

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5904-5908
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Low-Latency Web APIs in High-Transaction Systems: Design and Benchmarking

Sesha Sai Sravanthi Valiveti*

Independent Researcher Dallas, Texas, USA
* Corresponding Author Email: tosravanthikss@gmail.com - ORCID: 0000-0002-5247-0850

Article Info:

DOI: 10.22399/ijcesen.3646

Received :

Accepted :

Keywords

Low-latency APIs,

high-transaction systems,

API design,

asynchronous architecture,

performance benchmarking,

microservices,

Abstract:

In the age of digital immediacy, where user experience hinges on speed and

responsiveness, the performance of web APIs can significantly affect an organization’s

ability to scale and retain users. Particularly in high-transaction systems such as e-

commerce, fintech, and online gaming, a few milliseconds of delay can compound into

large-scale inefficiencies and lost revenue. This paper presents a comprehensive

framework for building, optimizing, and benchmarking low-latency APIs designed to

withstand the demands of high-frequency operations. By exploring architectural

decisions, async paradigms, caching strategies, and detailed performance metrics, we

provide technical guidance and practical results for engineering teams aiming to deliver

resilient, real-time web services.

1. Introduction

Web APIs act as the connective tissue for modern

digital platforms, enabling seamless data exchange,

feature integration, and system modularity. As

services scale and user bases grow globally, the

responsiveness of these APIs becomes a mission-

critical factor. In high-throughput domains—such

as stock trading, digital payments, rideshare

matching, and multiplayer gaming—even a few

milliseconds of lag can disrupt user experience and

diminish trust. Latency directly influences user

satisfaction and conversion rates. A delay of 100

milliseconds can reduce e-commerce conversion by

7%, while in fintech, real-time trading systems rely

on millisecond-level performance to remain

competitive. Thus, minimizing API latency is no

longer an optimization—it is a fundamental design

constraint. This paper explores a structured

approach to building low-latency APIs by

examining every layer of the stack, from payload

structure and protocol choices to backend

concurrency models, edge computing, and

observability. We benchmark performance using

industry tools and provide evidence-backed

recommendations for developers building high-

transaction systems.

2. Design Framework for Low-Latency APIs

The core of our methodology lies in five layers of

optimization:

● Efficient API interface design

● High-performance backend architectures

● Asynchronous and event-driven paradigms

● Edge computing and front-door tuning

● Comprehensive observability and

benchmarking

2.1. Structuring the API Surface

Designing the API interface is the first opportunity

to reduce overhead. These optimizations minimize

CPU parsing overhead, reduce network

transmission times, and enhance cache hit ratios

across clients and CDNs.

2.2. Backend Architecture Principles

The backend stack defines the scalability ceiling of

any API-driven system.By using container

orchestration (e.g., Kubernetes) and service meshes

(e.g., Istio or Linkerd), backend services can gain

observability, mutual TLS, and retry logic out-of-

the-box—key for high-transaction workloads.

08 May 2025
16 April 2025

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Sesha Sai Sravanthi Valiveti/ IJCESEN 11-3(2025)5904-5908

5905

2.3. Asynchronous and Event-Driven Design

Synchronous APIs limit scalability by tying up

server resources. Event-driven systems enable non-

blocking interactions and resilience.

Recommended Practices:

● Async Frameworks: Use FastAPI, Spring

WebFlux, or Node.js to handle async I/O. These

systems manage thousands of concurrent

requests without thread exhaustion.

● Worker Offloading: Delegate non-critical tasks

(e.g., sending emails, updating analytics) to

background jobs using queues like RabbitMQ,

SQS, or Kafka.

● Webhook Handling: For long-running tasks

(e.g., image processing), respond with a job ID

and let the client poll or receive a webhook

notification.

● Fan-Out Patterns: Use pub-sub models (e.g.,

Redis Streams, Kafka topics) to broadcast events

to downstream services like billing or audit

systems.

This architecture supports better throughput,

isolates failures, and aligns with microservice

communication strategies.

2.4. Front-Door Optimization: CDN & Edge

Compute

The first milliseconds of a request are spent

resolving DNS, establishing connections, and

traveling across networks.

Key Strategies:Edge compute (via Cloudflare

Workers, Lambda@Edge, or Netlify Functions)

allows lightweight preprocessing to enhance

perceived responsiveness.

2.5. Observability and Real-Time Monitoring

APIs must be continuously monitored to ensure that

latency optimizations hold under real-world loads.

