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Abstract:  
 

This paper presents novel hybrid architectures for Arabic handwritten character 

recognition, integrating capsule networks with residual neural networks (ResNets) 

across various embedding strategies. The proposed Custom Caps-ResNet models 

explore low-, mid-, high-, and multilevel capsule embeddings to synergize hierarchical 

feature learning with spatial relationship preservation. Evaluated on four benchmark 

datasets, the models achieve competitive accuracy—99.64% on OIHACDB-28 and 

94.14% on Dhad—while consistently reducing test loss by up to 80% on Dhad and 66% 

on HMBD_V1 compared to baselines. These reductions in loss indicate enhanced 

prediction certainty and improved feature representation. Multilevel and mid-level 

embeddings perform robustly across diverse script complexities, whereas high-level 

embeddings excel in semantic abstraction. The variation in dataset performance reveals 

how capsule networks mitigate challenges in cursive connections, overlaps, and 

positional character forms. Overall, the integration of capsule embeddings into ResNet 

hierarchies leads to not only strong accuracy but also significantly more confident 

predictions—advancing Arabic handwriting recognition toward reliable real-world 

deployment. 

 

1. Introduction 
 

Handwriting recognition systems, including digit, 

character, and word recognition, are widely utilized 

in various applications. These systems play a 

crucial role in banking check processing [1], office 

automation [2], document digitization [3], content-

based document retrieval [4], signature verification 

[5], postal code recognition [6], and digital 

character identification [4]. By automating these 

complex tasks, handwriting recognition enhances 

operational efficiency, reduces human error, and 

improves accuracy, thereby driving advancements 

in technological and industrial sectors. 

The recognition of Arabic handwritten characters 

introduces unique challenges and opportunities 

within the broader field of handwriting recognition. 

With over 400 million native speakers, Arabic is 

one of the most widely spoken languages globally 

[7], holding cultural, historical, and religious 

significance. Its cursive nature, contextual 

letterforms, and diacritical marks make character 

segmentation and recognition more complex 

compared to non-cursive scripts [8]. Additionally, 

Arabic has a rich historical manuscript tradition, 

with numerous texts remaining un-digitized or 

poorly preserved. These manuscripts, often written 

in calligraphic styles such as Kufic, Naskh, and 

Thuluth, present both linguistic and computational 

challenges in the development of robust recognition 

models [9]. Despite the growing interest in 

handwriting recognition, the field of Arabic 

handwritten character recognition (AHCR) faces a 

significant shortage of comprehensive and high-

quality datasets [10]. The scarcity of well-annotated 

datasets poses a significant challenge to building 

robust deep learning models [11], as it hampers 

their ability to perform consistently across diverse 

handwriting styles and unseen data. Enhancing the 

robustness of Arabic OCR systems is essential not 

only for improving recognition accuracy but also 

for ensuring reliable performance in real-world 

applications.  

To address these challenges, researchers have 

explored various deep learning methods tailored for 

Arabic script recognition. Altwaijry et al. [12] 
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established the Hijja dataset (children's writing), 

achieving 88% (Hijja) and 97% (AHCD) accuracy. 

Alwagdani and Jaha [13] enhanced recognition of 

children’s handwriting to 93% via hybrid training 

(Hijja + AHCD) and improved writer-group 

discrimination to 94% with feature fusion. For 

efficiency, Kamal et al. [14] introduced the 

lightweight Huruf model, achieving 96.93% 

(AHCD) and 99.35% (MadBase). Balaha et al. [15] 

set new benchmarks with HMB1/HMB2 

architectures, attaining 100% accuracy on 

CMATER and AIA9K datasets. Architectural 

refinements include Ullah and Jamjoom [16] 

boosting AHCD accuracy to 96.78% using batch 

normalization, and Alghyaline [17] comparing 

VGG, ResNet, and Inception models (optimal: 

98.30% on AHCD).  

Complementing CNN-based methods, researchers 

have increasingly explored Hybrid and Integrated 

Approaches to leverage complementary 

architectural strengths. Najam and Faizullah [18] 

developed an integrated CNN-RNN model effective 

for multi-font datasets. AlShehri [19] advanced this 

with DeepAHR, incorporating specialized 

segmentation and contextual components to achieve 

98.66% (AHCD) and 88.24% (Hijaa). Transfer 

learning has proven valuable; AlMuhaideb et al. 

[20] adapted MobileNet for AHR, achieving 

93.59% on the Dhad dataset (Hijja-based) 

efficiently, demonstrating practical utility in 

educational tech. 

Sophisticated feature extraction techniques and 

advanced architectures have further driven 

recognition improvements. Torki et al. [21] 

combined SIFT descriptors with SVMs for 94.28% 

accuracy on AIA9K. Loey et al. [22] used Stacked 

Autoencoders for unsupervised learning, achieving 

98.5% on MADBase. Advanced models include 

Ghofrani et al. [23]'s Capsule Network (CapsNet) 

with dynamic routing, achieving state-of-the-art 

99.87% on Hoda by modeling spatial relationships 

robustly. Al-Taani and Ahmad [24] utilized 

Residual Networks' deep feature learning, 

achieving 99.8% on MADBase via effective 

gradient flow. Specialized approaches address 

unique script features: Lutf et al. [25]'s diacritic-

focused CCRP method attained 98.73% accuracy 

efficiently, outperforming traditional methods. 

Kada et al. [26] employed SVM to enhance 

segmentation and character extraction quality at the 

word level.  

