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Abstract:  
 

Water scarcity in Iraq underscores the urgent need for accurate water footprint (WF) 

prediction to support sustainable agricultural practices. This study presents an enhanced 

logistic regression (LR) model for WF forecasting by incorporating Recursive Feature 

Elimination (RFE), Synthetic Minority Oversampling Technique (SMOTE), and data 

normalization. RFE was employed to identify the most influential predictors, while 

SMOTE effectively addressed class imbalance within the dataset. Standard scaling was 

applied to stabilize model performance across varying data magnitudes. The model was 

evaluated using time-series cross-validation to ensure robustness and prevent data 

leakage, achieving a high predictive accuracy of 98.22%. The proposed framework 

offers a reliable tool for forecasting WF trends in Iraq over the period 2025–2030, 

contributing to evidence-based water resource management in arid agricultural regions. 

 

1. Introduction 
 

Al-Badri et al. 2023 They point to the escalation of 

water shortages in Iraq as a result of local demand 

and conflicts over shared rivers, especially in 

agriculture, which is considered the most water-

consuming area, consuming more than 80% of 

freshwater resources, and therefore considered an 

important matter for achieving sustainability and 

food security [1]. Ewaid et al. 2019 They explain 

that due to the lack of rainfall, increased 

evaporation, high temperatures and inefficient 

irrigation systems, Iraq is facing increasing 

weakness in agriculture, and this affects the 

availability of water and crop production. They 

stress in the governorates of Iraq the necessity of 

measuring the water footprint [2]. 

De Mauro et al. 2022 explains that governments 

and businesses can make smarter decisions using a 

powerful tool, machine learning, by analyzing 

complex, big data sets. In agriculture, for example, 

it is used to monitor crop behavior, water usage, 

and future demand [3]. Isak-Zatega et al. 2020 

shows that one of the most widely used algorithms 

is logistic regression for binary classification 

problems such as predicting whether crops are 

locally grown or imported. God makes it suitable 

for decision-making processes [4]. Katharria et al. 

2025 focuses on the use of machine learning 

technology around smart agriculture in irrigation 

planning, crop monitoring, yield prediction, and 

disease detection, indicating an important role for 

precision analytics and data integration in 

agricultural innovation [5].Park and Kim 2020 

explain that by selecting only the most important 

features, classification results are improved by 

using Recursive Feature Elimination (RFE). This 

makes the model more focused and simpler, which 

helps it generalize better to new data [6]. 

Hemmatian et al. 2025 proposed an improved 

version that helps balance a dataset by generating 

new samples for underrepresented classes, which is 

(SMOTE) [7]. Bhagat and Bakariya (2025) express 

to maintain the data's temporal order, the time-

series cross-validation methods are used to make 

them suitable for evaluating models on future data 

that is unseen [8]. 

 

2. Related Works 
 

In 2025, Emeç et al. established a global model 

using an ensemble machine learning approach with 
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AdaBoost to predict the water footprint of wheat, 

resulting in a total water footprint prediction 

accuracy of 97.35% and an R² of 69% [9]. 

In 2025, Mortazavizadeh et al. reviewed machine 

learning applications in agricultural water 

management, point out that models like ANN, 

Random Forest, and SVM noticeably improved 

estimation of water footprint and prediction of 

evapotranspiration, in some studies the Random 

Forest achieving up to 99% accuracy [10]. 

In 2024, Abdel-Hameed et al. The proposed system 

uses machine learning models like SVR, XGBoost, 

random forest and ANN to estimate the blue water 

footprint of potato crops, where ANN and XGBoost 

resulted in the highest accuracy of R² > 0.95 [11]. 

In 2024, Mabasha et al. designed a smart irrigation 

system using Decision Tree and SVM models, with 

SVM achieved an accuracy of 98.94%, which 

performed better than DT with an accuracy of 

94.5% [12]. 

In 2024, Al-Taher et al. employed machine learning 

to predict the water footprint of sugarcane in Sudan 

using SVR, random forest, XGBoost and Hybris. 

The SVR model achieved the best R² = 0.98, and 

the prediction errors reduced hybrid models [13]. 

In 2023, Mahore and Gadge established a machine-

learning model by using random forest, Naive 

Bayes and SVM for predicting crops, where 

random forest achieved the highest accuracy [14]. 

In 2022, Hina and Hasan presented a machine 

learning system using a Decision Tree algorithm for 

predicting crop yields across India, which achieved 

an accuracy of 95% [15]. 

In 2020, Patil et al. suggested a machine learning 

model using Decision Trees KNN and Linear 

Regression algorithms where for cotton, it achieved 

99% with Linear Regression and for sugarcane, it 

achieved 98% [16]. 

