

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5887-5897
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Flaky Test Automation and Mitigating Test Crashes in Agile Releases

Savi Grover1*, Sanjay Kumar Das2

1Software Quality Engineer, Independent Researcher, New Jersey, USA
* Corresponding Author Email: savig447@gmail.com - ORCID: 0009-0001-6928-1512

2Quality Engineering Associate Manager, Independent Researcher, North Carolina, United States

Email: sanjoo.das@gmail.com - ORCID: 0009-0007-6472-3186

Article Info:

DOI: 10.22399/ijcesen.3644

Received : 19 June 2025

Accepted : 06 August 2025

Keywords

Flaky Tests,

non-deterministic tests;

test bugs,

software testing,

Systemic Flakiness,

flake associated test crashes.

Abstract:

Flaky tests—tests that fail non-deterministically without any changes in code—pose a

serious threat to the reliability and efficiency of automated testing pipelines. They lead

to wasted engineering hours, reduced confidence in CI/CD systems, and increased

costs. This paper provides an in-depth analysis of the causes of flaky test automation

and presents actionable strategies to detect, diagnose, and mitigate test flakiness and

crashes. We also explore emerging tools, AI-assisted techniques, and empirical studies

that highlight industry practices for maintaining robust and deterministic test suites. In

risk management and software testing industry, prevention aims to stop an event from

happening in the first place, while mitigation focuses on reducing the severity or impact

of an event that has already occurred or is unavoidable. Prevention is proactive, trying

to stop a problem before it starts, while mitigation is reactive, managing the

consequences of a problem. In this research, we are broadly describing techniques of

mitigation of occurred and detected flaky test failures and automation crashes.

1. Introduction

In the modern DevOps and Agile landscape,

automated testing is a critical component of the

software development lifecycle (SDLC). However,

the prevalence of flaky tests undermines the

effectiveness of continuous integration (CI)

systems. These intermittent failures may falsely

indicate defects, disrupt release cycles, and degrade

team morale. Understanding the nature, causes, and

remedies of flaky test automation is crucial for

engineering quality at scale.

About test flake: Automated tests are expected to

be deterministic and produce the same result (pass

or fail) on every run of the same code input. Flakes

happen when a correct test can fail on consecutive

runs. There are often a lot of variables at play that

may cause this to happen for tests that are not a

simple I/O challenge, but a complex logic flow with

mission-critical timing aspects (i.e. especially in

integration tests.) Often what happens in practice is

that the test will pass frequently on local runs,

enough to be merged into the development base

branch. This unreliable test will then make its way

into other PRs and other unrelated work that will

see the test fail. This causes confusion on the

developer and testers side as the test suite is failing,

and checks prevent merging of code that (often) did

not cause any regressions on its own.

At this point, as a team we choose to override what

our test suite is telling us is a failure to push code

through the boundaries that are set up to protect us.

There is a lot of on us to then distinguish between

the nuance of an “acceptable break” and an

“unacceptable break.” In Agile, we want the power

to be able to know exactly when regressions happen

from our test suite’s insight into the validity of

features and functionality. Until we solve the

inevitable problem of flake, we cannot fully rely on

our automated testing practices to identify real

application bugs when they happen. Lot of large-

scale organizations have tackled flakes with in-

depth solutions and metrics to give engineers the

knowledge on how to mitigate the risk of these tests

failing the suite continuously. Both Facebook and

Spotify have published talks/docs on the subject

area [1]-[2]

1.1 Study Background and previous works

According to study conducted on a team of Mozilla

developers and their flaky test analysis by [3]

University of Zurich, Switzerland in 2019, there

was a detailed account of understanding, definition

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5888

and investigation of causes of repetitive flaky tests.

It was done through qualitative and quantitative

analysis of developer’s contributions in fixing these

tests, and by their answers to a few predefined sets

of questions like – how developers categorize these

flakes, how problematic are they perceived and

main challenges while dealing with these

interruptions. This research brought out an

interesting approach of developer’s perspective in

understanding them and how costly flaky tests

resolutions are and issues being still unpredictable

and reproducible.

This research was later expanded in [5] in 2020 in

direction of life cycle of flaky tests so that –

prevalence, reproducibility, reoccurrence, execution

time and time-before-fix determination of the flake

tests – so that a preemptive impact and possible

solution can be found out. This research was done

on many open sources and six proprietary projects

in Microsoft and a Flakiness and Time Balancer

(FaTB) solution was concluded which removes the

negative impact of Async Wait tests along with

CloudBuild- an incremental and distributed system

for building code and running tests which when

receives a build Pull request with a change, it

identifies all modules that are impacted by the

change and executes the tests only in those

impacted modules, and skips the remaining

modules tests, since none of their dependencies

changed, hence saving time for retry and flake tests

identification.