 This is particularly vital for the digitization of 

historical Arabic manuscripts [27], which supports 

academic research, cultural preservation, and 

broader access to Arabic literary heritage, thereby 

unlocking their potential for linguistic, historical, 

and technological advancement. 

2. Background 
 

The Arabic script consists of 28 distinct characters 

(letters), written from right to left, and unlike many 

other writing systems, it does not employ upper-or 

lower-case forms. A defining feature of Arabic 

script is the contextual shaping of its characters, 

where the form of each letter varies depending on 

its position within a word. Specifically, most letters 

exhibit two primary forms: disconnected (isolated) 

and connected, with the latter further categorized 

into initial (beginning of a word), medial (middle of 

a word), and final (end of a word) forms (see Table. 

1). This unique morphological characteristic not 

only contributes to the script's visual elegance and 

aesthetic appeal but also introduces significant 

challenges for automated recognition, processing, 

and computational analysis systems. 

 
Table 1. Arabic letters variations. 

N° Letter 

Letter’s Form Variations 

Disconnected 

(Isolated) 

Connected 

Initial Medial Final 

1 Alif أ - - - 

2 Baa ـب ـبـ بـ ب 

3 Taa ـت ـتـ تـ ت 

4 Thaa ـث ـثـ ثـ ث 

5 Jeem ـج ـجـ جـ ج 

6 Haa ـح ـحـ حـ ح 

7 Khaa ـخ ـخـ خـ خ 

8 Daal ـد - - د 

9 Dhal ـذ - - ذ 

10 Raa ـر - - ر 

11 Zaa ـز - - ز 

12 Seen ـس ـسـ سـ س 

13 Sheen ـش ـشـ شـ ش 

14 Saad ـص ـصـ صـ ص 

15 Dhad ـض ـضـ ضـ ض 

16 Tta ـط ـطـ طـ ط 

17 Dha ـظ ـظـ ظـ ظ 

18 Ain ـع ـعـ عـ ع 

19 Ghain ـغ ـغـ غـ غ 

20 Faa ـف ـفـ فـ ف 

21 Qaf ـق ـقـ قـ ق 

22 Kaaf ـك ـكـ كـ ك 

23 Laam ـل ـاـ لـ ل 

24 Meem ـم ـمـ مـ م 

25 Noon ـن ـنـ نـ ن 

26 Haa ـه ـهـ هـ ه 

27 Waaw ـو - - و 

28 Yaa ـي ـيـ يـ ي 

 
In Arabic script, the letter Alif (أ) has a simplified 

form known as Hamza (ء). The Hamza exhibits 

distinct graphical variations depending on its 

position within a word, such as at the middle, or 

end. These positional forms are integral to the 

orthographic rules of Arabic writing and contribute 
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to the script's unique visual and structural 

characteristics Isolated: ء Middle: ـئـ End: ئ, above 

waw: ؤ, end above Alif: ـأ, end below Alif: ـإ ، 

Initial connected: ئـ. 

However, datasets such as AHCD [28], ALIF [29] 

which exclusively consist of isolated character 

forms, and not include Hamza, are limited in their 

applicability to tasks like Arabic writing 

recognition. This is because they fail to account for 

the contextual and positional variations of 

characters that constitute the majority of Arabic 

script. By omitting these contextual forms, such 

datasets overlook a fundamental aspect of Arabic 

writing, thereby restricting their utility in real-world 

applications. 

Arabic handwriting recognition faces challenges 

rooted in the script’s cursive nature, letter 

similarity, and stylistic variability Figure 1. 

Characters often connect via horizontal strokes or 

ligatures Figure 2, complicating segmentation due 

to overlapping components and merged letters [30]. 

Ambiguity arises from letters sharing near-identical 

shapes (distinguished only by dots/diacritics, often 

omitted in handwriting) Figure 3 [31], compounded 

by contextual dependencies. Additionally, 

individual writing styles (stretched, compressed, or 

slanted characters) introduce variability [32], 

further challenging recognition systems. 

Researchers address these obstacles with advanced 

segmentation, feature extraction, and classification 

techniques. 

 

 
 

Figure 1. Variability in Arabic Handwriting Style. 

 

 

 
 

Figure 2. Ligature and overlapping. 

 

 

 
 

Figure 3. Same form with different dots. 

3. Material and Methods 

 
Recent hybrid frameworks, including Capsule 

Embedded ResNet [33], CapsuleNet-ResNet Fusion 

Model [34], and Dilated Residual Capsule 

Networks [35], combine ResNet’s deep feature 

extraction with CapsNet’s spatial reasoning, yet 

their use in Arabic script recognition remains 

limited, as most studies apply these techniques 

separately. To address this, we propose ResCapNet, 

a Residual Capsule Network that embeds CapsNet 

layers within a ResNet backbone, merging residual 

learning for stable training and robust feature 

extraction across diverse handwriting samples with 

embedded capsules to capture spatial hierarchies 

for distinguishing subtle positional variations in 

Arabic characters, such as س vs. ش. 

 

3.1 Overview of the Proposed Approach 

 

In our proposed Capsule Embedded ResNet 

architecture (Figure 4), capsule layers are 

strategically inserted after residual blocks at 

multiple stages of the ResNet backbone to 

synergistically combine ResNet’s deep feature 

extraction with capsule networks’ ability to model 

spatial hierarchies.  

 
Figure 4. Multi-level Capsule Embedding Architecture. 
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3.1.1 Preservation of Spatial Hierarchies  

 

Capsule networks, as introduced by Sabour et al. 

