgets, every hierarchy

gate plans and optimizes compactor matrix sizes,

masks, and coverage goals before signifying artifacts

to the next hierarchy level.

The chain engineering grew up with compression.

Timing-aware stitching places lock-up latches

across domains, constrains the longest chain to

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C23

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6093

Figure 1: Hierarchical scan-based DFT sign-off and block replication

encompass the head of shift time, and aligns chains

to routing resources to limit congestion and skew.

With GPUs in the tens of chained millions of

transistors, a dozen asynchronous or mesochronous

clock domains operate in parallel; scan planning is

then considered alongside floorplanning, and

endpoint-to-endpoint routing of chains, clock trees,

and power grids are co-optimized. Testing, designers

will accept mission-mode-aware constraints

(keeping isolation, retention, and power-gating

intent), such that the test modes are an accurate

model of real operation and do not have unrealistic

controllability/observability.

A power-sensitive test was essential because scan

toggle is frequently much more common than

functional switching. Low-toggle X-filling and

weighted-random fills minimize concurrent

switching, launch-on-shift capture distributes the

activity, and constraint pruning prevents risky

overlaps between test clocks. Flows target per-

pattern toggle density, peak capture current, scan cell

switching cap enforcement, and patterns that violate

IR-drop, electromigration, or thermal limits, and

place them in quarantine. Since GPUs focus on high-

frequency cores and dense SRAMs, the controls

allow avoidance of false failure at the silicon and

lower pessimism during pre-silicon fault simulation.

Built-in self-test (BIST) augments scan. Logic BIST

(LBIST) tests combinational logic based on on-chip-

generated pseudorandom patterns [14]. It can be

tested at nearly full speed and with a few tests

familiar to the tester, thus it sacrifices determinism

to throughput and can be used to screen structure in

the lab and test in the field. Memory BIST (MBIST)

runs March-type algorithms to address stuck-at,

transition, and coupling errors and orchestrate

redundancy recovery of yield loss. MBIST is not

optional in GPUs where register files, caches, and

fabric buffers consume the majority of array space;

however, deterministic logic ATPG and its

associated structural coverage expansion, diagnosis

resolution, and pattern compaction budgeting are the

primary tools. The BIST system uses TPG, CUT,

and RA blocks that coordinate the Logic BIST

(LBIST) and Memory BIST (MBIST) operations as

shown in Figure 2 below. The BIST controller drives

tests, initiating and finishing tests, and generating

pass/fail outcomes, using pseudorandom patterns

and March-style algorithms, MBIST and LBIST.

Figure 2: An Overview of LBIST/MBIST block

2.2 ATPG & Fault Simulation: Coverage Closure

Techniques
Closure of that coverage on multi-billion-gate GPUs

depends on the interaction between deterministic

and pseudorandom pattern generation, compaction,

unknowns treatment, and fault modeling.

Deterministic ATPG addresses specific fault lists,

enumerating the justification/propagation space with

explicit mode constraints. Structural dominators,

dynamic implication learning, conflict-directed

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C14

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6094

backtracking, and cautious branching heuristics give

the technique scalability. Deterministic approaches

observe launch/capture timing (launch-on-capture as

opposed to launch-on-shift), respect power caps.

They can selectively point to particular cones that

are sources of residual undetected errors.

Pseudorandom generation, in LBIST or weighted-

random ATPG, explores large areas of the state

space quickly, enhances path diversity, and can be

used as a source of seeds, but can stall on

reconvergent logic unless the logic is test-pointed

(TPI) or subjected to deterministic top-up.

Compaction is constraining and enabling. Spatial

compactors decrease the number of pins and time

compactors can compress several capture cycles into

signatures, although they cause an aliasing risk. The

probability of aliasing is an analytic quantity when

the compactor dimension, the expected X-masking,

and a fault model are known; sign-off limits the

number of bits masked in a pattern and within a

pattern set. Since the excessive masking suffers the

drawback of destroying observability, contemporary

flows follow the masked-to-observed quotients and

mark inconvenient schemes that are unlikely to lead

to effective diagnosis. The method of pattern

compaction (both static and dynamic) reduces the

count of vectors through the combination of

compatible assignments and cutting off dominated

patterns without loss of detectability or diagnostic

syndromes [4].

Unpredictable management is the chief of realism.

Examples of X-sources are uninitialized memories,

mixed-signal wrappers, clock-domain crossings,

asynchronous resets, and power-gated islands. X-

bounding, incomplete scan on recalcitrant sequential

beings, wrapper logic to sensitize an unsteady

interface, and test-mode clamps all guard against this

by the designers. X-filling at the ATPG layer aims to

take assignments that minimize X-propagation and

enhance compaction subject to power constraints;

structural untestability and environmental

untestability (i.e., constraint conflicts), as well as

tool artifacts, are reported at the infrastructure layer.

Such a taxonomy makes it more possible to target

interventions, e.g., TPI on poor observability,

constraint relaxation on environmental untestability,

or waiving on provably redundant faults.

With the scaling of the technology, fault modeling

has become more complex. In addition to stuck-at

and transition/path-delay, cell-aware test generates

transistor-level defect libraries based on SPICE-

tested standard cells, resulting in a better match to

actual defect distributions at sophisticated nodes.

Small-delay defect model and path sensitization look

at marginal timing escapes pertinent to highly

pipelined GPU processors [10, 30]. The price is a

bigger fault universe and stress on ATPG and sims

runtimes; most groups hence gate cell-aware usage

on libraries/components where there has been

proven value, or they run it as a late-stage

incremental top-up. To maintain their cadence, fault

simulation engines co-evolved in parallel and

concurrent simulation to take advantage of word-

level parallelism and event-driven activity, statistic

fault dropping to terminate previously found faults,

and incremental engines to reuse correlation paths

between related patterns. These accelerations

transform multi-day regressions to overnight cycles

on a typical compute farm and generate low-

granularity telemetry--per-fault detection counts,

per-pattern toggle/capture metrics, and masked-bit

distributions--that power the feedback loop.

2.3 Feedback Loops in EDA Flows and CI/CD for

Hardware

Continuous integration has recast the way an

organization views DFT as a single effort into a

governed feedback loop. One useful loop consumes

nightly coverage and fault-simulation telemetry,

normalises logs across tools, and archives artefacts

in content-addressed storage in such a way that any

output can be revived off hashes of inputs, scripts,

and version-specific tools. Automated quality gates

determine promotions: a candidate pattern set can

only proceed to the next stage when a configured

delta has increased structural coverage, power

metrics are contained within budget, compaction

ratios are satisfied, and there are no timing-sensitive

scan stitching regressions. Rollbacks are symmetric

rollbacks: an artifact-dependent regression outside

of tolerances is automatically rolled back to the

previous good artifact [37]. CI dashboards display

trendlines in coverage, count of patterns, ratios of

mask bits, test-time forecasts, and compute

utilization to allow teams to regulate license pools

and farm schedules.

Security and governance are part of test artifacts

since they expose internal design and potentially

reflect sensitive microarchitectural information.

DevSecOps concepts such as automated static

reviews, dynamic testing, and software composition

analysis are generalized into the hardware one, the

policy-as-code gates, through which the promotion

of unsafe patterns is prohibited, and traceability of

every published pattern set can be traced back to its

origin [8]. Practically, this becomes mandatory

metadata (design revision, constraint bundle, tool

versions, seeds), signature verification of artifacts,

and change approvals by roles when the change that

impacts observability paths and any logs shared

externally are redacted. The result is an auditable,

reproducible loop in which the pipeline enforces the

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C4
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C10
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C30
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C37
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C8

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6095

coverage growth, power safety, and IP hygiene at the

same time, avoiding ad-hoc human review.

