

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5898-5903
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

SRE for Healthcare: MTTR Optimization in Cigna’s Claims Systems

Sai Raghavendra Varanasi*

Independent Researcher Dallas, Texas, USA
* Corresponding Author Email: varanasi.raghavendra@gmail.com- ORCID: 0000-0002-5247-7850

Article Info:

DOI: 10.22399/ijcesen.3645

Received :

Accepted :

Keywords

SRE,

MTTR,

healthcare infrastructure,

claims processing,

observability,

incident response

Abstract:

In the healthcare industry, time is more than money it can be the difference between

accurate care delivery and administrative chaos. As systems scale to serve millions of

claims daily, the reliability of infrastructure that underpins insurance processing

becomes mission-critical. This paper focuses on how Site Reliability Engineering (SRE)

principles were applied to optimize Mean Time to Recovery (MTTR) in Cigna’s claims

processing systems. We walk through a robust strategy combining observability,

incident automation, chaos engineering, and smart escalation policies that led to

significant reductions in service downtime and faster recovery from production

incidents improving both operational efficiency and regulatory compliance in a heavily

governed domain.

1. Introduction

In a healthcare insurance environment like Cigna's,

millions of claims are processed daily across

various digital platforms. System availability is

crucialnot only for business continuity but also for

ensuring that care providers and patients experience

minimal delays.

However, like any complex system, failures are

inevitable. The real metric of resilience lies not in

preventing all incidents, but in how quickly and

efficiently systems recover. That’s where MTTR

(Mean Time to Recovery) becomes a north star

metric. The aim of this research is to explore how

SRE-driven enhancements reduced MTTR in

Cigna’s claims systems and made operations more

stable, traceable, and automated.

2. Literature Review

The rise of Site Reliability Engineering (SRE) as a

foundational practice in managing modern,

complex systems has led to various frameworks and

methodologies across industries. However, specific

implementations tailored to the healthcare domain,

especially those focused on optimizing MTTR

(Mean Time to Recovery), remain scarce or

generalized. The following works contribute

important insights into SRE practice but also

demonstrate gaps that our study addresses through

targeted, compliance-driven strategies for

healthcare claims systems.

2.1 Optimizing Site Reliability Engineering with

Cloud Infrastructure

John (2024) discusses how integrating cloud-native

services such as Kubernetes and AWS improves

system observability and scalability in the context

of SRE adoption [1]. The paper outlines best

practices for service uptime, CI/CD integration, and

resource cost-efficiency. However, it offers limited

detail on automated incident response or

MTTR-focused measurements, and does not

address regulatory constraints that healthcare

systems must follow.

 We address this gap by embedding MTTR as a

primary optimization metric across observability,

chaos engineering, and auto-remediation layers.

Unlike generic cloud-SRE approaches, our work is

structured for HIPAA-aligned healthcare systems,

where recovery time has critical patient and

financial implications.

 2.2 Dependability-Based Maintenance

Optimization in Healthcare Domain

07 May 2025
22 April 2025

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Sai Raghavendra Varanasi/ IJCESEN 11-3(2025)5898-5903

5899

This study applies reliability engineering concepts

to healthcare environments, emphasizing

predictive maintenance through failure probability

analysis and scheduling. While it provides useful

mathematical models, the focus is geared toward

physical asset reliability and downtime

reduction, rather than cloud-native or digital

systems [2].

 Instead of static failure-based scheduling, our work

introduces live production incident automation,

service observability, and rapid response

scripting for API-based digital healthcare

platforms. We shift the discussion from mechanical

uptime to dynamic, digital infrastructure

recovery in real time.

2.3 Scaling Site Reliability Engineering: A Data-

Driven Approach to Modern System Reliability

Nanda proposes a robust SRE model using data-

driven performance indicators, emphasizing metrics

like uptime, service availability, and change failure

rate across distributed systems [3]. However, the

work does not account for vertical-specific factors,

such as compliance requirements, nor does it offer

prescriptive automation for reducing recovery

times.