[36], use vector-based activations and dynamic 

routing to encode spatial relationships (e.g., stroke 

curvature, diacritic placement). The squash 

function, defined as:  

 

𝒗𝒋 =  
||𝒔𝒋||

𝟐

𝟏 + ||𝒔𝒋||
𝟐 ⋅

𝒔𝒋

||𝒔𝒋||
𝟐  (1) 

 
Where: Sj is the input vector, Vj is the output vector 

(squashed), and ∣∣Sj∣∣ is the length (norm) of the 

input vector. Ensures that the magnitude of capsule 

outputs represents the probability of feature 

presence while preserving orientation. By placing 

capsule layers after residual blocks, we leverage 

ResNet’s hierarchical features to feed spatially rich 

inputs into capsules, enabling robust modeling of 

Arabic characters’ part-whole relationships (e.g., 

distinguishing س vs. ش). 

 

3.1.2 Multi-Level Feature Aggregation 

 

Capsule layers are embedded at multiple 

abstraction levels, with features aggregated via 

learned weighted summation: 

 
𝐹𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 = ∑ 𝑤𝑖 . 𝐹𝑖

𝑁
𝑖=1    (2) 

 
Where: Fi is the feature output from the i-th capsule 

layer, wi is the learned weight via a fully connected 

layer, and N is the number of capsule layers (here 

N=3 embedding levels). This approach captures 

both low-level (stroke details) and high-level 

(character identity) features, critical for handling 

Arabic script’s positional variations (initial, medial, 

final forms). The dynamic routing algorithm [36] 

refines predictions by iteratively updating coupling 

coefficients Cij computed via a softmax function: 

 

𝑐𝑖𝑗 =
𝑒𝑥𝑝 (𝑏𝑖𝑗)

∑ 𝑏𝑖𝑘𝑘
  (3) 

 
Where: bij is represents the log-prior probabilities 

of capsule i contributing to capsule j.  

This mechanism ensures that spatial hierarchies are 

preserved across abstraction levels, enhancing 

discriminability for ligature-dependent and 

diacritic-rich characters. 

 

3.1.3 Loss Reduction and Prediction Confidence 

 

The margin loss function defined as: 

 
𝐿𝑘 = 𝑇𝐾 𝑚𝑎𝑥(0, 𝑚+ − ∥ 𝑣𝑘 ∥ )2 + 𝜆(1 − 𝑇𝑘) 𝑚𝑎𝑥(0, ∥ 𝑣𝑘 ∥ − 𝑚− )2 

(4) 

Where: Lk is the loss for capsule k, Tk is 1 if class 

k is present and 0 otherwise, ||vk|| is the length of 

the output vector of capsule k, which represents the 

probability of an object of class k being present, m+ 

is the upper margin (typically 0.9), m- is the lower 

margin (typically 0.1), and λ is a down-weighting 

factor (typically 0.5) that reduces the contribution 

of absent classes to avoid initial learning from 

shrinking all capsule outputs. 

Multi-level capsule placement allows reduces loss 

values by refining feature representations at 

different stages, improving prediction certainty for 

complex Arabic script features. 

 

3.1.4 Dynamic Routing for Adaptive Feature 

Agreement 

 

The dynamic routing algorithm, a hallmark of 

capsule networks, is employed within capsule 

layers to create adaptive connections between 

lower-mid and higher-level capsules [36]. 

 

Procedure ROUTING (û𝒋|𝒊, 𝒓, 𝒍) 

1. for all capsule i in layer l and capsule j (l+1): 𝑏𝑖𝑗 ←

0 
2. for r iteration do 

3.  for all capsule i in layer l: 𝑐𝑖 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖) 

4.  for all capsule j in layer (l+1): 𝑠𝑗 ← ∑ 𝑐𝑖𝑗𝑖 û𝑗|𝑖 

5.  for all capsule j in layer (l+1): 𝑣𝑗 ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) 

6.  for all capsule i in layer l and capsule j (l+1): 𝑏𝑖𝑗 ←

𝑏𝑖𝑗 + û𝑗|𝑖. 𝑣𝑗  

7. return 𝑣𝑗  

 

For each routing iteration (typically 3), coupling 

coefficients are computed via a softmax function, 

weighting predictions based on agreement (e.g., 

spatial consistency of strokes or diacritics). This 

process ensures that capsules representing Arabic 

character components (e.g., loops, dots) align with 

higher-level capsules representing whole 

characters, enhancing robustness to handwriting 

variability and improving classification accuracy. 

 

3.2 Experimental Protocol 

 

This section details our experimental methodology 

for evaluating the proposed Capsule Embedded 

ResNet architecture for Arabic handwritten 

character recognition. Our experiments aim to 

assess both the performance and robustness of our 

model through comprehensive cross-dataset 

validation using samples from diverse writer 

demographics and various Arabic character 

formations. 
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3.2.1 Used Datasets 

 

 We conduct four primary experiments across four 

complementary Arabic handwriting datasets with 

total of 16 experiments. Summarized in Table 2, 

used datasets represent diverse writer demographics 

(children and adults) and contain various Arabic 

character configurations (isolated, initial, medial, 

and final positions) with different class 

distributions, and sizes. 

All datasets contain Arabic characters with strokes 

and diacritics intact Table 3. These features are 

critical for distinguishing between similar letters 

(e.g., س vs. ش or ب vs. ت vs. ث) and are preserved 

without simplification or removal during 

preprocessing. This ensures the models learn to 

recognize the script’s morphological and contextual 

nuances, which are essential for effective Arabic 

handwriting recognition. 

