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Abstract:  
 

In the healthcare industry, time is more than money  it can be the difference between 

accurate care delivery and administrative chaos. As systems scale to serve millions of 

claims daily, the reliability of infrastructure that underpins insurance processing 

becomes mission-critical. This paper focuses on how Site Reliability Engineering (SRE) 

principles were applied to optimize Mean Time to Recovery (MTTR) in Cigna’s claims 

processing systems. We walk through a robust strategy combining observability, 

incident automation, chaos engineering, and smart escalation policies that led to 

significant reductions in service downtime and faster recovery from production 

incidents improving both operational efficiency and regulatory compliance in a heavily 

governed domain. 

 

1. Introduction 
 

In a healthcare insurance environment like Cigna's, 

millions of claims are processed daily across 

various digital platforms. System availability is 

crucialnot only for business continuity but also for 

ensuring that care providers and patients experience 

minimal delays. 

However, like any complex system, failures are 

inevitable. The real metric of resilience lies not in 

preventing all incidents, but in how quickly and 

efficiently systems recover. That’s where MTTR 

(Mean Time to Recovery) becomes a north star 

metric. The aim of this research is to explore how 

SRE-driven enhancements reduced MTTR in 

Cigna’s claims systems and made operations more 

stable, traceable, and automated. 

 

2. Literature Review 
 

The rise of Site Reliability Engineering (SRE) as a 

foundational practice in managing modern, 

complex systems has led to various frameworks and 

methodologies across industries. However, specific 

implementations tailored to the healthcare domain, 

especially those focused on optimizing MTTR 

(Mean Time to Recovery), remain scarce or 

generalized. The following works contribute 

important insights into SRE practice but also 

demonstrate gaps that our study addresses through 

targeted, compliance-driven strategies for 

healthcare claims systems. 

 

2.1 Optimizing Site Reliability Engineering with 

Cloud Infrastructure  

 

John (2024) discusses how integrating cloud-native 

services such as Kubernetes and AWS improves 

system observability and scalability in the context 

of SRE adoption [1]. The paper outlines best 

practices for service uptime, CI/CD integration, and 

resource cost-efficiency. However, it offers limited 

detail on automated incident response or 

MTTR-focused measurements, and does not 

address regulatory constraints that healthcare 

systems must follow. 

 We address this gap by embedding MTTR as a 

primary optimization metric across observability, 

chaos engineering, and auto-remediation layers. 

Unlike generic cloud-SRE approaches, our work is 

structured for HIPAA-aligned healthcare systems, 

where recovery time has critical patient and 

financial implications. 

 

 2.2 Dependability-Based Maintenance 

Optimization in Healthcare Domain  
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This study applies reliability engineering concepts 

to healthcare environments, emphasizing 

predictive maintenance through failure probability 

analysis and scheduling. While it provides useful 

mathematical models, the focus is geared toward 

physical asset reliability and downtime 

reduction, rather than cloud-native or digital 

systems [2]. 

 

 Instead of static failure-based scheduling, our work 

introduces live production incident automation, 

service observability, and rapid response 

scripting for API-based digital healthcare 

platforms. We shift the discussion from mechanical 

uptime to dynamic, digital infrastructure 

recovery in real time. 

 

2.3 Scaling Site Reliability Engineering: A Data-

Driven Approach to Modern System Reliability  

 

Nanda proposes a robust SRE model using data-

driven performance indicators, emphasizing metrics 

like uptime, service availability, and change failure 

rate across distributed systems [3]. However, the 

work does not account for vertical-specific factors, 

such as compliance requirements, nor does it offer 

prescriptive automation for reducing recovery 

times. 

Our framework incorporates telemetry and 

alerting strategies tailored for healthcare-

specific incident types, like claims ingestion 

failures or API timeouts. We also emphasize 

automated RCA processes and chaos drills, both 

largely absent from Nanda’s generalized approach, 

to measurably reduce MTTR within a governed 

infrastructure [3].  

 

3. Understanding MTTR in Healthcare 

Systems 
 

Mean Time to Recovery (MTTR) is defined as the 

average duration required to restore functionality 

after a system failure. In regulated industries like 

healthcare, high MTTR can lead to delayed claims 

processing, patient dissatisfaction, failed service-

level agreements (SLAs), and potential non-

compliance with regulations such as HIPAA. 

 

3.1 Business Implications of High MTTR 

 

● Delayed Claims Approval: High MTTR 

slows the claim lifecycle, affecting 

provider reimbursements. 

 

● Patient Experience: Errors or lags in 

processing claims lead to confusion and 

dissatisfaction. 

 

● Operational Costs: More human effort is 

required for manual interventions during 

outages. 

 

● Compliance Risk: Inability to meet service 

availability thresholds can result in audit 

flags and fines. 