In 2022, Sadri et al.developed a FarmCan model 

using random forest algorithm and remote sensing 

which is used to forecast the lack crop water. For 

needed irrigation achieved average R2 of 68% and 

for evapotranspiration prediction achieved KGE 

values of up to 0.71 across Canadian farms [17]. 

 

 

3. Problem Statement 
 

Accurate forecasting of the agricultural water 

footprint is crucial for sustainable resource 

management, especially in water-stressed regions 

such as Iraq. This study proposes an optimized 

logistic regression model enhanced through 

a hybrid data preprocessing pipeline comprising 

the Synthetic Minority Oversampling Technique 

(SMOTE), Recursive Feature Elimination (RFE), 

and normalization. The dataset, derived 

from agricultural inputs and regional climatic 

parameters, exhibited significant class imbalance 

and multicollinearity challenges. The proposed 

approach addressed these issues by improving data 

dimensionality and quality before model 

training. The study demonstrated superior 

predictive performance in accuracy, precision, and 

recall compared to classical logistic regression. The 

results highlight the potential of integrated 

preprocessing techniques to enhance traditional 

machine learning algorithms for decision-making 

and environmental modeling in arid agricultural 

systems. 

Mathematical Formulation:  

Let X∈Rn×dX \in \mathb{R}^{n \times d}X∈Rn×d 

represent the input matrix, where n is the number of 

samples and d is the number of features. The target 

vector y∈{0,1}ny \in \{0,1\}^ny∈{0,1}n denotes 

whether the water footprint is low (0) or high (1). 

The objective is to train a logistic regression model 

f(X) that minimizes the classification loss. 

However, orignal models struggled with 

performance because of irrelevant features, data 

leakage and class imbalance.  

To address these challenges:  

 Recursive Feature Elimination (RFE) selects 

the optimal features: X′=RFE(X)  

 SMOTE balances the class distribution: 

(X′′,y′′)=SMOTE(X′,y)  

 Standard Scaling normalizes the data: 

X′′′=StandardScaler(X′′). 

Finally, time-series cross-validation is used to avoid 

data leakage to guarantee robust predictions.  

 

The model aims to optimize the logistic regression 

function f to maximize accuracy, recall, and 

precision. 

4. Methodology 
 

4.1 Model Limitations 

These results point out a main issue. While the 

model presented a rather good recall (indicating its 

capacity to correctly identify most positive 

instances), the precision was low. This shows that 

the model made a large number of false positive 

predictions. The cases are actually negative, but the 

model classifies them as positive (high water 

footprint). The low precision weakens the reliability 

of the model, especially when it's vital to minimize 
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false positives in applications, like in the 

management of water resources.  

Also, because of the use of random splits, the 

model performance was negatively affected in the 

training data, leading to a large variance in the 

results and data leakage. Randomly splitting data 

for testing and training without maintaining time 

series results in inconsistent evaluation of the 

model, keeping the model from effectively 

generalizing. These challenges point to the need for 

a more reliable and robust method for evaluating 

the model and also the need for enhanced 

techniques for selection and feature scaling. 

Dealing with issues of irrelevant features, data 

leakage and class imbalance to enhance the 

performance of the model and guarantee it can be 

used in scenarios like real-world agricultural water 

management. 

4.2 Method of Solution 

To improve the stability and performance of the 

logistic regression model, multiple improvements 

were performed. Firstly, to enhance feature 

selection, the Recursive Feature Elimination (RFE) 

was applied, making sure that the most relevant 

variables only were included in the model. Then 

StandardScaler was performed to normalize the 

data for feature scaling, dealing with potential 

differences in the magnitude of features. The 

Synthetic Minority Oversampling Technique 

(SMOTE) was applied to handle class imbalance, 

which creates synthetic instances for a class that is 

not well-represented, thus improving model 

learning. Also, to ensure the dataset balance, the 

resampling and retraining were performed, which is 

important for model convergence. To establish 

clear decision boundaries, the model's probability 

threshold was optimized and maintained at 0.5. An 

important change was switching from 30 random 

iterations to 10-fold time-series cross-validation, 

which prevented data leakage, improved the 

robustness of the model and preserved the time 

series of the data. Finally, for future predictions, 

consistent preprocessing was applied to guarantee 

that the model remains reliable. Two sources were 

used to assemble the dataset used for training and 

evaluation, which included environmental and 

crop-specific water usage attributes [18][19]. This 

enriched feature space contributed to improved 

model accuracy, enabling more reliable predictions 

for water footprint management in agriculture. 

4.3 Model Evaluation Visuals 

To support the evaluation of changes made to the 

logistic regression model, the following tables and 

charts were generated for analysis. 