 
Table 2. Characteristics of the benchmark datasets used. 

Dataset Size 
Main 

Characteristics 
Train 
80% 

Val 
10% 

Test  
10% 

Dhad [26] 55587 

Child writers 

 (ages 6–14) 

44471 5558 5558 
variations: 

(initial/medial/final 

forms) 

29 classes  

(based on Hijja) 

AHCD 

[13] 
16800 

Adult, only isolated 

28 classes 
13440 1678 1678 

OIHACDB 

28 [40] 
5600 

Adult, only isolated 

28 classes 
4 480 560 560 

HMBD V1 

[21] 
54110 

Adult, with all 

letter’s variations, 

115 classes, include 
digits 

43288 5411 5411 

 
Table 3. Samples of characters from used datasets. 

 
HMBD_V1 

(Adulte) 

 
Dhad (Children) 

 ـبـ
 

Baã middle 

 
HMBD_V1 

(Adulte) 

 
Dhad (Children) 

 ـغـ
 

Gheen middle 

 
AHCD (Adulte) 

 
OIHACDB 

(Adulte) 

 س
 

Seen isolated 

 

3.2.2 Conducted Experiments 

 

 Caps-ResNet18: Evaluates the Caps-ResNet18 

architecture, where capsule layers are embedded 

at the end of a ResNet18 backbone. We 

implement the ResNet18 architecture trained 

from scratch. This experiment is systematically 

applied to all four datasets to assess how the 

integration of capsule networks with residual 

networks performs across different writing 

styles and character complexities. 

 Standalone ResNet18: This experiment 

evaluates standalone ResNet18 architecture 

without any capsule layers. We implement the 

ResNet18 model trained from scratch, serving as 

a baseline to assess the performance of 

hierarchical feature extraction alone. This 

configuration isolates the contributions of the 

ResNet backbone in recognizing Arabic 

handwritten characters, without the influence of 

capsule networks.  

 Caps-ResNet: Investigates a custom-built 

residual network constructed from scratch, 

comprising three specialized residual blocks as 

detailed in the previous section. This experiment 

aims to determine whether a purpose-built 

architecture with fewer residual blocks can 

achieve comparable or superior performance to 

ResNet18 model. 

 ResNet with Single Capsule Unit: This 

experiment investigates a custom ResNet 

architecture enhanced with a single capsule 

layer embedded at multiple levels: low, mid, and 

high. The configuration is designed to explore 

minimal yet effective integration of capsule 

networks into ResNet, with the capsule layer 

responsible for modeling spatial hierarchies at 

the respective levels of abstraction. 

 

3.3 Pipeline Overview 

 

This section presents a structured framework for 

handwritten script recognition, encompassing three 

core stages: data preprocessing, model training, and 

systematic evaluation (Figure 5). Each phase is 

designed to ensure robustness, reproducibility, and 

performance across diverse datasets. The 

subsequent subsections detail the methodology and 

rationale behind these critical components. 

 

3.3.1 Data Preprocessing 

 

Data preprocessing transforms raw, unstructured 

data into a refined format suitable for training 

machine and deep learning models. It addresses 

challenges like variability in input quality, class 

imbalance, and limited dataset diversity through 

normalization, augmentation, and balancing 

techniques. This foundational step ensures models 

generalize effectively and achieve reliable 

performance on real-world tasks.  
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Figure 5. Proposed Pipeline. 

 

a) Min-Max Normalization: Grayscale images (0–

255) are normalized to a 0–1 range to reduce intra-

class variability caused by scanning artifacts or ink 

density differences. b) Dataset Splitting: The 

dataset is divided into 80% training (model 

learning), 10% validation (hyper parameter tuning 

and overfitting prevention), and 10% testing. 

c) Data Augmentation: To improve generalization 

and robustness against real-world variations such as 

stylized, distorted, or incomplete handwriting, we 

applied a comprehensive augmentation strategy to 

the training set. This strategy encompassed 

handwriting variation simulation and appearance 

robustness techniques. For handwriting variation 

simulation, we used geometric transformations, 

including rotations of up to ±12°, zooming by 

±20%, and shearing by ±0.2 radians, along with 

elastic deformations (σ=5, α=50) to mimic natural 

handwriting distortions. To ensure appearance 

robustness, we adjusted contrast by ±30% to handle 

varying lighting conditions and injected noise, 

including Gaussian noise (σ=0.05) and salt-and-

pepper noise (density=0.03), to emulate capture 

artifacts. d) Class Balancing: Addressed imbalance 

using SMOTE (Synthetic Minority Over-sampling 

Technique) to generate synthetic minority-class 

samples. 

These steps collectively improve model robustness, 

accuracy, and fairness in recognizing diverse 

handwriting styles. 

 

3.3.2 Training Models 

 

Models training phase employs a systematic 

exploration of hyperparameters to optimize 

performance across multiple experimental setups. 

Key parameters under investigation include batch 

size (balancing memory efficiency and gradient 

stability), routing iterations (refining capsule 

feature dynamics), epochs (controlling training 

duration and convergence), and optimizer selection 

(Adam, AdaMax). These experiments aim to 

identify configurations that maximize recognition 

accuracy while minimizing computational 

overhead. Detailed descriptions of used parameters 

are summarized in the Table 4. 