● Reputation Loss: Persistent or recurring 

issues damage trust with providers and 

members 

 

4. Framework for MTTR Optimizatio 
 

4.1. Observability Stack 

 

Objective: Provide engineers with unified, real-

time visibility into system health to reduce time 

spent identifying root causes. 

Key Elements: 

● Centralized Logging (ELK Stack): 

Elasticsearch, Logstash, and Kibana form 

the logging backbone. Logs from APIs, 

databases, and message brokers are parsed 

and enriched using Logstash filters for 

better searchability. 

 

● Metrics Collection (Prometheus & 

Grafana): Prometheus scrapes time-series 

metrics from various endpoints (e.g., CPU, 

memory, queue depth). Grafana dashboards 

visualize these metrics with real-time 

alerts. 

 

● Distributed Tracing (OpenTelemetry + 

Jaeger): Enables engineers to follow the 

full request path across microservices, 

which is crucial for identifying bottlenecks 

in claims processing flows. 

 

Why It Matters: Without observability, engineers 

rely on assumptions. A unified telemetry stack 

reduces detection time by providing immediate 

visibility into anomalies. 

 

4.2. Alerting Pipeline 

 

Objective: Ensure that alerts are timely, actionable, 

and prioritized  reducing noise and alert fatigue. 

Enhancements: 

● Deduplication and Throttling: Identical 

alerts triggered in a short time window are 

collapsed into a single incident. 

 

● Severity-based Routing: Alerts are 

enriched with context and routed based on 
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urgency. For instance, database connection 

errors route to the backend team, while API 

latency issues go to the DevOps team. 

 

● Escalation Policies: Alerts escalate across 

tiers if not acknowledged, ensuring 24x7 

coverage across globally distributed teams. 

Why It Matters: Ineffective alerting causes missed 

incidents or unnecessary page-outs. A clean 

pipeline ensures that only meaningful signals reach 

on-call responders. 

 

4.3. Incident Automation 

 

Objective: Reduce time to remediation by 

automating responses to known failure modes. 

Tools and Techniques: 

● Ansible Playbooks: Scripts automate tasks 

like restarting failed pods, clearing Redis 

queues, or resetting application 

configuration. 

 

● Lambda Functions: Serverless responders 

are triggered via event sources (like 

CloudWatch or PagerDuty) for lightweight 

remediation. 

 

● Automated Triage Bots: Slack bots fetch 

recent logs, relevant Grafana graphs, and 

recent deployments for quicker decision-

making during incidents. 

Example Use Case: 

● When the claims ingestion queue grows 

beyond a threshold, a Lambda function 

automatically spins up additional workers 

and notifies the SRE Slack channel. 

Why It Matters: Many outages are caused by 

recurring problems. Automation removes human 

latency from recovery. 

 

4.4. Failure Injection Testing (Chaos 

Engineering) 

 

Objective: Identify system weaknesses before they 

cause actual outages. 

Approach: 

● LitmusChaos Tests: Run monthly chaos 

experiments like killing pods, delaying 

service responses, or breaking 

dependencies. 

 

● Scoped Testing: Tests are initially 

executed in staging and then selectively 

rolled into production replicas under 

controlled conditions. 

 

● Validation Criteria: The system must 

auto-recover, trigger appropriate alerts, and 

avoid customer impact. 

Why It Matters: Systems often fail at their 

weakest links — chaos testing reveals these links 

under safe conditions. 

 

4.5. Postmortem & RCA Culture 

 

Objective: Foster a culture of continuous learning, 

without blame, to ensure long-term resilience. 

Practices: 

● Blameless RCAs: Incident documentation 

focuses on “what happened” and “how to 

prevent it again,” not “who caused it.” 

 

● RCA Portal: All postmortems are stored in 

a searchable internal knowledge base, 

categorized by service and failure type. 

 

● Resolution Metrics: Dashboards track 

RCA submission rates, time-to-resolution 

metrics, and recurrence trends. 

Why It Matters: Learning from incidents is key to 

preventing them in the future. RCA culture closes 

the feedback loop. 

 

4.6. Service Ownership Model 

 

Objective: Establish clear accountability and in-

depth knowledge of services across engineering 

teams. 

Components: 

● SLO Definition: Each service has uptime, 

latency, and error rate objectives defined by 

the owning team. 

 

● On-Call Rotations: Teams rotate 

primary/secondary on-call roles to avoid 

burnout and improve depth of knowledge. 

 

● Runbook Rotation: Teams periodically 

update and rehearse runbooks to ensure 

readiness during incidents. 

Why It Matters: MTTR drops significantly when 

engineers closest to the system own the response. 

 

5. Key Implementations and Results 
 

5.1. Unified Monitoring & Telemetry Pipeline 

 

A major gap in earlier incident response cycles was 

visibility. With fragmented logs and metrics, 

triaging a failing service was slow and inconsistent. 

Solution: We integrated all services into a single 

observability platform using Grafana, 
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Prometheus, and Jaeger, with log enrichment 

from Filebeat and Elasticsearch. 

