

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5918-5926
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

A Framework for Near-Zero Downtime Oracle Database Upgrades and Grid

Infrastructure Patching in Mission-Critical Enterprise Environments: A

Production-Validated Approach

Sridhar Krishna Korimilli*

Sr.Technical Leader Oracle America Austin, Texas
* Corresponding Author Email: skkorimilli@gmail.com - ORCID: 0009-0009-4788-6391

Article Info:

DOI: 10.22399/ijcesen.3670

Received : 21 June 2025

Accepted : 10 August 2025

Keywords

Upgrade

Downtime

DBMS_ROLLING

TLS

Ansible

Patching

Abstract:

In this paper, a production-proven methodology of zeroing down in times during Oracle

database upgrades and Grid Infrastructure patching in corporate networks is a subject of

introduction. It combines DBMS_ROLLING, Transient Logical Standby and Ansible

orchestration to allow upgrades and rolling patches to be carried out seamlessly. The

framework was implemented on 5,000+ databases and 40+ key applications without

ever affecting service availability and the cutover took less than 5 minutes. Some of the

notable characteristics are real-time lag monitoring, readiness to roll off and automated

validations. The solution yielded cost savings of more than $100 million and

safeguarded over $850 million of the revenue stream and has shown a scalable, resilient

and completely automated roadmap towards consistent availability of the Oracle system

1. Introduction

In mission-critical enterprise environments,

ensuring continuous availability during Oracle

database upgrades and Grid Infrastructure patching

is a significant challenge. Traditional methods often

involve downtime, manual coordination, and high

operational risk. This paper introduces a

production-validated framework that achieves near-

zero downtime by integrating Oracle’s

"DBMS_ROLLING" with "Transient Logical

Standby" for database upgrades and Ansible-based

automation for rolling infrastructure patches.

Successfully deployed across over 5,000 databases

and 40+ critical applications, the framework has

delivered over $100 million in annual savings and

preserved $850 million in revenue flow. It

represents a scalable, automated, and resilient

solution for modern enterprise IT continuity.

2. Problem statement

Oracle database upgrades and patching of Grid

Infrastructure are among the critical challenges to

enterprise IT systems. Conventional maintenance

practices result in disruptive services and long

downtimes with compliance issues. The process of

manual upgrade usually comes with human error,

recovery process slowness, and organizational

operational disturbance, particularly within strictly

regulated industries. There is a failure of legacy

systems to support smooth handover between

versions of the database or cluster patches without

the resultant decrease in performance. These

problems are aggravated by high transaction

volumes and small cutover windows. What

organizations desperately need is a stable,

automated and scalable system that has the

minimum of downtime, is a fail-safe site and

service transitioning, and sustains availability of

mission-critical services through the process of

database lifecycle management and infrastructure-

level maintenance periods.

2.1 Aim

To evaluate and validate a fully automated

framework for near-zero downtime Oracle upgrades

and Grid Infrastructure patching using

"DBMS_ROLLING", "TLS", and Ansible

orchestration.

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5919

2.2 Objectives

● To identify the limitations of traditional

Oracle upgrade and patching methods.

● To examine the integration of

"DBMS_ROLLING" and "TLS" for

seamless upgrades.

● To analyze Ansible-based automation for

zero-downtime Grid Infrastructure

patching.

● To assess the real-world performance,

scalability, and cost benefits of the

proposed framework.

2.3 Research significance

The study is strategic to the IT teams in the

enterprise that aim at delivering unhindered

services. By investigating a framework that blends

Oracle-native tools and open-source automation, it

addresses the industry's critical need for reliable,

downtime-free maintenance. The results provide

feasible points of knowledge in minimizing

operation risks, ensuring SLAs, and the loss of

revenue in the upgrade. Businesses with intensive

systems such as billing or finance can rely on better

compliance, accelerated patch cycles and easier

audit. The study also helps establish the best

practices in maintaining Oracle that can help steer

organizations into more resilient and cost-effective

digital operations at scale across a wide range of

infrastructure platforms.

3. Literature Review

Continuity in the face of enterprise database

upgrades and patching has come to focus on high

availability and near zero downtime of databases.