1. Initial Logistic Regression (30 Iterations) 

Table 1 indicates important changes in model 

performance through the iterations. Iteration 1 

showed only an accuracy of 0.7423, a recall of 

0.7857 and a precision of 0.5000. The best was 

shown in iteration 5 with an accuracy of 0.9939, 

recall of 1.0000, and precision of 0.9778. Iterations 

11 and 24 also performed strongly, with high 

precision and accuracy. Where iteration 27 shows 

the poorest results, with the lowest precision of 

0.4878 and accuracy of 0.7055, iterations 4 and 6 

showed high recall but low precision. To enhance 

the performance, multiple improvements were 

applied.Figure 1 is a line chart showing accuracy, 

recall, and precision across 30 iterations of the 

initial logistic regression model. Recalls stay high, 

while accuracy shows moderate variances. 

Precision varies significantly, with several sharp 

drops. 

2. Improved Logistic Regression (30 Iterations) 

Table 2 shows that all 30 iterations of the enhanced 

logistic regression model performed strongly. 

Perfect scores were achieved by iterations such as 

5, 8, 15, and 30 (1.0000 of accuracy, recall, and 

precision). Even though iterations like 6, 10, and 13 

showed the minimum performance, it still 

maintained high metrics with precision above 0.97 

and accuracy above 0.98. It shows the model 

improvement after implementing SMOTE, RFE 

and normalization techniques. 

3. Logistic Regression with Time-Series Cross-

Validation 

Table 3 shows that Folds 1 and 2 resulted in the 

lowest recall values, 0.8750 and 0.8846, but 

precision remained at 1.0000. where most folds 

show high accuracy above 0.97 and perfect 

precision. Which confirms the strong robustness of 

the model when evaluated in a timely manner. 

4.4 Results 

After Improvements (30-Iterations): 

After applying these improvements, the model's 

performance improved significantly, resulting in an 

average accuracy of 0.9927, precision of 0.9920 

and recall of 0.9934 throughout 30 randomised 

iterations, as shown in Figure 2.As shown in 

Figures 3 and 4, the performance of the improved 

logistic regression model after applying RFE, 

SMOTE, and scaling. In Figure 3, the line chart 

shows that accuracy, recall, and precision remain 
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consistently high across the 30 iterations, with 

minimal variances. Figure 4, the box plot, further 

confirms this stability and high medians for all 

metrics, indicating strong, reliable model 

performance with very few outliers. 

Time-Series CV (10-Fold): 

Then switch to 10-fold time-series cross-validation 

for realistic evaluation that shows robustness, 

which resulted in averages of 0.9822 accuracy, 

0.9823 precision and 0.9536 recall. From the 

showing results, the model became more suited for 

agriculture applications like predicting crop water 

footprints, as shown in Figure 5.Figures 6 and 7 

show the performance of logistic regression with 

time-series cross-validation. In Figure 6, the line 

chart shows high accuracy and precision across the 

10 folds, while recall fluctuates more, especially in 

early and final folds. In Figure 7, the box plot 

supports this observation, with high medians and 

narrow spreads indicating stable performance and a 

wider range and lower median indicating variability 

in detecting true positives. 

4.5 Comparison Performance and metrices 

Table 4 compares the performance metrics of the 

improved logistic regression with decision tree [12] 

and random forest [11] classifiers using both 10-

fold time-series cross-validation and 30-iterations. 

The proposed model surpasses both in all metrics, 

as seen in Table 4. It achieved the highest accuracy 

(0.9927), recall (0.9934), and precision (0.9920) in 

30-iterations, and maintained better time-series CV 

with accuracy (0.9822), recall (0.9536), and 

precision (0.9823). These results show the proposed 

improvements, such as SMOTE, RFE, resampling 

and normalisation, effectively improve model 

predictive performance and robustness.

 

 

Table 1. Performance metrics per iteration 

Iterations Accuracy Recall Precision 

1 0.7423 0.7857 0.5000 

2 0.7607 0.8214 0.6133 

3 0.8528 0.9556 0.6615 

4 0.7669 0.9762 0.5256 

5 0.9939 1.0000 0.9778 

6 0.8221 1.0000 0.5915 

7 0.9264 0.8431 0.9149 

8 0.8098 0.9592 0.6184 

9 0.8221 0.9348 0.6232 

10 0.8221 0.9649 0.6707 

11 0.9755 0.9231 0.9730 

12 0.9080 0.9130 0.7925 

13 0.9080 0.9423 0.8033 

14 0.7607 0.9333 0.5385 

15 0.7669 0.8491 0.6000 

16 0.7975 0.9400 0.6104 

17 0.7669 0.8824 0.5844 

18 0.9448 0.7805   1.0000 

19 0.8712 0.8400 0.7636 

20 0.9509 0.8542 0.9762 

21 0.7975 0.9388 0.6053 

22 0.8834 0.9636  0.7571 

23 0.7669 0.9524 0.5263 

24 0.9632 0.8846 1.0000 

25 0.8589 0.7609 0.7447 

26 0.7423 0.9608 0.5506 

27 0.7055 0.8696 0.4878 

28 0.7791 0.7755 0.6032 

29 0.8650 0.9615 0.7143 

30 0.8650 0.8947 0.6538 

AVG 0.8429 0.8892 0.7161 
 



Huda Mowafek Kadhim, Ali Hasan Taresh / IJCESEN 11-3(2025)5799-5807 

 