2.4 Data-Driven / Learning-Based Test

Optimization

Data-driven approaches are gaining popularity as a

method of making three everyday decisions that

come to scale with designs: where to add test points,

how to optimize ATPG constraints, and which

patterns to cache within tester memory and timing

budgets. In the case of TPI, attributes would be

SCOAP-style controllability/observability, netlist-

graph centrality (betweenness, eigenvector scores),

reconvergence depth, the cardinalities of fan-in/fan-

out, the estimated cone toggling due to random fill,

historical detectability of faults arriving at a node,

and closeness to known X-sources. Supervised

ranking models can rank TPI candidates to maximize

incremental coverage per area-power cost and can

satisfy time guardrails. State records the current

KPIs, coverage, the number of patterns, masked-bit

budgets, and power peaks. In contrast, actions alter

capture windows, X-mask budgets, clocking modes,

and compaction parameters in sequence [18]. In

their bandit and Bayesian optimization approaches,

expensive evaluations are concentrated in high-

leverage settings through the use of surrogate models

trained on previous runs. Reinforcement learning

can plan loop actions, such as whether to regenerate

patterns, insert points, or relax a constraint, by carb

quality gates and resource budgets.

Pattern ranking counteracts the tester limitation of

discarding redundant vectors, but not the loss of

detectability and diagnostic resolution. Isolated

characteristics comprise the per-pattern contribution

to coverage, overlapping with neighbors, and

estimated torture, peak current, and diversity of

diagnostic syndrome. Robust reductions are also

attained in a two-stage scheme, fast static ranking

augmented by focused fault simulations of the

activated top-K candidates, with no re-simulation of

the entire set. Whether the emerging machine-

learning literature concerning large models can

represent heterogeneous inputs and compute over

them to provide value on targeted queries, it is a

trend motivated to create multi-signal

representations of DFT telemetry [32]. To do so in

practice, a layered data model - raw artifacts,

normalized to a consistent schema, represented as

dense vectors to enable learning on graphs, counters,

bitmaps, and logs with no custom feature

engineering per tool.

2.5 Gaps and Open Challenges for GPU

Productisation

However, there are a few barriers between the

laboratory-level loops and production-level

deployments at GPU scale, even though progress is

ongoing. The first is scale as such. Tens of millions

of flip-flops throughout netlists generate scan

architectures involving thousands of chains,

multiplying the compression ratio into large ratios of

high-stress aliasing assumptions. By orders of

magnitude, cell-aware fault lists widen the target

space and take ATPG as well as simulation run times

into hundreds of CPU-hours per iteration; lacking

incremental simulation, checkpointing, and result

caches, loop cadence becomes impossible to sustain.

The other one is the fidelity of telemetry. Reports

should robustly separate structural untestability,

environmental conflict, and tool artifact; otherwise,

controllers are optimizing the wrong things [1]. Tool

normalization cannot be trivially addressed, as tools

differ in naming, hierarchy, and formatting in

synthesis, scan insertion, ATPG, and fault

simulation; stable names and robust actionable

mappers are needed to assign undetected faults to

stable causes.

There is cross-interoperability. One loop blocks

logic synthesis, scan insertion, ATPG, fault

simulation, static timing, and place-and-route, each

with semantically inconsistent artifacts. There may

be little prospect of relating coverage deficiencies to

particular nets or constraints without a persistent

schema and dependable mapping of instance names

between different compile tasks. Correlation

services will need to resolve differences in renames

and flattening; visualization should switch away

from instance-level diagnostic results to layout-

sensitive heatmaps so that physical concerns can be

considered to inform TPI, re-stitching decisions.

Four is governance. Artifacts of tests should be

versioned, reproducible, and access-controlled

[39]. Scan configurations and pattern sets, as well as

BIST microcode, can leak valuable design

information in an inappropriately handled system;

they are also a high-value form of intellectual

property requiring policy-based store and destroy

policies. Operations telemetry security research

focuses on the security implications of data streams

themselves, leaving the system as an attack surface,

data conveyed or staged without adequate

guarantees; corresponding reasoning impels

encryption, role-based access, and audited

promotion gates to dataflow pipelines (Malik &

Prashasti, 2023).

Coupling in organizations is difficult. Feedback

loops intersect with RTL design, physical

implementation, verification, silicon bring-up, and

product engineering. When quality gates and

budgets lack clear ownership, local optimizations

can hurt global performance [35]. A timing team

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C18
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C32
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C1
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C39
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C35

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6096

may lock coverage growth by blocking

corresponding scan re-stitch, or a DFT team may

maximize compression at the cost of unintentionally

adding ATE memory consumption. The hard tester

limitations introduced by productisation are vector

memory limits, loading/unloading latencies, sharing

among multiple sites, and interface delays, which

curtail what may be suggested by the loop. A

realistic agenda has standardized, content-targeted

artifacts surviving tool changes; incremental

automated test program generation and simulation

keyed by dependency graphs; diagnostic-sensitive

compaction which maintains localization depth in

high compression; and multi-objective controllers

constrained to be utterly harmless in the sense that

coverage gains never increase pattern count, power,

or tester time past the budgets.

3. Methods and Techniques

3.1 System Overview: Signals, Artifacts, Decision

Points

Implemented as a production pipeline, the pre-

silicon DFT feedback loop consumes

representations of the design. It produces measurable

test artifacts that can be understood within large-

scale, long-term constraints, then freely commits to

its next course of action within the constraints of

explicit guards. Synthesizable RTL and gate-level

netlists (.v/.sv), static timing and test constraints

(.sdc and .tcl), ATPG reports, fault-simulation

(FSIM) logs, and power caps explicitly limiting peak

shift and capture activity are inputs [34]. The

pipeline normalizes logs and reports into a schema

that includes design ID, netlist, constraint hashes,

seeds, tool versions, and the compile flags to make

runs reproducible and comparable across builds. The

materialized artifacts are coverage databases

indexed by fault model and cone, complete

provenance (pattern IDs, source seeds, and mask

budgets), pattern sets, scan-chain maps, and

prioritized lists of test-point insertion (TPI)

candidate sites. Decision points have to be

positioned at the stable interfaces: tuning a constraint

before an ATPG, editing TPI before scan stitching,

and selectively regenerating patterns after diagnosis

or FSIM regression. Orchestration work maintains

entities to content-based storage and tags the

checksums and timing waivers; promotion

regulations specify minimum coverage delta and

prohibit net negative slack. Telemetry is distributed

in the form of time-series dashboards and a per-

block Pareto chart, to enable engineers to audit the

reason that the loop behaved in that particular way.

These practices in governance and scaling resemble

the stable practice of communication-system

architecture, in which standardized interface,

provenance, and quality gates are the precondition to

safe automation [28].

3.2 Fault Models & Objectives

The loop demands a specific goal per block and per

fault model. Typical targets are stuck-at coverage Csa

≥ 98 % Csa ≥98% and transition/path-delay coverage

Ctr ≥ 90%, with cell-aware tests selectively enabled

as highlighted in Table 1 below. Cell-aware

inclusion is supported by a policy dependent on

library maturity and runtime budget: when defect

susceptibility/field-return signatures are available on

a per-cell basis and imply subsets of standard cells,

only those libraries are enabled cell-awarely;

otherwise, low-risk libraries are excluded to contain

ATPG/FSIM effort. The objectives are stored as

service-level objectives (SLOs) per block, maximum

allowable pattern count, minimum scan shift under

power limits, and launch/capture timing windows.