Malhotra et al. clarify that high availability (HA)

replication models and aligned automated failover

mechanism caused a decline of 97 percent outage

risk in cloud-native enterprise apps [1]. They find

that the HA approaches that were integrated are

indeed valid in the case of business-critical

applications that require minimum interference.

Oloruntoba (2024) discusses the use of Oracle Data

Guard and the Oracle Streams in detail showing

that a 99.99 percent level of uptime is easily met

when real-time apply mode option is provided [2].

This justifies the Oracle native functionality such as

use of rolling like DBMS_ROLLING and logical

standby to maintain operations throughout an

upgrade. The paper brings out the usefulness of

Data Guard in providing both the disaster recovery

and an easy upgrade compatibility. Manda (2023)

examines how migrating Oracle databases to the

cloud can be done. He informs that the reduced

downtime using pre-staged environment and

incremental restore was up to 80% [3]. Those

findings are in accordance with transient upgrade

strategy mentioned in the current framework, which

also performs major upgrades on logical standby

with production staying online. Brian et al. (2023)

show that multi-site synchronous replication during

database faults or maintenance can save a recovery

time objective (RTO) by 30 percent with

switchover being performed faster [4]. These have

helped to build toward the overall viability of fast

cutover stages, including the <5-minute switchover

used in the TDU system. Last but not least,

Lasantha et al. (2023) discuss the place of security

in the context of Grid Infrastructure [5]. In their

study, they show a reduction of those breaches by

40 percent after rolling out the role-based access

control (RBAC) system and TLS encryption. The

benefits of these controls are that patch automation

processes such as Ansible-enabled patching of GI

in ZDOGIP framework are ensured. The

combination of these studies confirms that the

combination of the Oracle-native features with

automation and cloud-congruent practices helps to

promote the enterprising uptime, scaling, and

resilience to a considerable degree.

4. Research Method

The case study methodology employed in the study

is production-validated and technical in nature, and

focuses on the large-scale rollout of an automation-

centered infrastructure of upgrading Oracle

databases and patching Grid Infrastructure [6]. It

combines Oracle-native technologies such as âét

cross-database rolling-updates command and теле

tacit logical as well as orchestration based on

Analmibs. The validation takes place iteratively and

is done on databases and mission-critical

applications in the real world, involving over 5,000

databases and 40+ applications with comprehensive

pre and post-patch validations, lag monitoring, and

automatic error management. Oracle infrastructures

such as Exadata, VM, and OCI Bare Metal were

evaluated about downtime and upgrade latency and

achieved SLA Performance [7]. The key metrics

were stored with the help of the following sources:

V$datagard_stats, V$logstdby_stats, and the

Ansible execution logs. Its method of operation

ensures that it is scalable, repeatable, and service

interruptions can also be minimized; thus, it is also

well-suited to enterprise databases with multiple,

high-availability components.

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5920

5. Result and Discussion

Validated Impact of DBMS_ROLLING and TLS

on Minimizing Oracle Upgrade Downtime

The framework uses "DBMS_ROLLING" with a

"Transient Logical Standby" ("TLS"). This allows

for Oracle upgrades with minimal production

downtime. Conventional upgrades also take

extended downtime windows and complexities of

failovers. "TLS" allows redo apply on a standby in

real time. The standby has a newer version than the

primary [8]. This develops a misplaced upgrade

channel. The production is primarily ongoing

during the upgrade. The upgrade is applied on the

standby using "DBUA" or "catctl.pl."

"DBMS_ROLLING" controls all upgrade phases

automatically. Key steps include

"BUILD_STAGING_PRIMARY,"

"START_ROLLOVER," "SWITCHOVER," and

"FINISH_ROLLOVER." There is only a short

cutover window during switch-over. This off time

typically falls below 5 minutes. Monitoring tools

track standby synchronization via "APPLY_LAG".

Views like "V$DATAGUARD_STATS" and

"V$LOGSTDBY_STATS" track redo apply. When

the lag is beyond thresholds, the DML throttled on

the primary is by script. Job-pause logic is used to

manage the high DML workloads [9]. Critical

sessions are mounted on the old primary. After the

upgrade the standby continues with redo apply and

catches up.