Metrics to Track:

● P95 & P99 Latency: Understand performance

under peak load

Throughput (RPS): Assess how many requests

the system handles per second

● Error Rate: Monitor failure spikes

● Cold Starts: Track latency introduced by

infrequently used functions (e.g., Lambda)

● Resource Usage: Observe CPU and memory

utilization trends

Tool Stack:

Real-time observability empowers teams to

diagnose regressions, identify underperforming

endpoints, and proactively scale infrastructure.

3. Observability and Performance

Monitoring

In high-transaction systems, performance

bottlenecks and anomalies can degrade user

experience rapidly. Therefore, a critical component

of any low-latency architecture is robust

observability. Observability ensures that teams can

proactively detect latency spikes, memory leaks,

CPU bottlenecks, and service failures before they

impact users.

3.1. Key Metrics to Track

For effective monitoring, the following metrics are

essential:

● Average Latency: Represents the meantime

taken to respond to requests. While useful for

general performance assessment, it can hide

sporadic spikes, hence should be used alongside

percentile-based metrics.

● P95/P99 Latency: These percentile metrics

provide insights into worst-case scenarios. For

example, P95 tells us the response time below

which 95% of the requests fall. This is critical in

understanding tail latency, which directly

impacts user satisfaction during peak load.

● Requests per Second (RPS): This measures the

number of API calls handled by the system per

second. It’s a direct indicator of throughput and

helps in sizing infrastructure based on load.

● Error Rate: Monitors how often requests result

in client-side or server-side errors. High error

rates under load usually suggest issues like

connection exhaustion, unhandled exceptions, or

slow downstream dependencies.

● CPU and Memory Usage: These metrics reveal

how efficiently the application consumes system

resources. For low-latency services, CPU-bound

or memory-leaky operations can be fatal under

sustained high loads.

● Garbage Collection Time: Particularly in JVM-

based environments, garbage collection can

cause unpredictable latency if not optimized

properly.

● Connection Pool Saturation: Shows whether

the server is running out of available

connections, which could cause queuing or

dropped requests.

3.2. Monitoring Stack

A modern observability stack must encompass

metrics collection, tracing, centralized logging, and

stress testing tools. Table below summarizes key

tools by function: These tools are integrated into

CI/CD pipelines, enabling real-time dashboards,

Sesha Sai Sravanthi Valiveti/ IJCESEN 11-3(2025)5904-5908

5906

automated alerts (e.g., via PagerDuty or Slack), and

drill-down investigations into request timelines.

4. Load Testing and Benchmarking

To validate the effectiveness of architectural

decisions, rigorous performance testing was

conducted using a simulated retail checkout

workflow. The test aimed to mimic real-world

scenarios where high user concurrency and mixed

endpoint usage are common.

4.1. Scenario Overview

● Virtual Users Simulated: 10,000 users

ramped up over 5 minutes.

● Endpoints Tested:

○ POST /login

○ PUT /cart

○ POST /checkout

○ GET /order-status

○ GET /verify-coupon

● Load Testing Tools:

○ k6 was used for scripting realistic

traffic with randomized payloads.

○ wrk2 enabled testing latency under

sustained throughput.

4.2. Benchmark Results

● Response time improved by over 70% on

average.

● Error rates dropped dramatically due to better

circuit-breaking and queue handling.

● Database optimization (e.g., read replicas,

indexing) cut query times by two-thirds.

System remained stable even under 4x the baseline

throughput.

5. Lessons Learned and Best Practices

Through iterative optimization and testing, several

key insights emerged:

● Async Architectures Outperform:

Asynchronous programming models (e.g.,

FastAPI with async/await) yielded significantly

lower tail latencies by avoiding blocking I/O.

This was especially evident under high

concurrency.

● Effective Caching is Critical: Implementing

Redis as a read-through cache eliminated

repetitive DB calls. Frequently accessed data

(inventory, pricing, region configs) benefited

immensely, reducing API latency by hundreds

of milliseconds.

● Avoid Nested Blocking Calls: Chained

synchronous service calls caused cascading

latencies and thread exhaustion. Decoupling

these with async events or queues (RabbitMQ)

made the system more resilient.

● Request Batching: Combining multiple API

operations (e.g., batch inventory updates) into a

single request drastically reduced load and

latency.

● Pre-Warming Infrastructure: Especially

relevant for e-commerce flash sales, warming

caches and ensuring autoscaling groups were at

full capacity ahead of time improved

responsiveness and reduced cold starts.

