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Abstract:  
 

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, marked by 

high recurrence rates and poor prognosis. The methylation status of the O-6-

methylguanine-DNA methyltransferase (MGMT) gene promoter plays a critical role in 

determining treatment response and patient survival. This work provides non-invasive 

machine learning (ML) solution for prediction of MGMT methylation status using 

features of magnetic resonance imaging (MRI) scans, aiming to support personalized 

therapeutic strategies. The method involves a three-step pipeline: First, extraction of 

image features from multi-modal MR. Second, Selection of the most important common 

features using light gradient boosting machine (LightGBM) algorithm and categorical 

gradient boosting (CatBoost). then, a voting ensemble of multiple ML models is trained 

on the selected features to classify MGMT methylation. The model was developed using 

Brain Tumor Segmentation (BraTS) 2021 dataset, which includes both segmentation 

masks and MGMT annotations. Its performance was evaluated using accuracy, precision, 

sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve 

(AUC). The model achieved an accuracy of 92.86% and AUC of 96.84%, demonstrating 

strong alignment with clinical outcomes and surpassing conventional methods. These 

findings highlight the effectiveness of features extraction from multi-modal MRI 

analysis, and ML-based classification for biomarker prediction. The approach offers a 

promising step forward in precision medicine for GBM, enabling more accurate and 

individualized treatment planning. 

 

1. Introduction 
 

GBM, classified as a grade IV astrocytoma by the 

World Health Organization [1], constitutes the most 

aggressive and predominant primary malignant 

brain tumor in adults, exhibits significant molecular 

heterogeneity, with MGMT promoter methylation 

status emerging as a pivotal biomarker for 

prognostic assessment and therapeutic response 

prediction [2]. MGMT methylation is associated 

with improved response to temozolomide 

chemotherapy, guiding personalized therapeutic 

strategies [3]. However, determining MGMT status 

traditionally requires invasive biopsy or surgical 

resection, posing risks to patients and delaying 

treatment decisions. Non-invasive prediction of 

MGMT status using MRI has emerged as a 

promising alternative, leveraging multi-sequence 

MRI scans (T1-weighted (T1W), T2-weighted 

(T2W), contrast-enhanced T1 (T1CE), and fluid-

attenuated inversion recovery (FLAIR)) to capture 

tumor characteristics. Recent advances in machine 

learning have facilitated the development of robust 

models for medical image analysis, particularly in 

tumor segmentation and classification. The 

extraction of radiomics features is one of the best 

robust solutions in medical image analysis, by 

minimizing the size of complex imaging data, 

efficacity of data representation and analysis, and 

robustness to the noise effects. ML approaches have 

shown remarkable success in isolating tumor regions 
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and extracting relevant features from complex 

imaging data [4].  

In this study, we present a novel ML-based 

framework for non-invasive prediction of MGMT 

methylation status using features extracted from 

multi-modal MRI scans from the Brain Tumor 

Segmentation 2021 dataset [5]. This dataset provides 

both annotated tumor segmentation masks and 

MGMT methylation labels, allowing for targeted 

analysis of tumor-specific regions. Our pipeline 

integrates radiomic feature extraction, feature 

selection via LightGBM and CatBoost algorithms, 

and final classification using an ensemble of 4 ML 

models—XGBoost, CatBoost, LightGBM, and 

RandomForest—combined through a voting 

mechanism. This comprehensive approach aims to 

enhance prediction accuracy and clinical relevance, 

offering a scalable and non-invasive solution for 

precision oncology in GBM patient management. 

 

2. Related Works 
 

The MGMT promoter methylation status is a critical 

biomarker in gliomas, impacting temozolomide 

response and survival. Invasive testing is hindered 

by cost, complexity, and tumor heterogeneity, 

spurring non-invasive radiomics and AI methods 

using MRI. This state-of-the-art review synthesizes 

12 studies, reordered by predictive performance 

(accuracy or AUC), to evaluate methodologies and 

clinical potential for MGMT methylation prediction 

in gliomas. 