Our framework incorporates telemetry and

alerting strategies tailored for healthcare-

specific incident types, like claims ingestion

failures or API timeouts. We also emphasize

automated RCA processes and chaos drills, both

largely absent from Nanda’s generalized approach,

to measurably reduce MTTR within a governed

infrastructure [3].

3. Understanding MTTR in Healthcare

Systems

Mean Time to Recovery (MTTR) is defined as the

average duration required to restore functionality

after a system failure. In regulated industries like

healthcare, high MTTR can lead to delayed claims

processing, patient dissatisfaction, failed service-

level agreements (SLAs), and potential non-

compliance with regulations such as HIPAA.

3.1 Business Implications of High MTTR

● Delayed Claims Approval: High MTTR

slows the claim lifecycle, affecting

provider reimbursements.

● Patient Experience: Errors or lags in

processing claims lead to confusion and

dissatisfaction.

● Operational Costs: More human effort is

required for manual interventions during

outages.

● Compliance Risk: Inability to meet service

availability thresholds can result in audit

flags and fines.

● Reputation Loss: Persistent or recurring

issues damage trust with providers and

members

4. Framework for MTTR Optimizatio

4.1. Observability Stack

Objective: Provide engineers with unified, real-

time visibility into system health to reduce time

spent identifying root causes.

Key Elements:

● Centralized Logging (ELK Stack):

Elasticsearch, Logstash, and Kibana form

the logging backbone. Logs from APIs,

databases, and message brokers are parsed

and enriched using Logstash filters for

better searchability.

● Metrics Collection (Prometheus &

Grafana): Prometheus scrapes time-series

metrics from various endpoints (e.g., CPU,

memory, queue depth). Grafana dashboards

visualize these metrics with real-time

alerts.

● Distributed Tracing (OpenTelemetry +

Jaeger): Enables engineers to follow the

full request path across microservices,

which is crucial for identifying bottlenecks

in claims processing flows.

Why It Matters: Without observability, engineers

rely on assumptions. A unified telemetry stack

reduces detection time by providing immediate

visibility into anomalies.

4.2. Alerting Pipeline

Objective: Ensure that alerts are timely, actionable,

and prioritized reducing noise and alert fatigue.

Enhancements:

● Deduplication and Throttling: Identical

alerts triggered in a short time window are

collapsed into a single incident.

● Severity-based Routing: Alerts are

enriched with context and routed based on

Sai Raghavendra Varanasi/ IJCESEN 11-3(2025)5898-5903

5900

urgency. For instance, database connection

errors route to the backend team, while API

latency issues go to the DevOps team.

● Escalation Policies: Alerts escalate across

tiers if not acknowledged, ensuring 24x7

coverage across globally distributed teams.

Why It Matters: Ineffective alerting causes missed

incidents or unnecessary page-outs. A clean

pipeline ensures that only meaningful signals reach

on-call responders.

4.3. Incident Automation

Objective: Reduce time to remediation by

automating responses to known failure modes.

Tools and Techniques:

● Ansible Playbooks: Scripts automate tasks

like restarting failed pods, clearing Redis

queues, or resetting application

configuration.

● Lambda Functions: Serverless responders

are triggered via event sources (like

CloudWatch or PagerDuty) for lightweight

remediation.

● Automated Triage Bots: Slack bots fetch

recent logs, relevant Grafana graphs, and

recent deployments for quicker decision-

making during incidents.

Example Use Case:

● When the claims ingestion queue grows

beyond a threshold, a Lambda function

automatically spins up additional workers

and notifies the SRE Slack channel.

Why It Matters: Many outages are caused by

recurring problems. Automation removes human

latency from recovery.

4.4. Failure Injection Testing (Chaos

Engineering)

Objective: Identify system weaknesses before they

cause actual outages.

Approach:

● LitmusChaos Tests: Run monthly chaos

experiments like killing pods, delaying

service responses, or breaking

dependencies.

● Scoped Testing: Tests are initially

executed in staging and then selectively

rolled into production replicas under

controlled conditions.