 
Table 4. Summarize of hyperparameters used in training 
Hyper Parameter Value/Range 

Batch Size 32; 64;128 

Routing Iterations 3; 5 

Epochs 50; 75;100 

Optimizer Adam,AdaMax 

Weight Decay 1e-4; 1e-3 

Loss Function 
Margin Loss, 

categorical_crossentropy  

 

 

3.3.3 Baseline and Model Evaluation 
 

The model’s performance is rigorously evaluated 

on a comprising unseen data not exposed during 

training or validation. This ensures an unbiased 

assessment of its capacity to generalize to new 

handwriting styles and real-world scenarios. Key 

metrics include: 

 

 Accuracy: Measure the proportion of correct 

predictions (both true positives and true 

negatives) across all classes: 

 

Acc =
TP + TN

 TP + TN + FP + FN
  (5) 

 

 Precision: Measures the accuracy of positive 

predictions: 

 

Precision =
TP

 TP + FP 
  (6) 

 

 Recall: Measures the ability to identify all 

relevant instances: 
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Recall =
TP

 TP + FN 
  (7) 

 

 F1-score: Is the harmonic mean of Precision and 

Recall, balancing both metrics: 

 

F1 score =
2×Precision×Recall

Precision+Recall
  (8) 

 

Where: TP is the True positive, FP is the False 

positive, TN is the True negative, and FN is the 

False negative. 

 

Table 5 presents the state-of-the-art accuracy 

benchmarks achieved by classic approaches on the 

AHCD, HMBD_V1, Dhad, and OIHACDB-28 

datasets, establishing the performance standards 

against which our proposed Caps-ResNet hybrid 

architectures will be evaluated. 

 
Table 5. Baseline performances across used benchmarks 

Authors Model Dataset Accuracy  

Boufenar 

et al. [37] 

AlexNet + 

TL  
AHCD 99.98% 

Boufenar 

et al. [38] 

Custom-

designed 

CNN 

OIHACDB-

28 
97.32% 

Balaha et al. 

[39]  

DL-

Genetic 

Algorithm 

HMBD_V1 91.96% 

AlMuhaideb 

et al. [20] 
MobilNet Dhad 93.59% 

 

 

3.3.4 Computational Setup and Efficiency 

Analysis 

 

All experiments were conducted on Google Colab 

Pro leveraging the NVIDIA Tesla A100 GPU, 

which offers significant acceleration through its 

high memory bandwidth (40 GB VRAM), allowing 

efficient handling of large batches and rapid 

computation during model training. 

Table 6 summarizes the number of trainable 

parameters and average time per epoch across the 

evaluated architectures 

 
Table 6. Baseline performances across used benchmarks 

Model  
Number of 

Parameters 

Time per 

Epoch  

Custom ResNet Low-level 61,134,272 36s 

Custom ResNet Mid-level 63,094,464 46s 

Custom ResNet High-level 238,796,992 73s 

Custom ResNet Multilevel 484,622,016 96s 

ResNet18 High-level 501,927,088 95s 

ResNet18 Standalone 326,365,785 85s 

 

 

The Low-level and Mid-level Custom ResNet 

models involve relatively fewer parameters (~61–

63 million), making them computationally efficient 

while still achieving strong performance on simpler 

recognition tasks. In contrast, the High-level and 

multilevel embedding models particularly the 

Custom ResNet Multilevel (484 million 

parameters) and ResNet18 High-level (502 million 

parameters), introduce substantially greater model 

complexity. This increase corresponds with 

improved capacity to capture nuanced spatial 

hierarchies in Arabic script, enhancing both 

recognition accuracy and prediction confidence, 

though at the expense of higher computational cost. 

The Standalone ResNet18 model, with 

approximately 326 million parameters, offers a 

middle ground in terms of complexity; however, its 

elevated test loss across datasets indicates reduced 

prediction certainty and highlights the added value 

of capsule-augmented architectures in achieving 

more robust feature representation. 

 

 

4. Results and Discussions 
 

Our proposed architectures, Caps-ResNet18 and 

Caps-ResNet with multi-level embedding, were 

rigorously evaluated on four Arabic handwriting 

datasets:  

Dhad, AHCD, OIHACDB-28, and HMBD_V1. 

Table 7 provides a comprehensive comparison of 

our models' performance. 

 
Table 7. Empirical results across experimental setups. 

Model Metrics 

Dataset 

Dhad AHCD 
HMBD 

V1 

OIHACD 

28 

Custom 
 ResNet  

Low-level 

Loss 0.047 0.0565 0.1244 0.1838 

Acc 90. 77% 98.57% 90.80% 98.75% 

M-F1 90.14% 98.57% 90.77% 98.74% 

W-F1 90.73% 98.57% 90.83% 98.74% 

Custom  

ResNet  
Mid-level 

Loss 0.0732 0.0557 0.0945 0.0505 

Acc 93.90% 98.48% 91.39% 99.64% 

M-F1 93.30% 98.48% 91.34% 99.64% 

W-F1 93.88% 98.48% 91.40% 99.64% 

Custom 

 ResNet  

High-level 

Loss 0.0497 0.0167 0.078 0.0152 

Acc 93.67% 98.15% 89.96% 98.57% 

M-F1 93.00% 98.15% 89.95% 98.56% 

W-F1 94.00% 98.15% 89.99% 98.56% 

Custom 
 ResNet 

 Multi-level 

Loss 0.0549 0.0364 0.0843 0.013 

Acc 93.24% 98.42% 89.98% 98.93% 

M-F1 92.61% 98.42% 89.95% 98.93% 

W-F1 93.22% 98.42% 90.01% 98.93% 

ResNet18 

 High-level 

Loss 0.0467 0.0169 0.2048 0.0285 

Acc 94.14% 98.12% 88.91% 99.46% 

M-F1 93.50% 98.00% 88.61% 99.46% 

W-F1 94.10% 98.00% 88.69% 99.46% 

Standalone 

ResNet18 

Loss 0.283 0.137 0.294 0.298 

Acc 93.24% 97.11% 87.60% 99.64% 

M-F1 92.60% 97.12% 87.17% 99.64% 

W-F1 93.26% 97.11% 87.26% 99.64% 
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4.1 Capsule Embedding Effect on Custom 