Table 1: An Overview of Fault Models, Coverage Objectives, Risk Factors, and Actions for DFT

Target Fault

Model
Coverage Objective Risk Factors Action/Adjustment

Stuck-at Csa ≥ 98%
Undetected faults, architectural

criticality, observability

Adjust constraints (e.g.,

masks, timing)

Transition/Path-

delay
Ctr ≥ 90%

Fan-out, gated clocks, multi-

domain crossings

Insert TPIs or regenerate

patterns

Cell-aware Tests

Selective based on cell

maturity and runtime

budget

Library maturity, field-return

signatures, defect susceptibility

Insert TPIs or regenerate

patterns

FSIM telemetry is accumulated per cycle by cone to

identify undetected targets [2]. Deep logic, lots of

fan-out, gated clocks, or crossings of many clock

domains are highlighted as high-risk. A risk score is

a composite of the undetected faults count,

architectural criticality (e.g., coherence fabric,

schedulers, command processors), and estimated

observability. The controller can then select between

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C34
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C28
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C2

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6097

three possible courses of action, namely to adjust

constraints (such as relax unknown masks, change

at-speed timing) or insert TPIs to make the design

more controlled/observed, or to regenerate targeted

patterns with more effort in narrowly scoped cones.

The statistical result is assessed objectively through

seeds; termination criteria are achieved when

statistical coverage gain is marginal to an hour, with

its coverage per hour lower than a gradient, or when

re-patterns would generate SLO violations

approaching the risk-weighted, failed to be

discovered faults within permissibility.

3.3 Pattern Optimization: Compaction, X-Filling,

Power-Aware

Static compaction removes unnecessary patterns by

retesting aggregate detection sets and extracting

patterns that do not contribute any unique detections.

Dynamic compaction, applied in ATPG, works by

trying to increase the detect set of every pattern by

solving to add further targets subject to mask and

compressor constraints [36]. Compressed scan

mixes aliasing and X propagation; the loop thus

models channel aliasing directly, adds explicit per-

channel unknown budgets, and ensures that the

amount of X loaded by compaction does not exceed

what the decompressor at response time can handle.

X-filling has power and noise controls. Random fill

seeks to maximize opportunistic detection and may

increase shift activity; biased fill maximizes the use

of toggling under low-cone activity; low-toggle fill

minimizes IR-drop and supply droop at some cost to

detection headroom. The controller chooses a fill

strategy on a block-by-block basis by guessing

which will run out first: power or the number of

patterns. Once shift power approaches the level of

the cap, loop favors low-toggle-fill and selectively

increases ATPG effort on rigid cones to prevent a

global count-inflation. Stop rules are data-driven: the

marginal coverage gain δC/Δtime is tracked per

action, and the loop halts compaction or regeneration

when the derivative falls below a configured floor.

This kind of adaptive choice design is compatible

with principles of dynamic inference- prioritizing

solutions based on intermediate cues and dedicating

computer resources to a domain until that investment

produces quantifiable payoffs [22].

3.4 Testability Enhancements: TPI & Scan Chain

Strategies

The SCOAP (structural controllability and

observability) measures that are calculated node by

node are assigned to proposals and then summed per

cone in the TPI proposals. Observability Candidates

that optimize observability of profound

reconvergent logic, or controllability of stubborn

enables, are preferred, within timing and area

budgets [12]. The loop supports observe points that

gate internal nodes into compression channels,

control points to gate seldom-activated signals, and

hybrid points to re-time challenging nodes closer to

scan nodes. Ability to fix each proposed point

against Budgets of setup/hold, placement

constraints, and test-mode isolation rules; in multi-

clock areas, lock-up latches are used to bridge phase

differences and extended detours—scan-chain

optimization. Scan-chain strategies are co-

optimized: The goal of length balancing is to reduce

peak shift time by minimizing chromosome length,

and at the same time, re-stitching reduces detours

around long macros and crowded routing. The

controller uses placement/timing hints to avoid

creating critical paths, and is careful of ECO

windows by grouping TPIs and chain edits into

reviewable patches. Formal equivalence means that

there can be no functional change with test mode

disabled: static timing checks, scan-enable, and test

clock timing. Any edits that are accepted are noted

with justification, forecasted coverage lift, and

rollback strategies so that subsequent cycles can

automatically roll back lower-yielding changes.

3.5 Metrics & KPIs

KPIs make the loop accountable and enable

principled trade-offs. Coverage is reported per

model and per block as

C=detected faults/total faults, with confidence

intervals across seeds, effort levels, and library

mixes. Coverage is also stratified by cone depth and

safety criticality to separate shallow from deep gaps.

Test time is approximated by 𝑇test ≈ ∑𝑖 (𝐿𝑖/𝑓shift) +

𝑁cap ⋅ 𝑡cap

, where 𝐿𝑖 is scan-chain length i, 𝑓shift is programmed

shift frequency under power limits, 𝑁cap is the

number of capture cycles per pattern (including at-

speed launches), and 𝑡cap is capture dwell plus tester

overhead. The cost proxy scales with ATE time:

ATE$ ∝ 𝑇test × units, letting finance translate Δ

pattern count into budget impact. Secondary KPIs

include ATPG/FSIM runtime, farm utilization,

diagnostic resolution (median suspect count and

localization depth), and flakiness rate—the fraction

of patterns that intermittently fail under identical

conditions. Dashboards display Pareto fronts of

coverage versus pattern count, violin plots of per-

block test time, and heat maps of undetected faults

by cone. Quality gates enforce minimum Δ coverage

for promotions, maximum allowed Δ pattern count,

and zero timing violations for accepted edits [25].

These metrics close the loop by turning every action

into measurable change against explicit targets.

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C36
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C22
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C12
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C25

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6098

Table 2: Key Metrics and KPIs for Pre-Silicon DFT Feedback Loop Evaluation

Metric Description Formula/Calculation Use/Impact Visualization

Coverage

Reported per model and

per block as C = detected

faults/total faults,

stratified by cone depth.

C = detected faults / total

faults

Coverage is

stratified by cone

depth and safety

criticality, showing

shallow vs deep

gaps.

Pareto front of

coverage vs.

pattern count,

violin plots of test

time

Test Time

Approximated by 𝑇test ≈

∑𝑖 (𝐿𝑖/𝑓shift) + 𝑁cap ⋅
𝑡cap, where 𝐿𝑖 is scan-

chain length, 𝑓shift is

shift frequency.

𝑇test ≈ ∑𝑖 (𝐿𝑖/𝑓shift) +

𝑁cap ⋅ 𝑡cap

Test time impacts

pattern count and

tester utilization,

scaling with scan-

chain length.

Heat maps of

undetected faults

by cone, violin

plots

Cost Proxy

ATE$ ∝ 𝑇test × units,

translates Δ pattern

count into budget

impact.

ATE$ ∝ 𝑇test × units

Cost proxy

translates pattern

count change into

financial impact.

Impact on budget

from Δ pattern

count

Secondary

KPIs

ATPG/FSIM runtime,

farm utilization,

diagnostic resolution

(median suspect count),

flakiness rate.

ATPG/FSIM runtime, farm

utilization, diagnostic

resolution, flakiness rate

Supports analysis of

test process

efficiency and

pattern reliability.

Farm utilization,

runtime efficiency,

diagnostic metrics

Quality

Gates

Enforces minimum Δ

coverage for

promotions, maximum

allowed Δ pattern count,

zero timing violations.

Minimum Δ coverage, max

Δ pattern count, zero timing

violations

Quality gates ensure

no silent regressions

in coverage or

timing.