● Validation Criteria: The system must

auto-recover, trigger appropriate alerts, and

avoid customer impact.

Why It Matters: Systems often fail at their

weakest links — chaos testing reveals these links

under safe conditions.

4.5. Postmortem & RCA Culture

Objective: Foster a culture of continuous learning,

without blame, to ensure long-term resilience.

Practices:

● Blameless RCAs: Incident documentation

focuses on “what happened” and “how to

prevent it again,” not “who caused it.”

● RCA Portal: All postmortems are stored in

a searchable internal knowledge base,

categorized by service and failure type.

● Resolution Metrics: Dashboards track

RCA submission rates, time-to-resolution

metrics, and recurrence trends.

Why It Matters: Learning from incidents is key to

preventing them in the future. RCA culture closes

the feedback loop.

4.6. Service Ownership Model

Objective: Establish clear accountability and in-

depth knowledge of services across engineering

teams.

Components:

● SLO Definition: Each service has uptime,

latency, and error rate objectives defined by

the owning team.

● On-Call Rotations: Teams rotate

primary/secondary on-call roles to avoid

burnout and improve depth of knowledge.

● Runbook Rotation: Teams periodically

update and rehearse runbooks to ensure

readiness during incidents.

Why It Matters: MTTR drops significantly when

engineers closest to the system own the response.

5. Key Implementations and Results

5.1. Unified Monitoring & Telemetry Pipeline

A major gap in earlier incident response cycles was

visibility. With fragmented logs and metrics,

triaging a failing service was slow and inconsistent.

Solution: We integrated all services into a single

observability platform using Grafana,

Sai Raghavendra Varanasi/ IJCESEN 11-3(2025)5898-5903

5901

Prometheus, and Jaeger, with log enrichment

from Filebeat and Elasticsearch.

Result: Triaging time was reduced by over 55%,

from ~18 minutes to ~8 minutes per incident.

5.2. Automation for First Response

We developed Ansible playbooks and Python

Lambda responders for common failure patterns

like:

● 500 errors due to DB connection pool

exhaustion

● Job queue saturation in claims ETL

pipelines

● DNS resolution issues for third-party APIs

These scripts were auto-executed upon alert

triggers via PagerDuty.

Result: Nearly 40% of P1/P2 incidents were

mitigated without human intervention.

5.3. Structured Chaos Testing

We began monthly “blackout drills” to simulate

failures:

● Turning off primary DB node for 5 minutes

● Killing claims ingestion pods

● Dropping outbound connectivity to

clearinghouses

Tooling: We used LitmusChaos integrated with CI

pipelines.

 Impact: These drills revealed 12 critical gaps in

failover logic; all patched within the first quarter.

5.4. Postmortem-Driven RCA & Fixes

Each major incident was followed by a documented

postmortem, stored in an internal portal searchable

by tag, service, or RCA type.

● A dashboard tracked “repeat incident rate”

and “time to resolution fixes”

● A blameless culture encouraged engineers

to focus on solutions, not fear

 Result: Repeat outages for the same root cause

dropped by 70%.

5.5. Comparative Benchmarking

We compared our approach with other healthcare

organizations and industry standards:

5.6. Real-World Applications

● Claims API Outage: A major DB pool

exhaustion was detected and resolved in 3

minutes using automated scripts.

● Member Portal Downtime: Alerts

triggered an escalation workflow that

preemptively rerouted traffic, reducing

user-facing impact.

● Third-Party Clearinghouse Delay: Chaos

testing predicted this failure. A mock

fallback endpoint allowed uninterrupted

claims handoff.

5.7. Limitations

While the framework demonstrated substantial

improvements, there were some limitations:

● Simulated Testing Only: All chaos

experiments occurred in staging. Behavior

in real-world scenarios with production

data may vary.

● Tooling Bias: Reliance on specific tools

(ELK, Litmus) may limit portability for

other orgs with different stacks.

● Manual Edge Cases: Rare failure modes

(e.g., memory leaks in lesser-used APIs)

are still caught manually.