In a continuous study by [6] University of

Luxembourg in 2021, detects the characteristics of

flake by data collecting from 14 industry

practitioners by qualitative questions, to find out

flake reduction infrastructure and coding,

automation guide for best practice framework for

preventing flakiness. [6] in 2022 combines and

summarizes – all aspects from causes, detection,

implications and simple mitigating steps like-

quarantine, re-fixing, skipping and remove testcases

and how remove/ignore strategy is the principle

behind the industrial flake mitigation tool like -

Probabilistic Flakiness Score (Facebook), Spotify

has Flakybot which is designed to help developers

determine if their tests are flaky before merging

their code to the master branch. The tool can be

self-invoked by a developer in a pull request, which

will exercise all tests and provide a report of their

pass/fail and possible flakiness. Similarly

quarantining the test case is adopted by Google,

Flexport and Dropboxs.

1.2 Recent ML advancements

In a recent revolutionizing study in 2023 [7] by a

few independent researchers in detecting flakiness

by LLM based techniques and quantitative analysis

behind the detection, and re-run to reoccurrence

ratio and many code evolution and test historical

data flakiness detection. And a 2025 [8] – an

analysis of co-occurring flaky test failures was done

by mix method approaches like – Clustering,

Prediction and Manual Inspection in Python

automation tests. Both of this research are based on

AI-ML techniques- but prove to be really time

consuming and expensive for software industrial

purposes, both involve a dataset of 10,000 test suite

runs, which is somewhat unrealistic for real-world

web based, customer-facing, b2b and enterprise

application associated with a single company and

its technical scenarios.

1.3 Focus of this research

The study behind this research lies on discussing -

simple, affordable, easily implementable and

adopted techniques to mitigate flaky tests. Note

that- prevention of flake tests means avoiding them

to occur at all – which practically is non avoidable

in agile, but mitigation procedures should be still

inexpensive for small to medium technical

applications comprising of target users of definite

number along with developer friendly programming

support which can help to integrate them with the

existing test automation setup. These are efficient

and easy get arounds to work in speedy release

planning, countering with predominant flakes in

agile sprints, require less time and less effort to

understand and bring in common code optimization

practices.

This research also covers some real case studies

where flaky test minimization solutions were

discovered and implemented by different

organization and their reliability and success score.

2. Characteristics and Causes of Flaky Tests

As discussed in many different previous works,

flaky tests are typically characterized by- non-

deterministic behavior, where unchanged code may

or may not result in pass tests for identical

environments, may be caused by lack of consistent

reproduction steps, loss of processing storage or

resources, dependent conditions, often limited

correlation with actual defects, page/application

load issues, parallel execution, sudden network and

API failures- and API edge cases not implemented.

Combining all sources and causes, from many

respective studies the causes can be better

understood by flaky test categorization-

concurrency, dependent test cases, network latency,

randomness of external factors, time, async waits,

external state/behavior, hardware [6]. Flaky tests

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5889

are not easy to catch and the frequency of flakiness

is always a struggle to deal with, some can happen

frequently, and others are so rare that they go

undetected. Moreover, tests can be flaky as a direct

result of the testing environment they are run in.

Indeed, they can find their origin from multiple

sources, some of which can help you find bugs you

would never have without their flakiness. Some

poor infrastructures or test environment designs can

then be unveiled [9].

Many categories and causes seen and observed in

the software technical industry can be classified by

following -

1. Environmental Factors- Hardware variability,

network latency, resource constraints, CPU

lacking, memory lacking, underlying

infrastructure and system load, resource

deadlocks, different browsers behavior in same

application, low device compatibility issues.

2. Timing and Synchronization Issues- Async

Operations (AJAX requests) can be particularly

prone to timing issues if not handled correctly,

invocations left un-synchronized, or poorly

synchronized. Race conditions, shared

resources, improper waits, indefinite loops,

sleep times in automation /code design.

3. Test Dependencies- Test code issues,

uninitialized variables, improper data, improper

cleanup of pre-requisite conditions, low garbage

collection, absent exception handling, Third-

party services, databases, APIs with inconsistent

states.

4. Inconsistent Test Data- Dynamic data sources,

real time data changes, accidental or intended

data modification within tests, hardcoded values,

too restrictive test range – not all expected

outcomes/options are considered while test

writing.

5. Uncertain application behavior- randomness,

API edge cases not implemented, lack of

application knowledge, incorrect assumptions,

insufficient assertions. Randomness is a broad

category of test flake reasons, especially when

the traits of algorithms in various machine

learning applications, including inherent

randomness, probabilistic specifications, and the

lack of solid test oracles [10], pose significant

challenges for testing these applications.

6. Poor UI and test design- complex UI, unclear

happy path, too many warning messages, too

many alerts and popups, random web sleep

instance, CTA action, lack of debugging

processes, lack of timely bug fixes, unknown

app issues and pre-conditions, too many pre-

requisites which are hard to maintain and

produce, lack of isolation and orphan code.