Dashboard of

metrics for quality

assuran

4. Pre-Silicon DFT Feedback-Loop

Architecture & Toolchain Integration

4.1 Loop Stages: Observe → Analyze → Decide

→ Act → Verify

The feedback loop is designed as a closed-loop

control loop that constantly decreases the

uncertainty about design-for-test (DFT) choices.

Through telemetry gathered in the Observe stage, the

automatic test pattern generation (ATPG) and fault

simulation (FSIM) capture telemetry: per-fault

detection labels, non-detected cone identifiers,

pattern lineage, compaction ratio, X-mask density,

scan-shift timing margins, IR-drop indicators, and

diagnosis logs based on synthesized fail signatures

[7]. Records are date-stamped and are keyed by

design revision, constraint set, and tool build to

allow true rollbacks. The Analyze step carries out

schema validation, de-duplication, and anomaly

detection (such as abrupt regression of coverage in a

single block, pattern inflation abnormality without

explanation). The models used to rank and estimate

the marginal benefit coverage gain per minute of

ATPG/FSIM, or tester-time savings per unit of

pattern compaction. The Decide phase uses policies:

tune try constraint when the coverage is flat yet

timing headroom is present; schedule test-point

insertion when the undetected set accumulates on

low-observability cones; regenerate pattern to

targeted fault lists should compaction stall. The stage

of the Act is the implementation of changes under

guardrails and checkpoints. To validate coverage

lift, stable timing, and bounded pattern growth,

Verify makes A/B comparisons with a frozen

baseline. This staged architecture reflects the same

in the more mature algorithm-driven dispatch

processes in other operations areas, as capture of

events, weighting, assignment, and validation are

choreographed to maximize throughput with audit

[20].

4.2 Telemetry & Data Model

Scale, audit, and reproducibility are possible due to

a unified telemetry model. Every artifact has a

design_id, a block_id, a loop semantic version,

RTL/netlist, constraints repository git commit

hashes, and tool versions, run seed, and farm

context. At the pattern level, there is pattern_id,

parent seed, compaction stage, X-mask bits, activity

of capturing (all toggle counts and peak), expected

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C7
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C20

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6099

tester time, and references to ATPG/FSIM logs.

Fault-level tables contain data on the fault ID,

physical locations (cell/pin/path), type of fault

(stuck-at, transition, cell-aware), whether it is

detected or not, and detection patterns, as well as

diagnostic ambiguity groups. Design, run, pattern,

fault, and diagnosis tables have been formatted to a

normalized form to prevent duplication; analytics

views to be used in dashboards are built out wide.

Content-addressed storage subjects configuration

manifests and input netlists to SHA hashes such that

artifacts will be immutable and reproducible; any re-

run with the same manifest must produce bit-

identical outputs. Checksums are also checked when

uploading, and provenance links the precise tool

binaries and container images taken. Since test assets

would centralize sensitive structural information,

making them a potential indication of attack surface,

the data plane adopts a security-by-design stance:

encryption at rest and during transit, these access

controls decouple read/write/delete access at the

role-level, and key rotation about compliance

windows. It diverts to IoT security practice: Threat-

model- In model-based threat modeling, it is

assumed that network boundaries are untrusted, a

minimal attack surface is maintained, and

authentication and least privilege apply to all

telemetry producers and consumers [13].

4.3 Loop Actions

Loop actions make adjustments in constraints,

topology, or patterns, measuredly. Constraint tuning

is used to transform the feasible region of an

ATPG/FSIM under timing and power: Standard

windows on long paths, Lock-in capture windows

and launch windows on cross-domain boundaries,

peak-power ceilings on a per-capture basis, and

bounding the X-mask budget to prevent design

hiding of real defects. Individual constraint changes

are simple reviewable patches following the design;

pre-checks perform static timing on scan and capture

clocks and estimate IR-drop based on per-pattern

toggle profiles; post-checks ensure the coverage

achieved and the delta in the pattern scans fall within

any specified constraints. Test-point insertion (TPI)

is used when the errors are on the untested low-

observability or low-controllability cones.

The ranking of candidates is based on structural

metrics (SCOAP), incremental timing cost, and the

estimated coverage lift. ECO-safe insertion: the

alterations are limited to specific windows, lock-up

latches, and scan stitching, which are automatically

rebalanced. The functional view that formal

equivalence operates on does not allow any

behavioral drift [24]. Pattern regeneration is

performed on failing cones or newly introduced

faults; Incremental ATPG involves re-seeding with

scores at the previous pass; dynamic compaction is

re-done on only those pattern subsets that are

affected. FSIM too is incremental: witness matrices

are cached and only deltas are recomputed. In any

action, there are rollback points that are

operationalized as rules, such that any step back in

coverage, number of patterns, or time of scans will

automatically restore the last known-good state.

4.4 Toolchain Integration

Front-end, DFT, and back-end tools are linked with

tight contracts. Based on synthesis and static timing

analysis (STA), the loop absorbs timing views, false-

path and Multi-cycle exceptions, clock and

definition, and power intent so that pattern

generation never contradicts design assumptions.

The loop feeds scan inserts and ATPG with chain-

length targets, compression configuration (channels,

decompressor seeds), scan clocking constraints,

capture windows, and power caps; it yields chain

maps and pattern sets, coverage databases, and X-

mask reports. FSIM consumes patterns and fault lists

to generate witness matrices, diagnostic groups, and

per-pattern detection vectors; these are supplied to

diagnosis-driven TPI and pattern pruning. Hooks

Place-and-route (P&R) hooks support timing-aware

TPI and scan re-stitching: DEF/LEF and parasitic

data imported to make sure that candidate test points

do not get congested or take long detours, and

incremental ECO routes checked pre-sign-off to see

that they are clean concerning DRC checks.

API/CLI-based APIs and contracts contain strict exit

codes and well-structured logs (JSON) to facilitate

the orchestrator to categorize failures (license

starvation, design checksum mismatch, timing

violation, solver-timeout) and automatically recover.

Long ATPG/FSIM computations are checkpointed:

solver states together with intermediate compaction

buffers are stored so that jobs that are preempted

resume without wasting hours. Policy controls pools

of licenses and their queues in farms (burst windows

for exploratory loops, quotas for production

promotion, and preemption rules to ensure sign-off

runs are not wasted). Design hash, constraint hash,

and tool build are incorporated into cache keys,

which means that reuse is predictable and safe [40].

The API/CLI-based pipeline automates design

validation, policy enforcement, and deployment, as

shown in the figure below. It balances design tests

and settings with source control so failures (such as

license starvation, checksum mismatch, timing

violations) are logged and automatically resolved.

Preempting is performed in long computations by

checkpointing to continue tasks without wastage of

time.

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C13
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C24
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C40

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6100

Figure 3: API/CLI-based pipeline ensuring automated validation, error categorization, and recovery

4.5 Orchestration & Quality Gates

Hardware cadences are adjusted in CI/CD pipelines

around which the loop rides. Pipelines will run

nightly, on push to DFT-critical branches, and when

guardrail metrics are broken (coverage drop, test-

time spikes, FSIM flakiness). Both stages (scan

insertion + ATPG, FSIM, verification, and

packaging) generate irrevocable manifests and KPIs,

which are sent to a central registry. Promotion

among artifacts, from feature to integration, needs

evidence: statistically significant coverage lift

compared with baseline with low effect size; fixed

pattern growth (such as 100PC 150% unless

compensated by tester-time reduction); no new

timing violations on scan or functional clocks; and

unchanged FSIM pass rates with retry budget under

limit [38]. Jobs that use gating are compared in A/B

under the same seeds and hardware, and a

confidence interval is computed on Δcoverage,

Δpattern count, Δtest time, and Δdiagnosis

ambiguity. Coverage and pattern tracker lines by

block, Pareto charts of undetected cones, burn-down

of test cost, and target, farm, and license utilization

are tracked on dashboards. Fail-fast rules will halt

loops when there is no marginal gain past user-

specified thresholds, and auto-rollback will rollback

to the last set of promoted artifacts in case a gate

fails. Promotion dumps the artifacts to a signed

manifest (design hash, constraint hash, tool builds,

license lists) so downstream teams (post-silicon

bring-up and ATE engineering) can get an on-

demand recreation of the actual test content. The

combination of these practices in orchestration and

gating changes DFT into a feedback system where

the results can be predicted reliably, and more

importantly, audited in a way that is repeatable and

predictable [26].