ResNet models 

 

Capsule units, integrated into the Custom ResNet 

models, enhance feature representation by 

capturing spatial hierarchies and part-whole 

relationships through vector-based embeddings, 

unlike traditional convolutional layers that rely on 

scalar activations. This dynamic routing mechanism 

allows capsules to model complex patterns, 

improving robustness to variations in data. Capsule 

embeddings are applied at different feature 

extraction levels (Low-level, Mid-level, High-level) 

and combined in the hybrid Caps-ResNet 

(Multilevel), enabling a nuanced analysis of their 

impact. 

 

4.1.1 Low-level Capsule Embedding 
 

The Custom ResNet Low-level model, which 

injects capsule embeddings in the earliest 

convolutional layers to capture fine-grained spatial 

cues (e.g., diacritics, dots), delivers competitive—

but dataset-dependent—performance. On Dhad it 

attains a Test Accuracy of 90.8 % with a Test Loss 

of 0.0470, indicating strong detail extraction yet 

limited robustness for complex character shapes. 

For OIHACDB, accuracy rises to 98.8 % but the 

higher Test Loss of 0.1838 signals less efficient 

optimisation. On the more structured AHCD 

dataset, the model achieves 98.6 % accuracy with a 

moderate loss of 0.0565, whereas on HMBD-V1, 

accuracy drops to 90.8 % and loss rises to 0.1244, 

underscoring that fine-grained features alone cannot 

fully capture the contextual variability of this set. 

Overall, low-level capsule embeddings excel at 

preserving local patterns but exhibit limited 

generalisation when higher-level semantics 

dominate. 

 

4.1.2 Mid-level Capsule Embedding 
 

The Custom ResNet Mid-level model, applying 

Capsule embeddings at intermediate layers to 

capture abstract features (e.g., Hamza above), 

demonstrates strong and consistent performance by 

balancing fine detail and abstraction. On Dhad, it 

achieves a Test Accuracy of 93.9 % with a Test 

Loss of 0.0732, showing improved classification 

due to enhanced feature hierarchies. On 

OIHACDB-28, it attains an outstanding Test 

Accuracy of 99.64 % and a low-Test Loss of 

0.0505, reflecting excellent generalization and 

optimization. On AHCD, the model reaches 98.48 

% accuracy with a Test Loss of 0.0557, and on 

HMBD-V1, it records 91.39 % accuracy with a 

Test Loss of 0.0945, outperforming other variants. 

These results highlight the effectiveness of mid-

level Capsule embeddings in capturing intermediate 

semantic features, making this architecture 

particularly robust across d 

atasets with varied structural complexity. 

 

4.1.3 High-Level Embedding 
 

 The Custom ResNet High-level model, 

incorporating Capsule embeddings at deeper layers 

to capture semantic features (e.g., base forms of 

Arabic letters), demonstrates strong performance on 

datasets with clear class boundaries. On Dhad, it 

achieves a Test Accuracy of 93.67 % and a Test 

Loss of 0.0497, showing effective semantic-level 

abstraction for character classification. It performs 

exceptionally well on OIHACDB-28 and AHCD, 

reaching 98.57 % and 98.15 % accuracy, 

respectively, with very low-test losses (0.0152 and 

0.0167), indicating efficient optimization and 

robustness for structured datasets. However, 

performance drops on HMBD-V1, with a Test 

Accuracy of 89.96 % and a Test Loss of 0.0780, 

suggesting that semantic features alone are 

insufficient for datasets requiring fine-grained or 

multi-scale discrimination. These findings highlight 

the strength of high-level Capsule embeddings in 

capturing semantic relationships, while also 

pointing to their limitations in scenarios that 

demand more localized or hierarchical feature 

modeling. 

 

4.1.4 Multilevel Embedding 
 

The Custom ResNet Multilevel model, or hybrid 

Caps-ResNet, integrates Capsule embeddings 

across low-, mid-, and high-level layers, yielding 

consistent and robust performance across all 

datasets. On Dhad, it achieves a Test Accuracy of 

93.24 % with a Test Loss of 0.0549, demonstrating 

balanced feature extraction and effective 

optimization for Arabic character recognition. On 

OIHACDB-28, the model excels with 98.93 % 

accuracy and the lowest Test Loss of 0.0130 across 

all configurations, highlighting its superior 

generalization and optimization for structured data. 

For AHCD, it achieves 98.42 % accuracy with a 

Test Loss of 0.0364, maintaining strong 

performance on clean, well-structured input. On 

HMBD-V1, it records a Test Accuracy of 89.98 % 

and a Test Loss of 0.0843, showing resilience to 

complex or ambiguous patterns, though slightly 

trailing the Mid-level variant in accuracy. The key 

strength of this hybrid Caps-ResNet lies in its 

ability to combine fine-grained, abstract, and 

semantic features through multi-scale Capsule 
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integration, enabling improved robustness and 

generalization across datasets of varying 

complexity. Figure 6 and Figure 7 illustrates the 

comparative test loss and accuracy achieved by 

each of the proposed Custom ResNet architectures 

 

 
 

Figure 6. Comparative Test Loss (Custom CapsNet). 