7. External Factors- CI misconfiguration, parallel

execution problems, poor test design, test

framework and code non optimized code

structure, lack of application knowledge.

3. Easy Identification and detection of Flake

in Agile sprints

Need to fix flake in Agile Sprints- Since more

developers are in a hurry to send across changes,

finish bug fixing, or releasing feature launch and

chasing deadlines, there are deadliest chances of

producing test crashes, common files impact,

recurring inconsistent application behavior and

code smells. Ensuring quality code into production,

if flaky tests are ignored, creates bugs or issues in

code can be easily overlooked. There are several

different factors that can cause flakiness, and all of

them can slow the CI/CD pipelines and

deployments or manifest issues of application’s end

user [13]

Detecting and identifying flakiness- Detecting

and identifying flakiness in a test automation setup

is an extremely frustrating process, it can be found

easily in some situations by spotting repetitive

varying results of same tests but in some complex

applications, reasons of test break can be in a wide

range. To broadly detect flaky tests, focus on

identifying tests that exhibit inconsistent results

across multiple runs. This can be achieved by

rerunning tests, analyzing historical test data, and

utilizing specialized tools. Additionally, consider

testing in different environments and parallel

execution to pinpoint potential issues. The need to

detect and fix these tests- is the main reason which

help us gather the consequence or impact of their

presence in the test automation setup.

3.1 Heuristics-Based Detection

This is an efficient technique which can be adopted

easily in Agile methodology. It is based on

measuring the flake occurrence and quantifying

flake reproducibility by Re-run tests mechanism.

By setting a threshold to these tests we can outline

the number of flake tests and isolate them to save

test execution time.

Methodology

By running multiple tests N times in a test suite T

where {t1, t2, t3…tn} are testcases and finding out

F out of T where F=number of flake tests and a

subset of T by marking tests failure variance over

time.

● Re-run test multiple times (N times rule)

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5890

● Mark tests with high failure variance over

time. (Finding both results = pass and fail

for a testcase)

Method Description

Input:

 A test suite T = {t₁ , t₂ , ..., tn}

 A configurable re-run count N (typically N

= 5–10) = 5 to 10 times

Output:

 A set of flaky tests F ⊆ T identified by

heuristic rules

 Steps:

1. Repeated Execution Strategy:

For each test ti ∈ T, execute the test N

times in an identical environment.

Record the results as a binary outcome:

pass (✓) or fail (✗).

Run(ti) = [✓, ✓, ✗, ✓, ✗, ..., ✓] → Result

Vector Ri

Flakiness Heuristic Rule:

 Define a test as flaky if the result

vector Ri contains both pass and

fail outcomes. That means a

testcase ti is flaky if it has gotten

both pass and fail in those N tests

Formally:

 ti is flaky if ∃ j,k∈[1, N],

j≠k

such that Run(ti)[j]≠Run(ti)[k]

 This simple "variation-based"

heuristic is the most widely used.

2. Assign a Stability Score Calculation

to a testcase (Optional

Enhancement):

 Assign a Flakiness Score (FS) to each

test as:

 A test can be prioritized for

investigation if 0 < FS(ti) < 1,

indicating intermittent failure.

3. Threshold Filtering:

 Apply configurable thresholds to

classify test outcomes:

a. FS(ti) = 0: Stable Test

b. FS(ti) = 1: Consistently Failing

Test (likely a real bug)

c. 0 < FS(ti) < 1: Potentially

Flaky Test (candidate for

further triage)

4. Environment Consistency Check:

 Ensure that test environments (OS,

browser, container state) remain

consistent across runs to eliminate false

positives due to environmental noise.

Example: Suppose test t1 is run 10 times with the

following outcomes:

 Run(t1) = [✓, ✓, ✗, ✓, ✓, ✗, ✓, ✓, ✓, ✓]

→ FS(t1) = 2/10 = 0.2 → Marked as Flaky

Advantages:

 Simple and easy to implement in any

CI/CD pipeline

 Low computation cost

 Effective at identifying flakiness due to

timing, concurrency, or nondeterministic

behaviors

Limitations:
 May miss flakiness that appears

infrequently (requires high N)

 Not effective if environment variability is

not controlled

 Can result in overfitting (i.e., falsely

classifying flaky tests due to a single

failure)

3.2 Categorization by failure type to label

the reproducibility of flake

 Model: Analyze the stack traces or error

messages from failed tests and categorize

them (e.g., assertion errors, timeouts,

network failures, etc.).

 Identification: Recurring failures of the

same type under different circumstances

might suggest flakiness (e.g., repeated

timeouts indicating a race condition).

 Benefits: Helps pinpoint the root cause of

flakiness by providing insight into the type

of failures occurring.