● Connection Management: Monitoring

connection pool saturation and using keep-alives

helped prevent timeouts during peak load.

6. Discussion of Limitations

While this study presents a robust framework for

optimizing API performance in high-transaction

environments, it is important to acknowledge

certain limitations that may affect generalizability

and real-world deployment:

● Simulated Environment Constraints:

 The benchmarking and load testing were

conducted in a controlled, simulated

environment. Real-world conditions—such as

unpredictable user behavior, fluctuating network

latency, and diverse client environments—may

introduce variables not accounted for during

testing.

● Cloud Vendor Dependency:

 The current implementation heavily relies on

AWS-native services such as AWS

Lambda@Edge, CloudFront, and EC2 auto-

scaling. Organizations using other cloud

providers or hybrid/on-prem setups may

encounter integration challenges or require

architecture adaptations.

● Tooling Bias:

 Tools such as k6 and wrk2 were chosen for

performance testing, and while they are

industry-standard, different tools may yield

slightly different results. Moreover, certain types

of load patterns—like spike traffic or

geographical user simulation—were not deeply

explored.

● Security and Compliance Overheads:

 The focus of this study was performance, and as

such, deeper analysis of security implications

(e.g., rate-limiting, DDoS mitigation, API token

validation latency) was beyond scope.

Implementing advanced security controls might

Sesha Sai Sravanthi Valiveti/ IJCESEN 11-3(2025)5904-5908

5907

introduce additional latency that needs to be

measured.

● Microservice Interdependencies:

 Although service segmentation improves

scalability, inter-service latency and dependency

management were not deeply addressed in this

iteration. Future versions could explore

strategies like service meshes or API gateways

for improved observability and fault isolation.

Table 1. Design area and related approach

Design Area Recommended Approach

Payload

Design

Prefer compact binary formats like

Protobuf or MessagePack for internal

APIs instead of verbose formats like

JSON or XML.

Minimal

Responses

Allow clients to request only required

fields using query parameters Reduce

data transfer for mobile or bandwidth-

constrained devices.

Statelessness Maintain statelessness to facilitate

horizontal scaling and distributed

processing. Avoid storing session state

on the server.

Compression Enable gzip or Brotli compression for

payloads above a set threshold. This

can significantly reduce response size

for large data structures.

Rate-Limiting

Clarity

Provide clear status codes (e.g., 429)

and Retry-After headers when

throttling requests.

API

Versioning

Use path-based versioning (/v1/users)

or header-based versioning to

maintain backward compatibility

without bloating responses.

Idempotency

Support

Implement idempotency keys for

operations like checkout or payment

to prevent duplicate submissions

under retries.

Table 2. Architecture Component and performance

Advantage

Architecture

Component

Performance Advantage

Microservice

Segregation

Allows independent scaling and

focused optimization. Small

services can be re-deployed without

affecting the whole.

Read-Through

Cache (Redis)

Accelerates frequent reads and

shields databases from redundant

load.

Write

Coalescing

Batches high-frequency writes, such

as metrics, before committing to

storage.

Connection

Pooling

Reduces handshake overhead by

reusing TCP/HTTP sessions.

Circuit

Breakers (e.g.,

Hystrix)

Prevents cascading failures by

cutting off malfunctioning services

temporarily.

Database

Sharding

Distributes data and read/write load

across multiple instances.

Table 3. Technique and purpose

Technique Purpose

CDN Caching Use Akamai, Fastly, or Cloudflare to

cache static and idempotent responses

(GET, HEAD).

Edge Handlers Deploy business logic at the edge to

reduce round-trips (e.g.,

authentication, A/B testing).

Geo Routing Route users to the closest data center

to reduce round-trip latency.

Keep-Alive &

TLS Reuse

Avoid repeated handshakes and

leverage TLS session caching.