 

 
 

Figure 7. Comparative Test Accuracy (Custom 

CapsNet). 

 

4.2 Capsule Embedding Effect on ResNet18 

models 

 

The experiments evaluate the impact of Capsule 

units in the ResNet18 High-level model, which 

applies Capsules at deeper layers to capture 

semantic features, compared to the ResNet18 

Standalone model using standard convolutions, 

across evaluated datasets 

. 

4.2.1 ResNet18 High-level Capsule Embedding 

 

The ResNet18 High-level model, incorporating 

Capsule embeddings at deeper layers to capture 

semantic features, demonstrates strong performance 

across datasets with distinct class boundaries. On 

Dhad, it achieves a Test Accuracy of 94.14 % and a 

Test Loss of 0.0467, reflecting effective semantic-

level abstraction for Arabic character recognition. 

On OIHACDB-28, it reaches 99.46 % accuracy 

with a low-Test Loss of 0.0285, confirming 

efficient optimization and strong performance for 

structured scripts. For AHCD, the model yields 

98.12 % accuracy with a Test Loss of 0.0169, 

showcasing its reliability on well-structured 

datasets. However, on HMBD_V1, it records a 

lower accuracy of 88.91 % and a significantly 

higher Test Loss of 0.2048,  

indicating limitations in handling complex, variable 

patterns where semantic features alone are 

insufficient. These results underline the model’s 

strength in capturing high-level relationships but 

also reveal that deeper semantic embeddings, 

in isolation, may not generalize as well as multi-

scale Capsule-based approaches.  

 

4.2.2 ResNet18 Standalone 
 

The ResNet18 Standalone model, based on the 

standard ResNet18 architecture without Capsule 

embeddings, demonstrates consistent but generally 

lower performance compared to Capsule-integrated 

variants across most datasets. On Dhad, it achieves 

a Test Accuracy of 93.24 % with a notably high-

Test Loss of 0.283, suggesting less precise 

classification despite reasonable accuracy. For 

OIHACDB-28, it ties for the highest accuracy at 

99.64 %, but with a significantly elevated Test Loss 

of 0.298, pointing to  

suboptimal generalization. On AHCD, the model 

reaches 97.11 % accuracy and a Test Loss of 0.137, 

reflecting moderate performance for structured 

inputs. On HMBD_V1, it records the lowest 

performance among models, with a Test Accuracy 

of 87.60 % and a high-Test Loss of 0.294, 

indicating substantial challenges in handling 

variability and complexity. These outcomes 

highlight that while the ResNet18 Standalone 

model performs adequately on datasets with clear 

feature hierarchies, its high-test losses and reduced 

robustness on complex data emphasize the value of 

Capsule embeddings in enhancing feature 

representation and model generalization. 

 

 
Figure 8. Comparative Test Loss (Caps-ResNet18) 
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Figure 8 and 9 presents the test loss and accuracy of 

the Caps-ResNet18 across the evaluated datasets. 

 

 
Figure 9. Comparative Test Accuracy (Caps-ResNet18) 

 

 

4.3 Performance Comparison of Models Across 

Datasets with Baseline 

 

This section presents a comparative analysis of the 

proposed models against baseline methods across 

multiple evaluated datasets, focusing on key 

performance metrics such as test loss and test 

accuracy to highlight improvements and robustness. 

Table 8 summarizes the key comparisons. 

 
Table 8. Comparative performance analysis of our 

proposed models against established baselines. 

Dataset Model Accuracy 
Test 

Loss 

Macro 

F1  

Weighted 

F1 

Dhad 

Baseline 93.59% 0.2468 94.00% 94.00% 

ResNet18 High-

level 
94.14% 0.0467 93.50% 94.10% 

Custom ResNet 

Mid-level 
93.90% 0.0732 93.30% 93.88% 

AHCD 

Baseline 99.98% - - - 

ResNet18 High-

level 
98.12% 0.0169 98.00% 98.00% 

Custom ResNet 

Low-level 
98.57% 0.0565 98.57% 98.57% 

HMBD 

V1 

Baseline 91.96% 0.23 - - 

ResNet18 High-

level 
88.91% 0.2048 98.48% 98.48% 

Custom ResNet 

Mid-level 
91.39% 0.0945 91.34% 91.40% 

OIHAC

DB-28 

Baseline 97.32% - - - 

ResNet18 

Standalone 
99.64% 0.298 99.64% 99.64% 

Custom ResNet 

Mid-level 
99.64% 0.0505 99.64% 99.64% 

 

4.3.1 Dhad Dataset 

 

On the Dhad dataset, the baseline model achieved a 

Test Accuracy of 93.59% with an estimated Test 

Loss of 0.2468. Capsule-integrated models, 

particularly those using mid- and high-level 

embeddings, outperformed the baseline in both 

accuracy and optimization. The ResNet18 High-

level model led with the highest accuracy (94.14%) 

and the lowest loss (0.0467), indicating strong 

robustness to character complexity. The Custom 

ResNet Mid-level model followed closely (93.90%, 

loss: 0.0732), while the Custom High-level variant 

also performed well (93.67%, loss: 0.0497). The 

Custom Multilevel and ResNet18 Standalone 

models matched in accuracy (93.24%), but the 

former achieved better optimization (loss: 0.0549) 

than the latter (0.2830). The Custom Low-level 

model recorded the lowest accuracy (90.77%) 

despite a low loss (0.0470), suggesting limited 

generalization from fine-grained features alone. 