Advantages:

 Simple and easy to implement in any

CI/CD pipeline

 Low computation cost

 Effective at identifying flakiness for even

false positives

Limitations:
 May take extra developer’s time in

tagging/comment their tickets and GitHub

submissions with proper labels and

categories.

Logging efforts by test and product teams

4. Flake Mitigation Strategies in Agile

Releases

4.1 Developer’s Best Practices Guide

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5891

4.1.1 Employ deterministic inputs

Indeterminism in code testing arises from factors

that lead to inconsistent test results despite identical

test inputs and code. This makes tests unreliable

and hinders the development and maintenance

process. Here are several strategies to mitigate

indeterminism

 Test properties of the output rather than the

output itself: Instead of asserting an exact

output, focus on verifying the properties that the

output should possess. For example, if a dice

roll is non-deterministic, you could verify that

the rolled number is an integer, between 1 and 6,

and not negative.

 Handle multiple valid outputs: If a piece of code

can have several valid outputs, configure your

tests to accept any of them. For instance, if a

webpage lists products whose order might vary,

you can prepare screenshots for both possible

orders and verify if matches the current output.

 Output transformation: If the non-deterministic

output has a predictable structure but varies in

specific details, transform the output before

testing. For example, if a program outputs "You

rolled a 6!", "You rolled a 1!", etc., you can

transform it to "You rolled an N!" and then test

this generalized output.

 Mock external dependencies: Replace external

services like databases or APIs with mock

objects that provide predictable responses.

Mocking API responses for integrated tests and

developer’s isolated unit tests before releasing

code to upper environments. Implementing edge

cases like resource not found/value not found

with respect to UI.

4.1.2 Avoid code cycles/Performing Loop Testing

Many code cycles in application path leads to a

greater number of flakes, as it increases

indeterminism in tests. The "code cycle testing"

refers to the specific technique of Loop

Testing. This technique focuses on thoroughly

testing loops within the code to ensure they

function correctly under various conditions.

 Identify errors at loop boundaries: Loops

are prone to errors at their entry and exit

conditions, as well as during their first and

last iterations. Loop testing aims to uncover

these issues.

 Verify proper loop execution: It ensures

that the loop executes the correct number of

times and that the operations within the

loop perform as expected.

 Detect structure of loops: Simple, nested,

indefinite, incremental, conditional,

concatenated and unstructured loops - to

identify and prevent situations where a loop

might run indefinitely, leading to program

crashes or resource exhaustion.

4.1.3 Remediating the Root Cause of occurred

Flaky Tests

To remediate/reproduce flaky tests, developers

should know where to look for the root cause of

flakiness, but this can prove to be challenging since

it might require manually sifting through many

lines of code. One way to identify flakiness is to re-

try a test several times and document each time the

test displays contradictory behaviors. [13]

4.1.4 Look Before You Leap

This represents clusters of flaky tests that could be

repaired or at least mitigated by checking the status

of some external system or resource. Examples

include checking for the existence of a

directory/file path and confirming that a server is

running. Looking on pre-requisite conditions before

triggering test execution. [8]

4.2 Automation Test Design Improvements

4.2.1 Isolate tests to ensure independence -

Ensuring tests are isolated and independent is

another key strategy. Adopt the independent test

pattern, which means each test should be self-

sufficient and not rely on external systems. This

reduces the likelihood of tests failing due to

external dependencies like APIs or databases

[14].

4.2.2 Quarantining Flaky Tests- Dynamically

quarantine flaky tests to remove them from the

critical path, allowing development to proceed

without being blocked by intermittent failures.

This involves continuing to run the tests but

preventing them from failing the building,

creating a clear signal that they require attention.

Automatically file bugs or tickets for

quarantined tests to ensure they are addressed by

the responsible team members.

4.2.3 Combining many small tests into one

consistent happy path test- Instead of having

many small verifications in each individual

testcase, example – verification of elements of a

page can be combined with submission of form

elements data and verifying submit message.

This technique reduces the number of tests in a

test suite, thereby optimizing execution time,

test reaction, and more coverage in a reduced

number of tests.

https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3
https://www.google.com/search?sca_esv=c471f8117e84cd45&cs=0&q=Identify+errors+at+loop+boundaries&sa=X&ved=2ahUKEwj1-6XkyNmOAxUaKVkFHSisFaoQxccNegQIDhAD&mstk=AUtExfAwYZMZjgirA8GB4Z-kYiu-ujmuPeILAmS8OR4KffbKs7umLiRx4Awp-BViC1WHOcETJaE5V8IVWQ9S4u4luYXZBAgjO1AB3_gq_5a5wCRHIgl85ODJen6_bb7IsMER_GH7kA0jHJRwKZYSQD9pebWbRtiGaLzwS80p3z-2jCx_mIolS4nglR_7bf-Ih4KGhCtv&csui=3

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5892

4.2.4 Run at an appropriate time of the day-

Sometimes, code behavior depends on load and

network throughput during the day. This

means test success may depend on the time the

test runs. For example, we are running

automation tests on test environments during the

middle of the day vs scheduled tests during

nightly background jobs when there are

minimum network requests. Both these tests

produce different results at different times. For

better network availability, automation pipelines

should be scheduled for nightly runs.