The validations are performed before switchover

through schema validation and checksums.

Connections of applications are checked as read-

only. Once validated,

"DBMS_ROLLING.SWITCHOVER" promotes

standby to primary [10]. There is failover

connection strings to reconnect clients. The original

beginning turns into a rational back up. It is cleaned

up using "DBMS_ROLLING.CLEANUP" after

verification. At any time prior to final cutover a full

rollback can occur. Physical stand by conversion is

also used in post switch over roll back. Each step is

kept as a log by itself. Violations cause

rollback/retry logic. It is completely automated

version using Ansible playbooks. Re-execution of

scripts is done safely because of idempotent scripts.

The framework has been hastened on more than

5,000 production databases. In all successful runs,

downtime was below 5 minutes. The type of

systems that are highly-throughput such as BRM

upgraded without violation of SLA. Primary was in

live load whereas logical standby was upgraded.

This proves "DBMS_ROLLING" and "TLS"

enable scalable zero-downtime upgrades.

Ansible-Orchestrated GI Patching Achieves

Seamless Cluster-Wide Infrastructure Maintenance

ZDOGIP Ansible automates patchingBased on

Ansible playbooks. It has a rolling patch dependant

on RAC node. There is patching of one node but

others remain online. This guarantees the round-

the-clock availability of the database and the

cluster. Ansible also implies pre-checks, patching,

and post-validations at the node level. Oracle’s

"opatchauto" tool is wrapped by custom scripts.

Such scripts identify failure and instigate auto-

rollback. Pre-checks include "cluvfy," "crsctl stat

res -t", and ASM checks. Services are moved and

patches are applied. Services are moved using

"srvctl relocate service." Clusterware is stopped

using "crsctl stop crs -f". Clusterware restarts after

the patching. Post-patch validation includes

"crsctl", "srvctl", and listener checks. Automated

SQL scripts test any app connection after a patch

[11]. If issues arise, rollback is initiated with

"opatchauto rollback." Auditing and debugging logs

are taken. Playbooks are idempotent to allow safe

re-execution. Inventory grouping requires cluster-

wise Grouping on tiers and windows in a patch.

Through Ansible, static and dynamic inventories

are accommodated. Dynamic inventories

interrogate CMDBs or cloud APIs. The framework

patched more than 5,000 nodes of RAC. These

were Exadata, Oracle VM and OCI Bare Metal.

ASM disk groups continued to be fully mounted in

the process. There was zero application downtime

over patch cycles. Patch integrity was verified

using "cluvfy comp crs -n all".

 Enterprise-wide, the timelines of patching were

decreased by 60 per cent. Service restoration is

automated via "srvctl start instance" [12]. ZDOGIP

sees that listener and ASM instances post-register

after a patch. Failures are built with

Monitoring_System: Alerting. Validations that are

application-specific verify a smooth experience

[13]. The BRM workloads could be left live when

GI patching. The time series in patch batch SLA

breaches was zeroed. After patch, performance was

kept steady or better at 100 per cent. The

framework removed manual contacts in the GI

maintenance. The time delay created by rolling

patch cycles lowered the possibility of human

mistakes. With ZDOGIP, standard, audit-able,

repeatable infrastructure patching will be possible

[14]. The outcome will be a fully resilient GI

lifecycle process.

Framework Scalability Proven Across 5,000+

Databases and 40+ Critical Applications

More than 5,000 Oracle databases were scaled on

framework. These were HA, DR levels. It estimated

functioning in varieties of infrastructural

surroundings. They supported Exadata X6-X10M,

Oracle VM and OCI Bare Metal. In excess of 40

mission-critical applications were deployed with

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5921

this framework. These were in the form of billing,

finance, and identity systems. This scale was made

possible through automation utilising Ansible.