5. Experiments and Results

5.1 Designs & Setup

To reveal a set of testability profiles, the evaluation

applied three representative GPU partitions. The

former used a configuration of four compute units

that shared a common front end, warp schedulers,

and a scoreboard; the deep pipelines and control

networks with many paths out of each compute unit,

back in time, created X-dominant cones. A 2 MB L2

cache slice containing a directory controller, tag/data

SRAM macros with redundancy repair, and coherent

interconnect endpoints was the second one; this

block has large memory macros as well as an

intermediate depth control logic. The third included

high-bandwidth-memory (HBM) PHY logic

wrappers with lane training state machines,

boundary-scan bridges, and DFT logic, which

interface with analog macros; in this case, low shift

frequencies and stringent power budgets tend to rule

the day [11]. The three netlists were synthesized to a

5 nm PDK that has multi-corner multi-mode

constraints.

Figure 4: Data encryption flow: CPU sequential vs. GPU parallel encryption based on data size

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C38
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C26
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C11

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6101

The figure above shows an example of the process

of data encryption in terms of size and type. The

procedure begins with analysis of the input data,

which is then segmented into small/meta data blocks

or large data blocks. Small/meta blocs are encrypted

sequentially by the CPU, and large data blocks are

encrypted in parallel by the GPU. The encrypted

blocks combine to give the final encrypted data

output. This strategy is optimum in terms of the data

characteristics to achieve efficient processing and

security of encryption.

Scan insertion demonstrated chain lengths of 8.5k-

12.2k flops per domain uncompressed, 100x-200x

compression targets against IR-drop budget limits.

The toolchain was composed of commercial

synthesis/STA, scan/ATPG with static and dynamic

compaction, and a parallel fault simulator. The Jobs

were run on a 256 render farm (96 GB RAM/slot).

Reproducibility was pinned to seeds, compression

targets, and power caps [15]. The partitions were

podded in both a loop-disabled and loop-enabled

mode, and the telemetry (coverage, pattern metadata,

diagnosis, and timing histograms) were persisted to

a content-addressed store, making replays

deterministic.

5.2 Baselines & Protocols

The stitching of the baseline scan chains was done

with a fixed scan count, conservative X-mask

budgets, and one ATPG/fault-simulation pass was

applied per model: stuck-at, transition/path-delay,

and a more focused cell-aware pass on the high-risk

libraries. Hard failures (infeasible compression or

scan-chain timing violations) could be manually

edited. The loop organization performed N cycles

(N[\[5, 8]) until convergence of the quality gate.

Each cycle performed: (1) observe- ingest coverage

and diagnosis, (2) analyze- rank possible actions, (3)

decide- select a set of changes under guardrails, (4)

act- apply test-point insertion (TPI), tuning of

constraints, or selective regeneration of patterns),

and (5) verify- re-run ATPG and fault simulation on

canary cones, and pass to complete regressions only

if deltas exceeded thresholds (gates applied). Quality

gates enforced ΔC≥0.3 pp when below target,

ΔPC≤0% unless a coverage target justified growth,

no timing regressions on scan paths, and

reproducibility of results under fixed seeds.

Confidence intervals were estimated over five seeds

per partition; all reported means include 95%

bootstrap CIs for ΔC (coverage change), ΔPC

(pattern-count change), and ΔT_test (tester-time

change). Evaluation of loop best practices in

feedback systems (namely, explicit success criteria,

artifact provenance, and staged promotion) was a

key consideration in loop design to prevent unstable

or noisy improvements [6].

5.3 Coverage & Pattern Outcomes

Stuck-at coverage across the three partitions saw

gains of 1.6-2.8 percentage points vs. baseline, and

transition coverage 1.0-2.2 percentage points. The

SM cluster had the most significant movement

(ΔC_sa = +2.8 pp; ΔC_tr = +2.2 pp, CI widths <0.4

pp) with the loop, which added three observations on

multi-fan-out control nets in warp scheduling and

issue logic. There were localised defects close to the

crossbar arbitration and scoreboard writeback that

went unnoticed until diagnosis; the increased

observability subsumed previous cones dominated

by pathologies to X with aggressively increased X-

filling but power limits not breached. The slice at L2

was better mainly as a result of constraints tuning,

namely expanding excessively conservative capture

windows on low-skew domains and narrowing

launch constraints where false path assumptions

obscured productive transitions, with resultant 0.9

pp and 1.4 pp overall improvements in C_sa and

C_tr, respectively. As shown in Table 3, HBM

wrappers had a relatively small coverage advantage

(ΔC_sa = +1.6 pp; ΔC_tr = +1.0 pp) due to analog-

adjacent logic constraining realistic TPIs; however,

the pattern regeneration selectivity mode on lanes

was used on lane-training controllers to eliminate

patterns after masking was eliminated.

Table 3: Coverage and pattern reductions with key improvements across GPU partitions

Partition
Stuck-at

Coverage (ΔC_sa)

Transition

Coverage (ΔC_tr)

Pattern

Reduction
Key Improvement Factors

SM Cluster +2.8 pp +2.2 pp -34% (±3%)
Increased observability on multi-

fan-out nets and X-filling

L2 Slice +0.9 pp +1.4 pp -38% (±4%)
Constraint tuning on capture and

launch windows

HBM

Wrappers
+1.6 pp +1.0 pp -22% (±3%)

Pattern regeneration selectivity and

elimination of masking

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C15
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C6

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6102

The number of overall patterns decreased

significantly: SM −34% (CI ±3%), L2 −38% (±4%),

and HBM −22% (±3%). Refined constraints have

helped drive efficiencies in static and dynamic

compaction, such as minimizing mask burst not

needed to reach FIFO boundaries to increase fill

densities and eliminating vectors with low utility.

Tail analysis was done on the worst-detectable 2%

of faults per partition. When these tail faults

converted to detectable faults in the SM cluster, 61%

did so only after TPI, with the rest concentrated

heavily on gated clocks that would involve

architectural modifications. On the L2 slice, 49% of

tail-faults were ameliorated by timing-window

settings in two fabric domains, and 32% were

unidentified by the absence of extra wrappers on

black-box SRAM macros. The residual tail faults

found in the HBM wrappers concentrated in

boundary-scan bridges associated with analog

macros and supported the loop policy of refusing to

go invasive where timing risk or interface risk lay

above the cost/amortization point.

Figure 5: Coverage and Pattern Reduction Outcomes across GPU Partitions

5.4 Runtime & Scalability

The time consumed was measured on a stage-by-

stage basis, i.e., ATPG, fault simulation, diagnosis,

and reporting, and normalized against gate count.