4.2.5 Timeout Strategies - Proper timeout, wait

and async wait configuration is vital to avoid

hanging tests. Set appropriate timeouts to ensure

tests do not run indefinitely. For instance, if a

test involves a network request, set a timeout to

handle potential delays. Mocking simulates the

behavior of external dependencies, ensuring

your tests run smoothly without waiting for real

systems. Tools like Mockito for Java or Sinon

for JavaScript can help create effective mocks,

leading to faster and more reliable tests. Rather

than relying on fixed time intervals, fine-tune

the wait conditions using explicit waits based on

specific conditions. Implement dynamic waiting

strategies to synchronize with the application’s

state changes.

4.2.6 Test Order dependency - A test might fail

because of the test that runs before or after it.

This happens because many tests use shared

data, like state variables, inputs, and

dependencies, simultaneously. We need to

completely remove or minimize the

dependencies among these tests to improve

accuracy and reduce flakiness. Wherever your

test depends on another module, use stubs and

mocks. Stubs are objects with predefined

responses to requests. Mocks (also called fakes)

are objects that mimic the working

representation, but not at 100 percent of

production. Mocking and stubbing creates tests

that run in isolation. [15]

4.2.7 Proper set up and tear down /clean up

methods- Setting up proper cleaning mechanism

for initializing start up and tear down methods to

run at the beginning and termination of test

suites. These methods contain common pieces of

code/pre-steps for system start up and shut down

and involve less chances of changes by

automation developers while script writing.

They also ensure easy reproducibility, a smaller

number of lines, ease for retry mechanisms and

quickly identify flakes.

4.2.8 Retry Mechanism- By automatically re-

executing tests that fail, a retry mechanism can:

Bypass transient failures: Many flaky tests are

caused by temporary issues. Retrying them can

allow them to pass the second or third time,

preventing unnecessary debugging.

Identify genuine failures: If a test consistently

fails after multiple retries, it indicates a more

serious underlying issue that requires attention.

Reduce false alarms: Retries can prevent a build

from failing due to temporary glitches, reducing

the number of false alarms and saving

debugging time.

4.2.9 Automation tests standardization- Avoid

stale elements, use relative xpaths, avoiding null

pointer exceptions, use explicit implicit waits,

avoid hard sleep times, page object files

segregated with class runner files, not using hard

coded values, use unique locators, careful

iframe/window jumping, better output matching

scenarios – not too restrictive range when

outputs are more, using test reports and

integrated CI-CD pipelines are some automation

setup practices to reduce flake.

4.2.10 Regular Test Maintenance is crucial for

flaky test mitigation. Start by scheduling routine

reviews of your test suite. These reviews help

identify and remove redundant or outdated tests.

For example, tests that no longer align with

current code or requirements should be

discarded. This keeps your test suite lean and

focused.

Next, address issues promptly. When a test fails,

investigate and fix the problem right away.

Proactive fixes prevent small issues from

escalating into larger problems. Regular

maintenance ensures your test suite remains

reliable and up to date. [14]

4.3 Infrastructure Enhancements and CI-CD

Process Improvements

● Environmental Consistency- Containerization

tools such as Docker help to maintain consistent

test environments. This can also be provided by

external server and cloud platforms. By

replicating the same environment for each test

run, you eliminate variations that could cause

flaky tests. This consistency is essential for

reliable test results.

● Concurrency- Look for shared resources or

critical sections that cause contention among the

concurrent tests. To address the issue,

implement a locking mechanism or other

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5893

concurrency control strategy to prevent

interference and resource locking and ensure

isolation. If data modification occurs before

running another test, we need to run the tests in

isolation, automation code should not comprise

of reused variables.

● Constant network /hardware availability-

Employ network and hardware services with

tolerant systems, mock services for flaky

external dependencies, along with device

browsers and stable and compatible OS versions

to run tests on cloud (Lambda test) or virtual

containers. Maintain Resource capping and

network shaping in test environments Checking

for memory leaks in between execution and

storage/resource conflict.

● Using visualization, error logging and

exceptions to catch flake and debug them-

Metrics-driven dashboards to highlight flaky

tests like Datadog, Google GCP alerts help

highlight job failures, CRUD issues, migration

job failures, API failures and response codes.

These can help debug flake without need of re-

run.

5. Innovative Methodologies for improving

Flaky tests Mitigation.

5.1 Dynamic Test Skipping- This method focuses

on dynamically separating out flake tests and

skipping them to exclude from current test runs.