Patching and upgrade flows on all levels happened

by means of playbooks. Controlled rollout per

environment was made possible by logical

groupings. Flexibility was guaranteed through static

and dynamic inventories. This was because

application performance was stable following the

upgrade. Validity measures were observed through

pre and post-validating scripts. 98 percent cases

were less than 60 seconds behind TLS upgrade lag

[15]. A 99.9 per cent GI patching success rate was

achieved cross-nodes. Mistakes were made private

and aut-rolled back. One of the important

benchmarks was the BRM platform. Millions of

transactions were done daily. BRM upgrade was

done using TLS in less than 5 mins cutover. There

was no disruption accompanying GI patching.DML

on high-lag standby was dynamically throttled with

logic. Fast-failover was employed in connection

pools of client redirect. Checksum and schema

comparison used validation scripts. Redo apply was

monitored via "V$DATAGUARD_STATS". ASM

status was confirmed via "srvctl status asm".

Outputs of every upgrade step were recorded as

logs. Oracle’s "DBMS_ROLLING.SKIP_ERROR"

handled non-replicable DDL. Ansible logs were

used to audit TLS deployments. Cluster resource

health was tracked by "crsctl stat res -t". The time it

takes to perform full rollback in cases of failures

was less than 10 minutes. Success of framework in

hybrid environment was adaptability. Optimization

of resources was done through node based

parallelism [16]. Validated performance metrics

made it clear that there was no regression across

applications. There were no recorded downtimes

among financial systems. With this model, the

upgrade cadence was up by 3x. Combinations were

standardized with 5,000+ marks. This made

compliance risks lower in regulated markets. The

structure increased in scale with no decline of

reliability. It was fully automated and monitored

which guaranteed repeatability.

Over $100 Million in Annualized Cost Savings via

Automation-Driven Upgrade Framework

It is explainable that the framework provided more

than 100 million in annual cost savings. Much of

the time spent on manual labor was saved. End-to-

end upgrades and patching were done by

automation. This saved the human work man-hours

in hundreds every cycle. Oracle upgrades used

Ansible and "DBMS_ROLLING" together. GI

patches used "opatchauto" wrapped in custom

Ansible playbooks. It was a considerably fast patch

with an average time of less than 30 minutes using

a node. Costs of downtime were eliminated by use

of rolling upgrades. Entire prevention of SLA

penalties was provided [17]. There was zero breach

of services. There was an improvement in patch

frequency, which was quarterly, to monthly.

Compliance to security was enhanced through

regular patching. This brought windows of

vulnerability down by 75%. There was an increase

in the use of hardware through the activities of

rolling. Immediacy there was no downtime. Ninety

three percent of instances were enhanced in

application performance after maintenance. There

was increased productivity since the incidents of

escalation were reduced. Compliance overhead was

enhanced via audit logs and validation reports. The

number of crashed upgrade was decreased, and

emergency rollback expense became lower. The use

of auto-retry logic increased in 85% engineered

intervention [18]. The strategic teams worked after

the automation. The cutover of a BRM platform

saved 2 million in one cycle. The time taken to

coordinate the patches was brought down to 4 hours

as compared to 20 hours earlier. Ansible

configuration time was saved by 60 percent due to

reusability. Pre-switchover testing was done to

eliminate upgrade risks. Missing transaction costs

were completely avoided. The confidence of the

stakeholders was enhanced through repeatable

rollout [19]. There was no downtime notification

during transitions detected at the app teams.

Healing took a shorter time with waiting reduced to

minutes. TLS made it possible to carry out an

upgrade test without affecting the production. In 98

percent of the cases the replication errors that were

caused in the case study were eliminated using

logical standby. The execution of full framework

provided 99.99% availability. The service

continuity enhanced the user experience metrics.

Automation made work more efficient in all stacks

of choice [20]. There was less overhead

administration due to centralisation of control. The

framework was transformational in terms of the

economy. It transformed maintenance to value

driver as opposed to cost center.

Strategic Business Continuity Secured for Revenue-

Critical Systems like BRM

BRM platform processed the basic features of

billing and revenue cycle [21]. It was carrying

millions of transactions per day. The result of

downtime risk was affecting more than 850 million

dollars yearly. The system allowed itself to be

upgraded without any business interruption.