ATPG wall-clock/cycle fell following the second

iteration since the loop reused caches and restricted

regeneration to afflicted cones; the initial step had

the overhead of constructing the telemetry store and

resolving scan-chain maps. Pattern-count decreases

were well correlated with fault-simulation time; TPI

candidate-evaluating cycles provided an 812%

inductive expense to calculate and match suspect

sets [16]. Average farm utilization was increased by

62% (baseline) to 78% (loop) due to the orchestrator

emitting numerous short cone-scoped jobs rather

than single long monolithic runs, and because fewer

jobs were locked up in the queue head-of-line

blocking at once. License saturation events were

reduced to 2.1% of wall time as the scheduler

enforced concurrency limits per tool family, and

delivered highly prioritized jobs based on their

estimated ΔC/Δtime. CI latency per loop was 7.6

hours (SM), 6.9 hours (L2), and 4.1 hours (HBM);

end-to-end wall-clock to convergence was 2.4 (SM)

to 3.1 (HBM) days, depending on N and promotion

answers. It was essential to treat each design

partition as a separately orchestrated part: fine-

grained cross-partition boundaries, tool phases, and

artifact life cycles decreased cross-coupling and

avoided retries that could cascade through other

partitions and lead to an engineering lesson in tune

with context-boundary practices to manage

complexity in other large systems [3].

5.5 W Test Cost & Diagnosis

The modelling of tester time was based on counts of

post-compaction patterns, per-domain chain length,

and shift/capture parameters. 𝑇test ≈ ∑𝑖 (𝐿𝑖 /𝑓shift) +

𝑁cap ⋅ 𝑡cap Ttest. In the SM cluster, a pattern reduction

of -34 percent that involved low chain rebalancing

resulted in a 29 percent decrease in 𝑇test. A 33 percent

decrease was obtained by the pattern reduction,

which was minus 38 percent in the L2 slice with

similar chains in the background. The HBM

wrappers achieved −22% patterns and a 17% 𝑇test

drop, bounded by low shift frequency and long

capture dwell times near analog macros. Fall-limited

and constrained by the low frequency of shift, long

dwelling around analog macros. At a blended ATE

rate of a quarter million dollars with a run rate for

the volume of one million board production, the total

cost-saving made by the combination of the three

partitions equaled a low-seven-figure decrease in

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C16
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C3

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6103

Table 4: An Overview of Test Cost, Memory Footprint Reduction, and Diagnostic Improvements across

GPU Partitions

Partition

Pattern

Reduction

(%)

Test Time

Reduction

(%)

Tester Memory

Footprint

Reduction (%)

Cost Savings

(Low Seven-

Figure Estimate)

Diagnostic Quality

Improvement

SM Cluster -34 -29 -19 Yes
23% reduction in

suspect-set size

L2 Slice -38 -33 N/A Yes
17% reduction in

suspect-set size

HBM

Wrappers
-22 -17 N/A Yes

Reduced false positives

with pattern de-

duplication

direct test cost, without the bonus of increasing

payloads through the tester faster. Footprints of

Tester memory proportionately declined with the

number of patterns (from -19 to -35 percent), with

reduced load/unload overheads and closer multi-site

staging. There was a rise in diagnostic quality, too:

under SM, media suspect-set sizes were reduced by

23%, under L2 by 17%, and RMA accelerated triage.

Within the SM cluster, better localization near

crossbar arbitration has reduced ambiguous suspects

from 5.1 to 3.8 nets per event. L2, the masking

artefacts within directories are eliminated by state

machines, reducing the spurious candidates that used

to consume cycles in debugging. The case of HBM

wrappers was similar in that the size of the suspect

set varied minimally, as there was a limited

observability due to analog-adjoining bridges. Still,

there were fewer false positives as noisy masks were

eliminated via pattern de-duplication [29]. When

considered together, these findings show that the

loop, in addition to its time and cost advantages, also

increases the precision of diagnosis, so it decreases

bring-up time and allows finding the yield in a

shorter time.

Figure 6: Test Cost and Diagnosis Metrics across GPU Partitions: Pattern, Test Time, and Memory

Reduction

6. Discussion

6.1 Interpreting Results for Productisation

Reductions in fault coverage, pattern count, and

tester time that are observed reduce the

productisation timeline of graphics processing units.

Early closure of controllability and observability

gaps minimizes late design churn, due to the fewer

change requests that are needed once timing has

been fixed by place-and-route. Reduced pattern

volume also reduces the automatic test equipment

time/device, reducing marginal cost, and allowing

the qualification lots to be screened with less new

capital investment required. There is also less block-

merging feedback: nightly regressions provide

actionable deltas, enabling design owners to debate

corrections before route congestions freeze a

deadlock. Risk burn-down is a further consequence

of transmuting guesswork into quantitative terms:

undiagnosed faults translate into targeted ATPG

targets, unstable power profiles into explicit

constraints, and the ambiguity set in diagnosis is

reduced as patterns are re-ranked to maximize

diagnosability. The loop re-contextualizes DFT as a

controlled process of governance rather than a one-

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C29

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6104

time milestone where policies dictate incremental

decision-making and telemetry validates the results.

Other nearby control issues indicate that closed-loop

decision-making can be preferred to open-loop

heuristics in scenarios where rewards are not

immediate, and the state space is huge;

reinforcement-learning approaches to optimising

traffic reveal the importance of continual sensing,

policy update, and action constraints [31].

6.2 Trade-offs: PPA vs. Testability, Schedule

Risk, License Budget

The trade-offs have to be assessed based on

performance, power, and area versus testability on

the one hand and schedule and license budget on the

other hand. It is essential that test-point insertion can

be valuable on a design where marginal coverage lift

unarguably exceeds incremental timing and area cost

on key cones. Added observation or control points

used on high-frequency shader datapaths might

violate retiming assumptions or cause buffering,

which dilutes slack. Extra logic on crossbars can

make chains of multiplexors longer and increase

capture power (as well as reduce parallelism and

incur additional potential crosstalk) [5]. The loop

prioritises candidates based on predictable coverage

gain/picosecond of slack used and disregards test

points that impinge on multi-corner violations,

electromigration hotspots, or other nets that are

security-sensitive. Schedule risk: when ATPG or

fault simulation monopolises licenses, farm slots;

orchestration can mitigate by sharding cones,

checkpointing long runs, and prioritising actions that

deliver the steepest coverage gradient as early as

possible. Budgets Tool budgets are first-class

constraints: policies constrain parallelism to prevent

license starvation of synthesis and timing, and

encourage compaction or constraint tuning before

wholesale regeneration when queues overflow.

Proliferation of patterns is limited by pattern

controllers that impose per-loop bounds on the

addition of new elements and that must be A/B

verified against a baseline after which they may be

promoted. However, this can cause a pattern to

become stuck in one corner and never be able to

optimize.

6.3 Limitations & Threats to Validity

Several limitations and threats to validity should be

brought up. The extent of gains is governed by

structural rigidity: streaming multiprocessor

clusters, with uniform scan top and balanced chains,

behave more favorably to stitching with

compression properties than do their disarranged

control structures with large numbers of

asynchronous boundaries. Aggressive power-gating

of designs, a large number of clock domains, high X-

density, and mask volatility lead to reduced

compaction efficacy and the necessity of

conservative capture windows, increasing pattern

count. Sensitivity to seed in ATPG may skew pattern

counts and coverage; protocols ought to check

several seeds in each block, and highlight bounds of

confidence [21]. Tool-specific behaviors endanger

external validity: model coverage with cell-

awareness and X-mask handling issues may differ

between library versions and between engine

versions, altering how easy-to-miss cones are. To

alleviate this, the experiments need to pin versions

of the tools used, store configuration hashes, and

publish provenance of any artefact that is gained via

the loop. Measurement is also prone to collider bias

when only profitable runs are kept; an action-

promoted or rejected should occur on a dashboard.