Reasons due – to known bugs, known defect

categorizations or upcoming revamp/feature build

up around flake tests, tests can be skipped/or

removed from test run to overall avoid

encountering any flake and save time. In the

situation if developer is working on new feature

development and begins to write tests that seem to

pass locally but are not reliable in CI (Github)

Conditional skipping based on past results: Using

historical test data or specialized tools, identifying

tests with a high probability of flaking, and

automatically skipping them in the current build.

Quarantining flaky tests - isolating unreliable tests

into a separate suite prevents them from blocking

the main build while the root cause is investigated.

Evaluating frameworks with dynamic skipping

features include testing frameworks, such as Pytest

or TestNG, offer mechanisms to conditionally skip

tests during execution, which can be leveraged for

dynamic test skipping.

5.2 Test Result Decisive Algorithm for Frequent

flakes - Calculate the flake rate and PFS

(Probabilistic Flakiness Score) for each test. Tests

exceeding a pre-defined threshold for both metrics

are flagged as "highly flaky" and passed on Task to

fix with – measured impact, categorization, root

cause and priority to fix.

Using this numeric, developers can measure and

monitor the flake in regression in form of PFS each

individual test – also done in Facebook to monitor

changes in its reliability over time. “If we detect

specific tests that became unreliable soon after they

were created, we can direct engineers’ attention to

repairing them.” [6]

Meta's approach uses Bayesian inference to

quantify a test's flakiness based on past results. For

example, running a test 10 times and finding the

flake rate to be 2, the probability= 0.2 and assuming

a set threshold of 0.5 or above. In this case

Since probability here is less than assumed

threshold-> we consider this test non flaky.

 Track the impact of fixes on flakiness

metrics. Monitor whether the flake rate and PFS

decrease after implementing solutions.

 Continuously refine the algorithm by decreasing

the threshold with every fix made in flake test.

GitHub also adopted a similar metrics-based

approach to determine the level of flakiness for

each flaky test. An impact score is given to each

flaky test based on how many times it changed its

outcomes, as well as how many branches,

developers, and deployments were affected by it.

The higher the impact score, the more important the

flaky test and thus the highest priority for fix is

given to this test. [16]

This method is also called as Matrix Method/

Square Method- also utilized by Spotify

Engineering - At Spotify, engineers use Odeneye, a

system that visualizes an entire test suite running in

the CI and can point out developers to tests with

flaky outcomes as the results of different runs.

Another tool used at Spotify is Flakybot5, which is

designed to help developers determine if their tests

are flaky before merging their code to the

master/main branch. The tool can be self-invoked

by a developer in a pull request, which will exercise

all tests and provide a report of their success/failure

and flakiness. [17]Looking at the image Figure 1

above, we can see individual tests vertically and

horizontally the result of these tests running in CI.

If we see a scattering of orange dots this usually

means test flakiness. If we see a solid column of

failures this usually represents infrastructure

problems such as network failures and things of

that nature. Graphs like this are a wonderful way to

help you establish what is flaky and what is an

infrastructure problem.

5.3 Early Locator Verification- This mechanism

can be useful for simple static automation UI tests

where a prior presence of all elements can be done

by a common reusable method, before executing

any functional statements in test. If the elements are

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5894

passed for their presence- we can assure – no issues

with stale elements, page load or timeout /network

issue. If the test failed after this verification, the test

team may assume it be still “passed”.

In situations of less time remaining in sprint

releases and knowing the fact that code changes are

not impacting other classes associated with flake

tests.

Limitations of this technique- It is only useful for

UI display operations, does not guarantee 100

percent accuracy/ or bug discovery in the functional

analysis of page elements.

5.4 Visual Regression - Computer vision tools, like

those offered by Applitools Eyes or Percy, leverage

machine learning algorithms to compare

screenshots or UI elements across different builds,

devices, and browsers.

They detect visual regressions, layout shifts, font

changes, and other subtle UI inconsistencies that

might cause tests to fail unexpectedly. By

proactively identifying these visual anomalies,

computer vision helps to catch potential UI

flakiness before it becomes a problem, ensuring a

more stable and reliable testing suite.

5.5 Self-healing AI scripts- Traditional test

automation often relies on static locators to identify

UI elements, which are prone to breaking when the

UI changes. Computer vision-powered tools can

analyze the visual properties of UI elements,

including their shape, size, color, and relative

position, enabling more robust object identification.

Some advanced tools even offer self-healing

capabilities, where AI algorithms can dynamically

identify and track UI elements even when their

attributes or positions change, thereby

automatically updating test scripts and reducing

maintenance overhead.

5.6 Code-less / script-less tools for flaky tests-

 Simplified Test Creation and Maintenance:

LC/NC tools utilize visual interfaces, drag-and-

drop functionalities, and pre-built actions to

create test cases. This simplifies the process,

making it less prone to human error that can lead

to flakiness. When application changes occur,

these tools often offer features like self-healing

locators or dynamic element detection,

automatically adapting test scripts and reducing

the need for manual updates that can introduce

new flakiness.