● No Real-Time Compliance Dashboards:
Current observability does not directly

track HIPAA/HITRUST audit logs in real-

time.

6. Future Work

● Integrate anomaly detection using ML to

preemptively flag performance drift.

● Extend SLOs to non-critical services like

search and reporting for full-stack

visibility.

● Adopt distributed tracing for third-party

APIs integrated into claims workflows.

● Build “MTTR Simulator” that models

hypothetical outages and prescribes impact

and fixes.

Sai Raghavendra Varanasi/ IJCESEN 11-3(2025)5898-5903

5902

Figure 1. The structured framework we implemented to tackle MTTR

Table 1. Component and strategy

Component Strategy

Observability Stack Centralized logging (ELK), tracing (OpenTelemetry), and

metrics (Prometheus/Grafana)

Alerting Pipeline Noise-reduced alerts via deduplication, severity tagging, and

escalation matrices

Incident Automation Auto-remediation scripts triggered via runbooks using Ansible

and PagerDuty events

Failure Injection Testing Chaos engineering using Litmus to simulate outages in claims

APIs

Postmortem Culture Mandatory RCA within 24 hours and pattern logging for

systemic fixes

Service Ownership Model Squad-based SLO enforcement and runbook rotation to ensure

deep service knowledge

Table 2. Metric and related values

Metric Cigna (Post-Implementation) Industry Average

P1 Incident MTTR 16 minutes 45 minutes

Automation Coverage 42% ~15%

Repeat Outages ↓70% Not tracked

RCA Completion (24 hrs) 100% <50%

Table 2. Improvement of before and after

Metric Before After Improvement

P1 Incident MTTR 42 minutes 16 minutes 62% reduction

Sai Raghavendra Varanasi/ IJCESEN 11-3(2025)5898-5903

5903

P2 Incident MTTR 31 minutes 12 minutes 61% reduction

Auto-Resolved Incidents ~5% 42% 8x increase

RCA Completion (24 hrs) 40% 100% 2.5x increase

False Positives in Alerts ~30% <5% 6x reduction

4. Conclusions

By embedding SRE principles into Cigna’s claims

infrastructure, we significantly reduced MTTR,

improved operational agility, and strengthened

compliance posture. Through unified observability,

automation, and a culture of transparency, the

organization transitioned from reactive firefighting

to proactive resilience engineering. These

improvements offer a template for other healthcare

providers and insurers striving for high uptime in

regulated environments.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] John, L. K. (2024). Optimizing Site Reliability

Engineering with Cloud Infrastructure.

ResearchGate.

https://www.researchgate.net/publication/39122757

8_Optimizing_Site_Reliability_Engineering_with_

Cloud_Infrastructure

[2] Mahfoud, H., El Barkany, A., & El Biyaali, A.

(2018). Dependability-based maintenance

optimization in healthcare domain. Journal of

Quality in Maintenance Engineering, 24(3), 00–00.

https://doi.org/10.1108/JQME-07-2016-0029

[3] Nanda, M. S. (2025). Scaling site reliability

engineering: A data-driven approach to modern

system reliability. International Journal of

Advanced Research in Engineering & Technology,

16(1), 294–308.

https://doi.org/10.34218/IJARET_16_01_022

https://www.researchgate.net/publication/391227578_Optimizing_Site_Reliability_Engineering_with_Cloud_Infrastructure
https://www.researchgate.net/publication/391227578_Optimizing_Site_Reliability_Engineering_with_Cloud_Infrastructure
https://www.researchgate.net/publication/391227578_Optimizing_Site_Reliability_Engineering_with_Cloud_Infrastructure
https://www.researchgate.net/publication/391227578_Optimizing_Site_Reliability_Engineering_with_Cloud_Infrastructure
https://www.researchgate.net/publication/391227578_Optimizing_Site_Reliability_Engineering_with_Cloud_Infrastructure
https://doi.org/10.1108/JQME-07-2016-0029
https://doi.org/10.34218/IJARET_16_01_022