Result: Triaging time was reduced by over 55%, 

from ~18 minutes to ~8 minutes per incident. 

 

5.2. Automation for First Response 

 

We developed Ansible playbooks and Python 

Lambda responders for common failure patterns 

like: 

● 500 errors due to DB connection pool 

exhaustion 

 

● Job queue saturation in claims ETL 

pipelines 

 

● DNS resolution issues for third-party APIs 

These scripts were auto-executed upon alert 

triggers via PagerDuty. 

Result: Nearly 40% of P1/P2 incidents were 

mitigated without human intervention. 

 

5.3. Structured Chaos Testing 

 

We began monthly “blackout drills” to simulate 

failures: 

● Turning off primary DB node for 5 minutes 

 

● Killing claims ingestion pods 

 

● Dropping outbound connectivity to 

clearinghouses 

Tooling: We used LitmusChaos integrated with CI 

pipelines. 

 Impact: These drills revealed 12 critical gaps in 

failover logic; all patched within the first quarter. 

 

5.4. Postmortem-Driven RCA & Fixes 

 

Each major incident was followed by a documented 

postmortem, stored in an internal portal searchable 

by tag, service, or RCA type. 

● A dashboard tracked “repeat incident rate” 

and “time to resolution fixes” 

 

● A blameless culture encouraged engineers 

to focus on solutions, not fear 

 Result: Repeat outages for the same root cause 

dropped by 70%. 

 

5.5. Comparative Benchmarking 

 

We compared our approach with other healthcare 

organizations and industry standards: 

 

5.6. Real-World Applications 

 

● Claims API Outage: A major DB pool 

exhaustion was detected and resolved in 3 

minutes using automated scripts. 

 

● Member Portal Downtime: Alerts 

triggered an escalation workflow that 

preemptively rerouted traffic, reducing 

user-facing impact. 

 

● Third-Party Clearinghouse Delay: Chaos 

testing predicted this failure. A mock 

fallback endpoint allowed uninterrupted 

claims handoff. 

 

5.7. Limitations 

 

While the framework demonstrated substantial 

improvements, there were some limitations: 

● Simulated Testing Only: All chaos 

experiments occurred in staging. Behavior 

in real-world scenarios with production 

data may vary. 

 

● Tooling Bias: Reliance on specific tools 

(ELK, Litmus) may limit portability for 

other orgs with different stacks. 

 

● Manual Edge Cases: Rare failure modes 

(e.g., memory leaks in lesser-used APIs) 

are still caught manually. 

● No Real-Time Compliance Dashboards: 
Current observability does not directly 

track HIPAA/HITRUST audit logs in real-

time.  

6. Future Work 

● Integrate anomaly detection using ML to 

preemptively flag performance drift. 

 

● Extend SLOs to non-critical services like 

search and reporting for full-stack 

visibility. 

 

● Adopt distributed tracing for third-party 

APIs integrated into claims workflows. 

● Build “MTTR Simulator” that models 

hypothetical outages and prescribes impact 

and fixes. 
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Figure 1. The structured framework we implemented to tackle MTTR 

 

 
Table 1. Component and strategy 

Component Strategy 

Observability Stack Centralized logging (ELK), tracing (OpenTelemetry), and 

metrics (Prometheus/Grafana) 

Alerting Pipeline Noise-reduced alerts via deduplication, severity tagging, and 

escalation matrices 

Incident Automation Auto-remediation scripts triggered via runbooks using Ansible 

and PagerDuty events 

Failure Injection Testing Chaos engineering using Litmus to simulate outages in claims 

APIs 

Postmortem Culture Mandatory RCA within 24 hours and pattern logging for 

systemic fixes 

Service Ownership Model Squad-based SLO enforcement and runbook rotation to ensure 

deep service knowledge 

 
Table 2. Metric and related values 

Metric Cigna (Post-Implementation) Industry Average 

P1 Incident MTTR 16 minutes 45 minutes 

Automation Coverage 42% ~15% 

Repeat Outages ↓70% Not tracked 

RCA Completion (24 hrs) 100% <50% 

 

 
Table 2. Improvement of before and after 

Metric Before After Improvement 

P1 Incident MTTR 42 minutes 16 minutes 62% reduction 
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P2 Incident MTTR 31 minutes 12 minutes 61% reduction 

Auto-Resolved Incidents ~5% 42% 8x increase 

RCA Completion (24 hrs) 40% 100% 2.5x increase 

False Positives in Alerts ~30% <5% 6x reduction 

 

4. Conclusions 

 
By embedding SRE principles into Cigna’s claims 

infrastructure, we significantly reduced MTTR, 

improved operational agility, and strengthened 

compliance posture. Through unified observability, 

automation, and a culture of transparency, the 

organization transitioned from reactive firefighting 

to proactive resilience engineering. These 

improvements offer a template for other healthcare 

providers and insurers striving for high uptime in 

regulated environments. 
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