 Reduced Reliance on Complex Code- Flaky

tests often stem from intricate or poorly written

code within test scripts. LC/NC platforms

minimize the need for complex coding, reducing

the potential for coding errors, synchronization

issues, or timing-related problems that

contribute to test flakiness.

5.7 Exception Handling-

 Managing Race Conditions and

Asynchronous Operations:

In concurrent or asynchronous code, race

conditions can lead to inconsistent test

outcomes. Exception handling, combined with

appropriate synchronization mechanisms (like try-

catch-finally blocks around shared resources

or await statements in asynchronous code), can help

ensure tests handle these scenarios predictably,

preventing flakiness.

 Preventing Test Failures due to Expected

Edge Cases:

Sometimes, the system under test might throw

exceptions for valid, albeit less common,

scenarios. If a test is designed to verify the handling

of such an edge case, exception handling within the

test allows it to specifically catch that expected

exception and assert its presence, rather than failing

the test entirely.

5.8 Flake fix procedure- Treat flaky tests as

bugs: Prioritize fixing flaky tests and incorporate

their review into the regular code

review/development process to foster a culture of

quality. Identifying the urgence, severity,

acceptance criteria, test scenarios of the defect and

investigate root cause. Document the causes of

flakiness and the strategies to address them.

Sharing these learnings can help prevent similar

issues and speed up fixing.

5.9 Cut, Fold and Burry in same code version-

This techniques is used for test-cases that show

flakiness when there is no new code deployment,

that means we are re-running tests in the same code

version, if we have a few positive’s in such a

scenario, then testcase are marked cut (or zipped)

at the point of flake, folded and marked as passed

and buried or dumped after the point of flake found.

This method can be also called Box, zip and dump

method which is simply used to mark flaked test-

cases to “passed” if they have shown passed results

previously in same code version.

4. Conclusions

Flaky tests represent a persistent challenge in

automated testing pipelines. Addressing them

requires a blend of test design rigor, infrastructure

improvements, intelligent tooling, and cultural

investment. By building a culture of quality within

a development team is crucial for effectively

addressing and minimizing flaky tests. Integrating

test quality into performance reviews and goals,

include metrics related to flaky tests and test

stability in individual and team performance

evaluations to reinforce their significance and

hence their mitigation.

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5895

Table 1. Some Detection techniques for flaky and non-deterministic tests
Detection Methods Ways to Implement

Tests re-execution A straightforward method is to repeatedly execute the same test suite

under the same conditions. If some tests pass and others fail without any

code changes, we've likely found a flaky test.

Running the tests both sequentially and in parallel. If a test consistently

fails only during parallel execution, it may indicate a race condition or

test order dependency issue.

Run tests in different environments (e.g., with different configurations or

resources) to see if the results vary. Running the test in different

environments to see if the failures are environment specific. This can

help pinpoint environmental factors contributing to flakiness.[12]

Comparison of old and new test

results with respect to current release

changes/code files

Examine the CI/CD system's test results to identify patterns. Look for

tests that fail frequently on specific branches or at times. Tools like

Jenkins, GitHub Actions, or CircleCI can help with this.

Leveraging CI/CD platforms with built-in flaky test detection features

can save a lot of time. These platforms automatically identify tests that

fail intermittently. For example, Semaphore CI and CircleCI offer flaky

test detection tools. These tools analyze test results and flag tests that

show inconsistent behavior. Automated detection not only saves time but

also improves the reliability of your test suite, allowing you to focus on

fixing the root causes.[11]

Targeted Testing around basic

application flow (by differently

purposed teams)

This can be non-re-run mechanism where after every deployment, the

test team can request other supporting teams to run a quick smoke test

analysis / or their daily tasks on the applications.

Teams such as- test team, Ads team, design team, or sales team or HR

team can just do necessary small checks or just their daily tasks and can

report any discrepancies or unusual pattern they see.

This can be a very unimportant measure which is not adopted across big

companies but can save a ton of time in determining a flake or finding an

indeterministic test around application.

Observing test execution history Check the history of suspicious test- an alternating trail of pass/fail result

may be a sign of flake.

Manual Test and maintain a Root

Cause Tracker notebook (of old

bugs)

If automated methods don't pinpoint all flaky tests, manual checks can be

useful for identifying potential issues.

Categorize test failures to understand the root causes and prioritize

remediation efforts.

Keep track of flaky tests using issue-tracking systems, spreadsheets, or

specialized tools to monitor the cause of old, unrelated, related bugs,

impact and debugging measure which were used if a flake used to be an

actual old defect.

Catching GitHub pr’s, pattern, local

tests, change in config file, and file

modification history

Early detection of code files where multiple people are working

simultaneously. Track any config file changes, unit tests or even time

clash of submitted pr’s by two or more developers working on similar

classes.