Lastly, human-in-the-loop effects are a fact: the

designer can modify RTL or constraints at the last

minute in reaction to telemetry, which can lead to

confusion in casual assignments. Separation

between exploratory branches and release candidates

should be done in governance, and pre-registered

decision policies are expected.

6.4 Portability to Other IPs/SoCs & Mixed-Signal

The observe, analyze, decide, act, verify abstraction

is generalized to digital intellectual property in

general, including image signal processors, video

codecs, and neural accelerators, in addition to GPUs

[33]. Portability relies on adapter layers that

standardize heterogeneous tool logs in terms of

mapping to a standard schema, aligning semantics of

separate ATPG engine coverage, and registering

design hierarchy to scan-chain and compression

constructs. Orchestration at the system-on-chip level

requires honoring multi-IP concurrency and vendor

boundaries: third-party blocks will frequently come

packed with encrypted models, requiring wrapper-

level actions instead of in-depth insertion of test

points. The compression ratios and length would

vary by IP; the controller would be expected to pick

action sets per block- e.g prefer constraint tuning on

high-speed PHY wrappers but on compaction in

compute clusters. Mixed-signal environments need

adaptation layers: analogue macros will typically

open up with boundary-scan or wrapper interfaces;

the loop must see these as a contract point where the

digital pattern in syncs with the analogue stimulus

and measurement recipes. The power-sensitive

policies must be retuned, as the AMS islands enact a

more restrictive capture window and IR-drop limits.

Process is also portable: quality gates, provenance,

and rollback rules must be agreed upon in teams

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C31
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C5
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C21
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C33

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6105

Figure 7: Functional verification of mixed-signal SoCs: Integration of digital and analog components

before sharing compute and license pools, or a single

aggressor block can consume all resources. The

figure above explains the flow of functional

verification of a mixed-signal SoC, including digital

logic, AMS IP, and power management. It highlights

the demands imposed by system-on-chip level

adapter layers and orchestration, catering to

concurrency, encrypted models, and synchronisation

between digital and analog sources, and adaptations

to compression ratios, power-sensitive policies, and

process portability.

6.5 Interaction with Post-Silicon Bring-Up &

Yield Learning

Round-trip with post-silicon broadens the loop in a

design toolchain to a learning system. Simulation

builds should be passed through to the pre-silicon

warehouse using the same identifiers as test bins or

test flow packets - allowing cross-domain joins and

time-aware analysis in the warehouse. In the case

where the recurrent fail signatures are correlated

with specific cones or physical neighbourhoods, the

controller will then prioritize constraint changes,

pattern regeneration in a selective region, or

inserting test-points in those areas during the

following spin. The size of the same diagnostic

ambiguity group becomes a significant predictor:

smaller groups reduce the time spent isolating the

root causes and speed the process of corrective

actions in RTL and process corners. Data plumbing

reflects telemetry-centric areas: standard schemas

and lineage, immutable access controls make

volume streams usable. Telematics modernisation

demonstrates the transformational effect of asset

levels sensing and communication operations;

analogous processes in the timely DFT update and

resource location [19]. To preclude circularity,

governance decouples research sandboxes and

release pipelines, and demands A/B validation in the

case of post-silicon knowledge, suggesting pattern or

constraint alteration. With practice, the system

learns priors, such as fault-prone cones, brittle

masks, and unsafe capture windows, and shortens

ramps in the future.

7. Future Work

7.1 Multi-Objective Controllers

Future research ought to define multi-objective

controllers, which jointly optimize structural fault

coverage, number of patterns, tester time, peak shift,

capture power, and test-memory footprint.

Scalarization is a practical baseline to combine

targets into a utility U = w_c·C − w_pc·PC −

w_t·T_test − w_p·P_peak − w_m·Mem with hard

constraints on minimum transition and cell-aware

coverage on safety-relevant cones. Weights should

be extracted as business value curves, such as

marginal tester-second saving per pattern at

expected volume, and as requirements of the safety

requirements that capped the undetected fault risk.

Trade-offs, however, are concealed in scalarization;

thus, future controllers ought to calculate Pareto

fronts by constrained Bayesian optimization or

multi-armed bandit definitions, which introduce

candidate trades (such as adding observation points

to the cone or improving coverage of the block or

marching patterns of the seed) and choose them

based on hypervolume gains. To maintain wall-clock

latency not exceedingly significant, the controller

ought to be asynchronous: suggest small batches,

analyze based on partial ATPG and fault-simulation

report concluding agreements with early-stopping

rules, and encourage only incoming actions that pass

quality gates. Context attributes are per-cone

controllability/observability parameters, local slack

vectors, scan-chain length, compression-ratio,

historical diagnosis hits, and approximate IR-drops

vulnerability. Action models must provide estimated

Δcoverage, Δpatterns, Δtest-time, and Δpower with

calibrated uncertainty; Thompson sampling can

trade off exploration of new cones with exploitation

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C19

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6106

of historically successful edits. Telemetry should

also be versioned and reproducible to promote

closed-loop learning over releases, which is also in

line with predictive analytics on continuous

improvement [9].

7.2 Integrating LBIST/MBIST & In-Field

Telemetry

A second work stream must combine LBIST/MBIST

statistics, in-field telemetry, and pre-silicon

analytics. LBIST pass/fail maps, MISR residue

distributions, and MBIST fail-address histograms

must be summed at die, lot, wafer, and tester setup

and then reprojected to logical cones via wrapper

metadata, address decoders, and per-array mapping

table. Those distributions may guide constraining

and pattern priorities. Cones that repeatedly were

implicated by LBIST must get deterministic ATPG

with narrower launch/capture windows; those that

occur frequently with marginal IR-drop should result

in low-toggle X-filling and power-aware chain

ordering; ones that offer minimal marginal

diagnostic information should be demoted.

The same schema should stream in-field telemetry:

error counters, ECC syndromes, and scrubbing logs;

thus, pre-silicon risk models can be updated by post-

deployment behavior. The loop ought to use

evidence-based scheduling of notifications: to

prevent both alert fatigue and farm thrash, include

batching of related triggers, throttle bursts at peak

times during tape-in windows, and send alerts only

when a trend threshold is hit. It has been

demonstrated that such scheduling yields better

downstream results in other areas of operation by

transmitting the correct signals with correct cadence

that can be implemented at engineering gates as well

[27]. In practice, the pipeline must have customer

data privacy controls, cryptographically signed test

assets, and lineage in place such that any promoted

action can be line-traced to the specific telemetry

that necessitated it.

Figure 8: Column redundancy scheme for repairable memories with failure and repair mapping

The figure above represents a column redundancy

design used to repairable memories with failing and

duplicate columns on the left and right. This setup

makes it fault-tolerant with redundant columns

repair and memory integrity. It supports the memory

inputs and memory outputs efficiently, as well as

managing the address, row, and decoder signals to

maintain a correct redundancy in the event of

failures relevant to handling in-field telemetry and

pre-silicon risk models concerning LBIST/MBIST

integration.

7.3 Cross-Generation Transfer Learning

Cross-generation regularities in GPU design should

be used in future loops. Transfer learning provides a

warm start on three high-leverage artifacts. In the

first test-point priors: learn a mapping between the

graph-level features controllability, observability,

reconvergence degree, depth, switching propensity,

and neighborhood slack to expected utility,

measured as incremental coverage per incremental

pattern normalized by area and timing cost. When a

program is started, fill the new family with the best

percentile of these candidates and see which

controller takes and what he rebuffs them on the

results of gains. Constraint priors: train networks

that forecast power-safe capture windows, chain

ordering policies, and X-mask budgets relative to

block-class descriptors (such as cache slice, SIMD

core, DMA engine) and library/process properties;

use these networks to initialize the loop to prevent

cold-start stalls. Pattern ranking: train scoring

functions that predict diagnostic value and

anticipated tester-memory footprint such that

regeneration prioritizes patterns that are on the steep

section of the coverage-versus-cost curve. To reduce

negative transfer, the loop ought to conduct canary

tests on small slivers of fabric, keep uncertainty

estimates, and gate promotions on invariant checks:

no timing regressions, no scan-enable overflows,

and no more unsafe switching. Meta-learning

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C9
file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C27

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6107

between families is also beneficial to time-to-

benefit, adapting hyperparameters--batch sizes, rates

of exploration, and early-stop threshold points,

based on a small number of gradient-like steps

across initial cycles of a novel program.