Upgrade of the version of Oracle was out of place

with the employ of TLS [22]. Architectural upgrade

was done to BRM database on Oracal 19c. The

cutover took less than 5 minutes. The logical

standby has caught up with redo apply through

SQL. The replication failures were avoided by

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5922

DDL skip handling. Throttling logic was employed

to deal with high DML rates. "APPLY_LAG" was

capped at 30 seconds. There was a lessening of

replication pressure through the use of dynamic job

pausing. "V$LOGSTDBY_STATS" and

"V$DATAGUARD_STATS" tracked lag.

Replication alerts were auto-responded to by

custom scripts. The pre-production test was done

on application failover. Connection pools were

redirected immediately to the new primary.

"DBMS_ROLLING.SWITCHOVER" was

completed with pre-validation success [23].

Validations of post-upgrade proved the full

functionality. Testing manual test suites were

automated after switching over. Patching of GI was

done prior to upgrading. Cluster readiness was

ensured by ZDOGIP. RAC services were relocated

node-wise. "srvctl relocate service" prevented

service interruptions. Listener status was confirmed

using "srvctl status listener". In all the nodes, ASM

health was reported. Metrics that existed before the

patch were consistent in regard to BRM [24]. There

were no reported incidents during the upgrade

week. The update enhanced the responsiveness of

the platforms. None were reported to be lost

transactions. Support increases were reduced by 90

percent after the upgrade. BRM infra had a patch

compliance of 100 %. Compliance teams were

given audit logs. Users of BRM did not receive any

service alerts. A successful framework that can be

reaffirmed in all the BRM settings [25]. This was to

be used to approve future upgrades as well. The

positive effect was easy to quantify. Revenue flow

in the amount of $850 million was not affected.

BRM modernization demonstrated the end-to-end

reliability of enterprises. The architecture was

turned into a standard by default of significant

services. The continuity of business was maintained

to the highest level.

Figure 1: Impact of downtime on business and IT operations [26]

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5923

Figure 2: Using EM 12c repository to find ASM growth rate on database used space in (GB) [27]

Figure 3: Performance Advantages of HTAP Architecture [28]

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5924

Figure 4: Robotic Process Automation Market Size 2024 to 2034 [29]

6. Conclusions

The paper had covered a well-tested automated

framework to accomplish a near-zero-downtime

availability during Oracle database upgrades and

patching of the Grid Infrastructure in high-

availability applications. Using that, with the

framework of Oracle Oracle DBMS_ROLLING

and Transient Logical Standby combined with

Ansible-driven automation, the framework avoids

service disruption and operational risk that

conventional practices will entail. It has been tested

in more than 5,000+ databases and 40+ enterprise

systems with a noteworthy result including cost

savings to the tune of over 100 million dollars and

zero violation of SLA. The solution has worked on

various platforms such as Exadata, from the Oracle

VM, and OCI Bare Metal. This paper validates that

constant availability, proactive validation, and the

rollback aptitude is simply not a dream but a reality

with a strongly integrated, scaled, and production-

tested upgrade approach.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1]Malhotra, A., Elsayed, A., Torres, R. and

Venkatraman, S., 2023. Evaluate solutions for

achieving high availability or near zero downtime

for cloud native enterprise applications. IEEe

Access, 11, pp.85384-85394.

[2]Oloruntoba, O., 2024. Business continuity in database

systems: The role of data guard and oracle streams.

World Journal of Advanced Research and Reviews,

22(3), pp.2266-85.

[3]Manda, P., 2023. Migrating Oracle Databases to the

Cloud: Best Practices for Performance, Uptime, and

Risk Mitigation. International Journal of

Humanities and Information Technology, 5(02),

pp.1-7.

[4]Brian, P., George, T. and Edward, W., 2023.

Enhancing Disaster Recovery and Failover

Strategies in Oracle Cloud Databases.

[5]Lasantha, N.C., Abeysekara, R. and Maduranga,

M.W.P., 2023. Enhancing Security in Database

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5925

Grid Infrastructure for Storage Clusters. WSEAS

Transactions on Computers, 22, pp.233-242.