Table 4. Monitoring layers and related tools

Monitoring

Layer

Tools

API Metrics Prometheus + Grafana

Distributed

Tracing

OpenTelemetry, Jaeger

Log Aggregation ELK Stack (Elasticsearch, Logstash,

Kibana)

Load Testing k6, wrk2, Locust

Table 5. Layers and used tools

 Layer Tools Used

API Metrics Prometheus (scraper), Grafana

(dashboarding)

Distributed

Tracing

OpenTelemetry (standard), Jaeger

(visual tracing UI)

Logging ELK Stack (Elasticsearch, Logstash,

Kibana)

Load Testing k6 (JavaScript-based scripting), wrk2

(latency-focused), Locust (Python-

based, distributed)

Table 6. Metric and related API

Metric Baseline

API

Optimized

API

Average Latency (ms) 325 87

P95 Latency (ms) 512 131

Throughput (req/sec) 1,100 4,900

Peak Error Rate (%) 2.8% 0.1%

Database Query Time

(ms)

120 42

7. Conclusions

This study underscores the importance of designing

APIs with performance-first principles—especially

Sesha Sai Sravanthi Valiveti/ IJCESEN 11-3(2025)5904-5908

5908

in systems handling high transaction volumes.

Optimization cannot be limited to one layer of the

stack. Instead, it demands a holistic approach,

encompassing:

● Efficient API surface design

● Smart architectural decomposition

● Async I/O paradigms

● Intelligent caching strategies

● Real-time observability tools

By applying these practices, we achieved

measurable gains in latency, throughput, and

reliability. The benchmarking approach presented

here offers a repeatable model for other engineering

teams aiming to meet stringent performance SLAs.

8. Future Scope

While current implementations show strong

improvements, further areas of exploration include:

● QUIC/HTTP3 Evaluation: These newer

protocols promise reduced handshake time and

better mobile/edge performance. Pilot tests can

validate their applicability.

● Rust for API Servers: Rust’s performance and

memory safety make it ideal for low-latency

microservices. Future implementations may

migrate critical endpoints to Rust-based

frameworks like Actix Web or Axum.

● ML-Powered Anomaly Detection: Integrating

ML models trained on latency/error logs can

provide early warning signals for unusual traffic

or system degradation.

● Adaptive TTL Caching: Traditional TTLs are

static. Adaptive TTLs based on request

frequency and data volatility could make

caching smarter and reduce stale reads.

● Client-Side Optimization: Work is ongoing to

improve DNS prefetching, CDN edge logic, and

API SDKs for clients to further cut end-to-end

latency.

● Service Mesh Integration: Leveraging tools

like Istio or Linkerd can provide traffic shaping,

retries, and observability with minimal

application code changes.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1]Bermbach, D., & Wittern, E. (2019, March 18).

Benchmarking Web API Quality – Revisited

[Preprint]. arXiv. https://arxiv.org/abs/1903.07712

arXiv+13arXiv+13Consensus+13

[2]Bermbach, D., & Wittern, E. (2015). Benchmarking

Web API Quality. In Proceedings of the 7th

International Conference on Web Information

Systems and Technologies (WEBIST).

wittern.net+1arXiv+1

[3]Theodorakopoulos, L., Karras, A., Theodoropoulou,

A., & Kampiotis, G. (2024). Benchmarking big

data systems: Performance and decision‑making

implications in emerging technologies.

Technologies, 12(11), Article 217.

https://doi.org/10.3390/technologies12110217

marketplace.copyright.com+6mdpi.com+6mdpi.co

m+6

[4]Park, S. J. (2019). Achieving both low latency and

strong consistency in distributed storage (Doctoral

dissertation). Stanford University. Retrieved from

https://web.stanford.edu/~ouster/cgi-

bin/papers/ParkPhD.pdf

https://arxiv.org/abs/1903.07712
https://arxiv.org/abs/1903.07712
https://arxiv.org/abs/1903.07712?utm_source=chatgpt.com
https://arxiv.org/abs/1903.07712?utm_source=chatgpt.com
https://arxiv.org/abs/1903.07712?utm_source=chatgpt.com
https://www.wittern.net/imgs/api-quality/API_quality_PRERELEASE.pdf?utm_source=chatgpt.com
https://www.wittern.net/imgs/api-quality/API_quality_PRERELEASE.pdf?utm_source=chatgpt.com
https://www.wittern.net/imgs/api-quality/API_quality_PRERELEASE.pdf?utm_source=chatgpt.com
https://doi.org/10.3390/technologies12110217
https://doi.org/10.3390/technologies12110217
https://doi.org/10.3390/technologies12110217
https://doi.org/10.3390/technologies12110217
https://www.mdpi.com/2227-7080/12/11/217/notes?utm_source=chatgpt.com
https://www.mdpi.com/2227-7080/12/11/217/notes?utm_source=chatgpt.com
https://web.stanford.edu/~ouster/cgi-bin/papers/ParkPhD.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/ParkPhD.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/ParkPhD.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/ParkPhD.pdf