These results highlight that Capsule integration at 

deeper or mid-levels significantly enhances 

performance on challenging datasets like Dhad. 

 

4.3.2 AHCD Dataset 

 

On the AHCD dataset, the baseline model achieved 

a near-perfect Test Accuracy of 99.98%, 

outperforming all other models in accuracy. Despite 

this, several Capsule-integrated models 

demonstrated competitive performance and 

significantly lower Test Losses, indicating better 

optimization. The Custom ResNet High-level and 

ResNet18 High-level models achieved accuracies 

of 98.15% and 98.12% with the lowest losses of 

0.0167 and 0.0169, respectively, suggesting 

effective semantic abstraction. The Custom 

Multilevel model offered the best balance between 

accuracy (98.42%) and Test Loss (0.0364), while 

the Low-level and Mid-level models maintained 

solid accuracy (~98.5%) with moderate losses 

(~0.056). The ResNet18 Standalone model lagged 

with the lowest accuracy (97.11%) and highest loss 

(0.1370). These findings indicate that while the 

baseline excels on AHCD’s structured data, 

Capsule-based architectures optimize better, 

offering enhanced generalization and robustness. 

 

4.3.3 HMBD_V1 Dataset 

 

On the HMBD_V1 dataset with 115 classes, all 

Capsule-based and ResNet18 models 

underperformed the baseline accuracy of 91.96%. 

Among them, the Custom ResNet Mid-level model 

performed best, with a Test Accuracy of 91.39% 

and a moderate Test Loss of 0.0945, indicating 

reasonable robustness to complex patterns. Models 

with high-level or multilevel Capsule embeddings 

showed slightly lower accuracies (~89.9%) but had 

better optimization (lower losses). The ResNet18 

Standalone model had the lowest accuracy 

(87.60%) and highest loss (0.2940), reflecting poor 

generalization. Overall, while none of the models 

surpassed the baseline, the Mid-level Capsule 

model stood out as the most balanced in handling 

HMBD_V1’s fine-grained discrimination 

challenges. 
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4.3.4 OIHACDB-28 Dataset 

 

On the OIHACDB-28 dataset, all models 

outperformed the baseline accuracy of 97.32%, 

underscoring the effectiveness of Capsule-enhanced 

architectures. The Custom ResNet Mid-level and 

ResNet18 Standalone models tied for the highest 

accuracy (99.64%), though the Standalone model 

exhibited a much higher loss (0.2980) compared to 

the Mid-level’s more optimized performance 

(0.0505). The Custom ResNet Multilevel model 

achieved the lowest Test Loss (0.0130) with a 

strong accuracy of 98.93%, reflecting excellent 

generalization. Similarly, the Custom ResNet High-

level model recorded a low loss (0.0152) with 

98.57% accuracy. The ResNet18 High-level model 

reached 99.46% with a loss of 0.0285, while the 

Custom Low-level model performed well (98.75%, 

loss: 0.1838). These results highlight that Capsule 

integration, particularly at multilevel and high-level 

layers, enables precise and efficient classification 

on structured datasets like OIHACDB-28. 

Figures 10 and 11 present performance 

comparisons between the two proposed models 

(Caps-ResNet18 and Custom CapsNet) and the 

baseline, highlighting the best achieved results. 

 

 
Figure 10. Test Loss Comparison with Baseline. 

 

 
Figure 11. Test Accuracy Comparison with Baseline 

 

5. Conclusions 

 
This study introduced novel Custom ResNet 

architectures augmented with capsule embeddings 

at distinct hierarchical levels—low, mid, high, and 

multilevel—to improve the recognition of Arabic 

handwritten characters. Evaluations were conducted 

across four benchmark datasets: AHCD, 

IOHACDB-28, Dhad, and HMBD_V1, each 

representing varying structural complexities and 

character morphologies.  

The performance variation across embedding 

strategies reflects how different feature abstraction 

levels influence recognition capability. Low-level 

embeddings excel at capturing fine-grained spatial 

features like diacritics and localized strokes, which 

benefited cleaner, isolated-character datasets such 

as AHCD. However, they proved less effective for 

complex or context-rich datasets like Dhad and 

HMBD_V1, where broader structural and semantic 

cues are essential. Mid-level embeddings 

demonstrated consistent robustnessby balancing 

local and abstract features, achieving 

topperformance on moderate-complexity datasets 

like OIHACDB-28. The High-level embedding 

variant performed strongly on datasets with clear 

semantic boundaries but underperformed where 

fine morphological distinctions were critical. 

The Multilevel Caps-ResNet, combining all three 

embedding levels, emerged as the most balanced 

architecture, achieving stable and strong results 

across all datasets. It delivered the best test loss on 

OIHACDB-28 (0.0130) and robust accuracy on 

challenging datasets like HMBD_V1 (89.98%), 

indicating its capacity to generalize across various 

handwriting styles and complexities. 

In summary, the integration of capsule embeddings 

at strategic abstraction layers significantly enhances 

the spatial hierarchy modeling of ResNet 

architectures. These findings confirm that such 

hybrid models not only boost classification 

accuracy but also improve prediction certainty and 

feature robustness. Consequently, these 

advancements bring Arabic handwriting 

recognition closer to reliable deployment in real-

world applications involving diverse and 

challenging handwritten input. 
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