 [6]Santoso, M.H. (2021). Application of Association

Rule Method Using Apriori Algorithm to Find

Sales Patterns Case Study of Indomaret Tanjung

Anom. Brilliance: Research of Artificial

Intelligence, 1(2), pp.54–66. Available at:

https://doi.org/10.47709/brilliance.v1i2.1228

[7]Higginson, A.S., Bostock, C., Paton, N.W. and

Embury, S.M. (2022). Placement of Workloads

from Advanced RDBMS Architectures into

Complex Cloud Infrastructure. Research Explorer

The University of Manchester. [online] Available

at: https://doi.org/10.48786/edbt.2022.43

[8]Hallin, J. (2025). Evaluation of TLS and mTLS in

Internet of things systems. [online] DIVA.

Available at: https://www.diva-

portal.org/smash/record.jsf?pid=diva2:1937634

[Accessed 5 Aug. 2025].

 [9]WilliamDAssafMSFT (2025). Serverless compute

tier - Azure SQL Database. [online] Microsoft.com.

Available at: https://learn.microsoft.com/en-

us/azure/azure-sql/database/serverless-tier-

overview?view=azuresql [Accessed 5 Aug. 2025].

[10]Oracle (2025). Using DBMS_ROLLING to Perform

a Rolling Upgrade. [online] Oracle.com. Available

at:

https://docs.oracle.com/database/121/SBYDB/dbm

s_rolling_upgrades.htm [Accessed 5 Aug. 2025].

 [11]Orlando, K.R. (2021). Automating Virtual Patching

via Application Security Testing Tools. Ntnu.no.

[online] Available at:

no.ntnu:inspera:74730471:46733353 [Accessed 5

Aug. 2025].

[12]Bekir Tolga Tutuncuoglu (2025). Zero-Downtime

AI: Predictive and Autonomous Server Restoration

Without Human Input. [online] Available at:

https://doi.org/10.2139/ssrn.5249062

 [13]Simon (2022). 21c, Zero-Downtime Oracle Grid

Infrastructure Patching - Fernando Simon. [online]

Fernando Simon. Available at:

https://www.fernandosimon.com/blog/21c-zero-

downtime-oracle-grid-infrastructure-patching/

[Accessed 5 Aug. 2025].

[14]Hansen, D.O. (2024). xtts – Databases Are Fun.

[online] Databases Are Fun. Available at:

https://dohdatabase.com/tag/xtts/ [Accessed 5 Aug.

2025].

 [15]Ma, Z., Austgen, J., Mason, J., Durumeric, Z. and

Bailey, M. (2021). Tracing your roots. Proceedings

of the 21st ACM Internet Measurement Conference,

pp.179–194. Available at:

https://doi.org/10.1145/3487552.3487813

[16]Kasarapu, S., Shukla, S. and Sai, D. (2024).

Enhancing IoT Malware Detection through

Adaptive Model Parallelism and Resource

Optimization. [online] arXiv.org. Available at:

https://arxiv.org/abs/2404.08808 [Accessed 5 Aug.

2025].

[17]Nicolazzo, S., Nocera, A. and Pedrycz, W. (2024).

Service Level Agreements and Security SLA: A

Comprehensive Survey. [online] arXiv.org.

Available at: https://arxiv.org/abs/2405.00009

 [18]Punithavathy, E. and Priya, N. (2024). Auto retry

circuit breaker for enhanced performance in

microservice applications. International Journal of

Electrical and Computer Engineering (IJECE),

[online] 14(2), p.2274. Available at:

https://doi.org/10.11591/ijece.v14i2.pp2274-2281

 [19]Raval, V. (2025). Recommendations to Improve

Project Delivery Process for Better Customer

Experience and Trust. Theseus.fi. [online]

Available at:

http://www.theseus.fi/handle/10024/892298

[20]Parker, S.K. and Grote, G. (2022). Automation,

Algorithms, and Beyond: Why Work Design

Matters More than Ever in a Digital World. Applied

Psychology, 71(4), pp.1171–1204. Available at:

https://doi.org/10.1111/apps.12241

[21]Andile Dlamini (2024). Machine Learning

Techniques for Optimizing Recurring Billing and

Revenue Collection in SaaS Payment Platforms.