5803 

 

 

Figure 1. Line chart: Accuracy, Recall, Precision over 30 iterations 

 

Table 2. Metrics with RFE, SMOTE, and scaling 

Iterations Accuracy Recall Precision 

1   0.9914 0.9919 0.9919 

2 0.9957 0.9910 1.0000 

3 0.9914 0.9832 1.0000 

4 0.9914 0.9832 1.0000 

5 1.0000 1.0000 1.0000 

6 0.9871 0.9831 0.9915 

7 0.9914 0.9912 0.9912 

8 1.0000 1.0000 1.0000 

9 0.9871 0.9910 0.9821 

10 0.9828 0.9917 0.9754 

11 0.9871 1.0000 0.9754 

12 0.9914 0.9915 0.9915 

13 0.9871 0.9836 0.9917 

14 0.9957 1.0000 0.9915 

15 1.0000 1.0000 1.0000 

16 0.9914 0.9916 0.9916 

17 0.9828 0.9823 0.9823 

18 0.9914 0.9909 0.9909 

19 0.9914 0.9909 0.9909 

20 0.9957 1.0000 0.9918 

21 0.9957 1.0000 0.9921 

22 0.9957 0.9915 1.0000 

23 0.9914 0.9823 1.0000 

24 0.9957 1.0000 0.9910 

25 0.9957 1.0000 0.9918 

26 0.9957 1.0000 0.9912 

27 0.9914 0.9911 0.9911 

28 0.9957 0.9914 1.0000 

29 0.9957 1.0000 0.9905 

30 0.9957 1.0000 0.9921 

 

Table 3. Fold-wise performance metrics 

Folds Accuracy Recall    Precision 

1 0.9589      0.8750      1.0000 

2 0.9589      0.8846  1.0000   

3 1.0000      1.0000       1.0000      

4 0.9863      0.9615      1.0000     
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5 0.9863      1.0000       0.9412     

6 0.9863      1.0000       0.9444     

7 0.9863          0.9444       1.0000     

8 0.9726       0.9375     0.9375     

9 1.0000     1.0000     1.0000     

10 0.9863      0.9333      1.0000  

 

 

Figure 2. Metrics and Classification Report after 30-Iterations. 

 

 

Figure 3. Line chart: Improved iteration performance 

 

 

Figure 4. Box plot: Improved metric distribution 

 

Figure 5. Metrics and Classification Report after 10-Fold. 
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Figure 6. Line chart across the 10 CV folds 

 

Figure 7. Box plot: CV metric distribution 

 

Table 4. Comparison Performance 
Method How It Works Issues Advantages 

30 Iterations Randomly splits data 30 

times (ignores time) 

Risk of data leakage; 

overestimates 

performance 

Fast, simple 

Time-Series CV Trains on past, tests on 

future (time-aware) 

Requires time-sorted 

data 

Realistic, prevents data 

leakage 
 

         Algorithm 

 

Metrices 

Decision tree 

classifier [12] 

Random forest 

classifier [11] 

improved logistic 

regression 

(Proposed) 

 

30-Iterations 

Avg Accuracy 0.9855 0.9898 0.9927 

Avg Recall 0.9875 0.9908 0.9934 

Avg Precision 0.9837 0.9890 0.9920 

Time-Series CV Avg Accuracy 0.9575 0.9740 0.9822 

Avg Recall 0.9189 0.9385 0.9536 

Avg Precision 0.9390 0.9740 0.9823 

 

4. Conclusions 

 
For the prediction of water footprint in Iraq's 

agricultural sector, this study developed and 

enhanced a logistic regression model by integrating 

four key machine learning techniques: Recursive 

Feature Elimination (RFE) for feature selection, 

standardization for data normalization, SMOTE for 

addressing class imbalance, and resampling for 

improving data distribution. The optimized model 
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achieved an impressive accuracy of 98.22% 

through time-series cross-validation, with high 

recall (0.9536) and precision (0.9823). These 

results provided more reliable and realistic 

performance metrics, closely reflecting real-world 

scenarios. The model's exceptional precision makes 

it particularly valuable for water resource 

management, where the accurate identification of 

crops with high water footprints is critical for 

informed decision-making and sustainable 

agricultural practices. Future work could be aimed 

at enhancing prediction accuracy by adding more 

features and employing advanced ensemble 

methods. Building a model in real-world settings 

and using explainable AI would be helpful 
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