Log Monitoring and internal alerts Examine test logs for patterns or inconsistencies in error messages. For

example, timeouts or failed connections can be signs of a flaky test.

External tools  Test Retry Plugins (e.g., Jest Retry Times, pytest-rerunfailures)

 CI Dashboards with flake tracking features

 Custom Scripts that flag inconsistent test outcomes

 Prometheus and Grafana: These tools can monitor and visualize

metrics, including test execution times and success rates, to help

identify flaky tests.

Targeted testing of complex code

files – before re-runs

Code changes which are ambiguous consist of complex code conditions,

async time or concurrent condition, assertions or even indefinite,

incremental loops- can be tested before hand in isolation or integration

before running around whole test suite.

AI and Machine Learning Detection

techniques

Heuristics-Based Detection, Statistical Methods, Prediction of flakiness

using feature vectors, classification, Sophisticated Pattern recognition

(code changes to bug patterns), Anomaly detection model, Time series

analysis.

https://prometheus.io/
https://grafana.com/

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5896

Figure 1- Tracking Flakiness at Spotify by Odeneye. Source [17]

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] https://blog.mergify.com/flaky-tests-who-are-they-

and-how-to-classify-them/

[2] Detecting Flaky Tests in Probabilistic and Machine

Learning Applications. In Proceedings of the 29th

ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’20), July

18–22, 2020.

[3] Understanding Flaky Tests: The Developer’s

Perspective - University of Zurich Zurich,

Switzerland, 2019

[4] A Study on the Lifecycle of Flaky Tests –

Microsoft and University of Illinois at Urbana-

Champaign Urbana, Illinois, USA, 2020

[5] A Qualitative Study on the Sources, Impacts, and

Mitigation Strategies of Flaky Tests - University of

Luxembourg, 2021

[6] Test Flakiness’ Causes, Detection, Impact and

Responses: A Multivocal Review, School of

Mathematical and Computational Sciences, Massey

University, New Zealand – 2022

[7] Practical Flaky Test Prediction using Common

Code Evolution and Test History Data – 2023

[8] Systemic Flakiness: An Empirical Analysis of Co-

Occurring Flaky Test Failures – 2025

[9] https://blog.mergify.com/flaky-tests-who-are-they-

and-how-to-classify-them/

[10] Detecting Flaky Tests in Probabilistic and Machine

Learning Applications. In Proceedings of the 29th

ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’20), July

18–22, 2020.

https://blog.mergify.com/flaky-tests-who-are-they-and-how-to-classify-them/
https://blog.mergify.com/flaky-tests-who-are-they-and-how-to-classify-them/
https://blog.mergify.com/flaky-tests-who-are-they-and-how-to-classify-them/
https://blog.mergify.com/flaky-tests-who-are-they-and-how-to-classify-them/

Savi Grover, Sanjay Kumar Das / IJCESEN 11-3(2025)5887-5897

5897

[11] https://trunk.io/learn/best-practices-for-finding-and-

mitigating-flaky-tests#how-to-identify-flaky-tests

[12] https://www.testrail.com/blog/flaky-tests/

[13] https://www.datadoghq.com/knowledge-

center/flaky-tests/

[14] https://trunk.io/learn/best-practices-for-finding-and-

mitigating-flaky-tests#best-practices-to-mitigate-

flaky-tests

[15] https://circleci.com/blog/reducing-flaky-test-

failures/

[16] “Reducing flaky builds by 18x,” Dec. 2020.

[Online]. Available: https://github.blog/2020-12-

16-reducing-flaky-builds-by-18x/

[17] https://engineering.atspotify.com/2019/11/test-

flakiness-methods-for-identifying-and-dealing-

with-flaky-tests

https://trunk.io/learn/best-practices-for-finding-and-mitigating-flaky-tests#how-to-identify-flaky-tests
https://trunk.io/learn/best-practices-for-finding-and-mitigating-flaky-tests#how-to-identify-flaky-tests
https://www.testrail.com/blog/flaky-tests/
https://www.datadoghq.com/knowledge-center/flaky-tests/
https://www.datadoghq.com/knowledge-center/flaky-tests/
https://trunk.io/learn/best-practices-for-finding-and-mitigating-flaky-tests#best-practices-to-mitigate-flaky-tests
https://trunk.io/learn/best-practices-for-finding-and-mitigating-flaky-tests#best-practices-to-mitigate-flaky-tests
https://trunk.io/learn/best-practices-for-finding-and-mitigating-flaky-tests#best-practices-to-mitigate-flaky-tests
https://circleci.com/blog/reducing-flaky-test-failures/
https://circleci.com/blog/reducing-flaky-test-failures/
https://github.blog/2020-12-16-reducing-flaky-builds-by-18x/
https://github.blog/2020-12-16-reducing-flaky-builds-by-18x/