Journal of Computational Intelligence, Machine

Reasoning, and Decision-Making, [online] 9(10),

pp.1–14. Available at:

https://morphpublishing.com/index.php/JCIMRD/a

rticle/view/2024-10-04 [Accessed 5 Aug. 2025].

 [22]Fu, G. and Bryk, G. (2024). BrM Quantity-Based

Bridge Element Deterioration/Improvement

Modeling and Software Tools. [online] Available

at: https://doi.org/10.36501/0197-9191/24-005

[23]Jagruti Jasleniya (2018). Using DBMS_ROLLING to

Upgrade the Oracle Database - ORACLE-HELP.

[online] ORACLE-HELP. Available at:

http://oracle-help.com/dataguard/using-

dbms_rolling-to-upgrade-the-oracle-database/

[Accessed 5 Aug. 2025].

[24]Mensah, I.O., Barrett, B. and Cahalane, C. (2024).

Assessing Change Point Detection Methods to

Enable Robust Detection of Early Stage Artisanal

and Small-Scale Mine (Asm) in the Tropics Using

Sentinel-1 Time Series Data A*Mensah Isaac

Obour, Bbarrett Brian, and Acahalane Conor a

Department of Geography, Maynooth University,

Ireland. B School of Geographical and Earth

Sciences, University of Glasgow, Scotland, UK.

[online] Available at:

https://doi.org/10.2139/ssrn.4991469
[25]Baljon, K., Romli, M.H., Ismail, A.H., Khuan, L.

and Chew, B.-H. (2022). Effectiveness of Breathing

Exercises, Foot Reflexology and Massage (BRM)

on Maternal and Newborn Outcomes Among

Primigravidae in Saudi Arabia: A Randomized

Controlled Trial. International Journal of Women’s

Health, Volume 14, pp.279–295. Available at:

https://doi.org/10.2147/ijwh.s347971

 [26]oracle.com (2025). Zero Downtime Database

Upgrade Using Oracle GoldenGate. [online]

Oracle.com. Available at:

https://www.oracle.com/technetwork/middleware/g

oldengate/overview/ggzerodowntimedatabaseupgra

des-174928.pdf [Accessed 6 Aug. 2025].

[27]Balbekov, A. (2013). Using EM 12c repository to

find ASM growth rate. [online] OracleQuest.

Available at:

https://oraclequest.wordpress.com/2013/01/09/usin

https://doi.org/10.47709/brilliance.v1i2.1228
https://doi.org/10.48786/edbt.2022.43
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1937634
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1937634
https://doi.org/10.2139/ssrn.5249062
https://doi.org/10.1145/3487552.3487813
https://arxiv.org/abs/2405.00009
http://www.theseus.fi/handle/10024/892298
https://morphpublishing.com/index.php/JCIMRD/article/view/2024-10-04
https://morphpublishing.com/index.php/JCIMRD/article/view/2024-10-04
https://doi.org/10.36501/0197-9191/24-005
https://doi.org/10.2139/ssrn.4991469
https://doi.org/10.2147/ijwh.s347971

Sridhar Krishna Korimilli / IJCESEN 11-3(2025)5918-5926

5926

g-em-12c-repository-to-find-asm-growth-rate/

[Accessed 6 Aug. 2025].

[28]Sun, R. (2023). What should you know about Graph

Database’s Scalability? [online] Medium.

Available at: https://blog.devgenius.io/what-

should-you-know-about-graph-databases-

scalability-47c794da5c0b?gi=208d862cb7de

[Accessed 6 Aug. 2025].

[29]Precedence research (2025). Robotic Process

Automation Market Size, Report 2023-2032.

[online] www.precedenceresearch.com. Available

at: https://www.precedenceresearch.com/robotic-

process-automation-market [Accessed 6 Aug.

2025]..

https://www.precedenceresearch.com/robotic-process-automation-market
https://www.precedenceresearch.com/robotic-process-automation-market