7.4 Fab/Test-Floor Data Fusion

A fourth research axis is on integrating fab and test-

floor data into pre-silicon artifacts. Design databases

should be merged with STDF bins, diagnosis-

derived failure bitmaps, shmoo plots, tester limits,

and wafer maps. Gate-level netlists, scan-chain

maps, pattern metadata, parasitics, and timing slacks

should be normalized. There are three products that

the fusion pipeline should emit.

 Cone attribution: probabilistically project fail

signatures to suspect cones via diagnosis

likelihoods and layout-philosophical priors, and

promote them into a degree ATPG-fault

simulation procedure that aggressively favors

high-payoff direction like addition of observation

points or tightening of constraints.

 Optimisation of screens: approximate per-

pattern yield leverage by regressing bin escapes

on the presence or absence of candidate patterns

across volume lots, and penalising the tester-time

cost; patterns with modest utility can be removed

or substituted by their compressed equivalents in

the loop.

 Variation-aware policies: integrate wafer-level

process indication metrics into power models to

forecast IR-drop hotspots during shift and capture

and autonomously recommend chain re-ordering,

power staggering, or clock-stagger recipes.

 Every join must be reproducible: materialize

all content-addressed artifacts, schema-version

all tables, and calculate all confidence interval

loss-streams on every attribution to instill trust in

engineers when accepting loop actions.

7.5 Open Benchmarks & Reproducibility

One needs community standards with which to

compare loops and that do not overfit to proprietary

idiosyncrasies. Future efforts suggest an open corpus

in the form of tiered disclosure of fully open

synthetic GPU-like netlists and realistic scan and

compression; partially open designs with

anonymized cone graphs and redaction of libraries;

evaluation-only encrypted design representations

under data-use agreements. Versioned inputs

(netlists, constraints, library views) and expected

outputs (coverage, pattern sets, timing limits), and

canonical scripts should be shipped in a manifest at

each tier [17]. To achieve reproducibility,

containerized toolchains, checksummed artifacts,

and seed pinning should be adopted; confidence

intervals and ablations should be provided in the

results. A suite of KPIs to be published: fault model

coverage, number of patterns per detected fault,

tester-seconds per unit under test, diagnostic

resolution, and CI latency. A blinded submission

mechanism may avert over-tuning, and parameters

applied in obtaining results are saved in audit trails.

8. Conclusion

This paper demonstrates that pre-silicon DFT may

productize GPU products more swiftly and at less

cost and risk, since it is deployed as a controlled

feedback loop instead of an isolated activity. The

approach organizes DFT as an Observe → Analyze

→ Decide → Act → Verify loop integrated into

CI/CD. A normalized telemetry model enables

ATPG coverage, fault-simulation evidence, and

timing and power characteristics, diagnosis, and

artifact provenance to be unified, enabling controller

policies to prioritize safe high-leverage actions.

Guardrails enact constraint tuning, selective pattern

regeneration, and timing-aware test-point insertion,

and are checked against frozen baselines. The

quality gates below encourage changes that enhance

coverage at a minimum cost to test, but do not break

timing or power, leaving reproducibility and sign off

intact.

The loop returned practically meaningful

performance within representative GPU partitions,

including an SM cluster, an L2 cache slice, and

HBM PHY wrappers. Absolute stuck-at coverage

improved by approximately 1.6 to 2.8 points,

whereas transition coverage also increased by

approximately 1.0 to 2.2 points. The number of

patterns decreased by 22 to 38 percent and produced

a 10 percent or more decrease in tester time, since

test time increases with the length of the scan and the

time to capture. These gains were maintained at very

low IR-drop budgets by power-sensitive X-filling

and chain designs. Diagnostic and quality were also

enhanced: when suspect sets were smaller and cone

attribution easier to read in compute and cache logic,

bringing up friction was less, and the yield-learning

curve was quicker.

In practice, the loop automates ad-hoc judgment to

facilitate auditability. Artifacts are replayable

through content-addressed storage and immutable

manifests; long ATPG and fault-simulation jobs

become responsive with checkpointed compute and

farm-aware scheduling, and sign-off jobs cannot

starve their license. Dashboards show Pareto fronts

of coverage to the number of patterns and focused

maps of undetected-fault densities by cone (or cone

pairs), to direct the limited licenses and CPU-hours

to the fastest marginal coverage slope. Silent

file:///C:/Users/AJAY/Downloads/IJCESEN%2021%20PAPERS/3778.docx%23C17

Karan Lulla/ IJCESEN 11-3(2025)6091-6108

6108

backsliding is guarded against by promotion gates,

like minimum coverage delta, bounded pattern

growth, and zero timing regressions on scan and

functional clocks. Since artifacts are signed and

versioned, downstream teams can re-create the

accurate sets of patterns when needed.

The thresholds and trade-offs are upfront. Cell-

aware campaign widens the fault universe and

emphasizes runtime; X-density, multiple clock-

domains, and analog adjacency limit compaction and

free point insertion; tool naming drift and sensitivity

seeding pose challenges to subsequent

comparability. The pipeline mitigates these via

incremental ATPG and fault-simulation and cache

reuse, schema-level normalisation and version

pinning, ECO-safe edit windows, conservative

policies around mixed-signal interfaces, power-

aware fills, and license control. The controller blocks

promotion and automatically back-tracks to the last

known-good artifact to safely close the loop in the

case of an action that may jeopardize performance,

power, or schedule.

In the case of the practitioners, a realistic path of

adoption can be found. Telemetry and provenance:

standardise the telemetry and provenance across

tools, set service-level objectives and promotion

gates based on coverage targets, tester-second

budgets, and schedule risk, containerise/checksum

the flow to ensure replayability. Start with the loop

around constraint tuning and selective regeneration,

and later move to timing-aware test-point insertion

within the confines of formal and timing guardrails.

Orchestrate small blocks so that they all appear as

independent programmes to guard against head-of-

line blocking, and impose license budgets to defend

sign-off. Measure every alteration using A/B testing

in steady states and simultaneously to transform the

intuition into quantified, auditable improvement.

The findings inspire objective extensions that have

definite operations. Multi-objective controllers can

optimize coverage, time, power, and memory on

clear Pareto fronts, as opposed to scalarised

substitutes. An integration of LBIST and MBIST

statistics and in-field telemetry can be used to guide

pre-silicon focus and eliminate low-usefulness

patterns. Transfer learning may warm-start test-point

and constraint priors, cross-generation. Variation-

aware screening can be energized by fab and test-

floor data. Fair comparison and reproducibility can

be pegged on open, tiered benchmarks using

containerized toolchains. Overall, closed-loop pre-

silicon DFT converts noisy telemetry into bounded,

reversible effects that enhance coverage, minimize

patterns, compress schedules, and reinforce

governance over modern GPU programmes at scale

and sustained impact.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial interests

or personal relationships that could have

appeared to influence the work reported in this

paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or

ethical restrictions.