Significant progress in radiomics and AI has been 

achieved, with studies demonstrating varied 

predictive accuracies. Sasaki et al. reported the 

MGMT prediction accuracy at 67% using LASSO 

regression with 489 texture features, though it 

excelled in survival stratification. Hajianfar et al. 

achieved an AUC of 0.78 with a Decision Tree 

classifier on MRI features, emphasizing edema 

region importance. Qian et al. reached 80% ± 10% 

accuracy using F-DOPA positron emission 

tomography (PET) with a random forest model, 

highlighting PET’s complementary role. Tasci et al. 

obtained 81.6% accuracy with a hybrid feature 

weighting approach on multiparametric MRI, noting 

the need for external validation. Crisi et al. achieved 

an AUC of 0.84 with DSC-MRI perfusion features, 

effective for highly methylated GBM. Korfiatis et al. 

reported an AUC of 0.85 using T2-weighted MRI 

texture features with SVM and random forest 

classifiers. Han et al. achieved AUCs of 0.887 

(training) and 0.760 (validation) for 1p/19q co-

deletion prediction, suggesting broader radiomics 

applications. Karabacak et al. developed a ML 

approach LightGBM and random forest models for 

WHO grade II/III gliomas using the National Cancer 

Database, deployed in a web application with SHAP 

for interpretability. The test achieved by AUROC of 

0.813–0.896 (grade II) and 0.855–0.878 (grade III). 

Do et al. achieved 75% accuracy using genetic 

algorithm-based feature selection, transferable to 

low-grade gliomas. Yu et al. set the highest 

benchmark at 0.923 AUC using a Transformer 

model, integrating intra-and peritumoral MRI 

features. Alternative modalities enhance prediction 

capabilities. Qian et al.’s PET-based approach and 

Crisi et al.’s DSC-MRI method complement 

traditional MRI, improving accuracy in complex 

cases. Jiang et al. (2024) fused multi-sequence MRI 

features (T1W, T1CE, FLAIR) to predict MGMT 

status in lower-grade gliomas, with an AUC of 

0.761, underscoring the value of modality fusion. 

Kickingereder et al., outperformed clinical models in 

survival stratification using 12,190 radiomic 

features, while Karabacak et al.’s web application 

(AUROC 0.813–0.896) supports clinical integration 

with interpretable SHAP analysis. 

Challenges include metric heterogeneity, External 

validation, emphasized by Tasci et al. and Han et al., 

is crucial for generalizability. Integrating clinical 

factors, as suggested by Kickingereder et al., could 

enhance performance. In conclusion, radiomics and 

AI, particularly machine learning, have 

revolutionized MGMT methylation prediction, with 

top accuracies exceeding 81% and AUCs exceeding 

92.3%. Alternative modalities and standardized 

guidelines bolster reliability. Future efforts should 

prioritize validation, standardization, and clinical 

adoption to optimize glioma treatment and 

prognosis. 

 

3. Material and Methods 
 

The aim of this research is to develop a ML approach 

to predict the MGMT promoter methylation status in 

glioma patients using multi-sequence MRI scans 

from the BraTS 2021 dataset.  

The next figure presents the pipeline illustrating the 

entire workflow adopted in this research, starting 

from data collection and preprocessing with the 

Brats2021 dataset, including 577 patients and 3D 

images (T1, T1ce, T2, FLAIR) with tumor 

segmentation, followed by radiomics feature 

extraction. It then proceeds through feature selection 

using LightGBM and CatBoost to select 15 common 

features for 559 patients, data normalization with 

standard scaler values in [-1, 1], and dataset splitting 

into train (475 patients, 85%) and test (84 patients, 

15%) sets. The pipeline includes class balancing 

with SMOTE for methylated and unmethylated 

classes, data augmentation with a noise level of 0.03 

and 100% of augmentation factor, and model 

training using an ensemble of CatBoost, XGBoost, 
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LightGBM, and Random Forest. Finally, it 

concludes with models testing, calculation of 

evaluation metrics, and plotting of results. 

 

 
 

Figure 1. The modeling Pipeline. 

 

3.1 Dataset Selection 

 

Brats 2021 dataset includes tumor segmentation 

maps and MGMT promoter methylation status labels 

for patients, supporting two tasks. Task 1 focuses on 

tumor segmentation for 1,251 patients, while Task 2 

predicts MGMT methylation status for 585 labeled 

patients and 87 unlabeled ones. Our analysis focuses 

on the 577 labeled patients common to both tasks 

which have 276 MGMT unmethylated and 301 

methylated. Each patient’s data consists of isotropic 

voxel images (240×240×155) across four 

modalities—T1W, T1CE, T2W, and FFLAIR—

along with segmented masks combining tumor 

subregions: necrosis (label 1), enhancing tumor 

(label 2), and edema (label 4).  

 

 
 

Figure 2. Data selection from Brats 2021. 

 

3.2 Feature extraction 

 

In this step, radiomics features are extracted from 

MRI scans for each patient across four modalities: 

T1W, T1CE, T2W, and FLAIR, covering all tumor 

subregions (necrosis, enhancing tumor, and edema). 

Three main categories of radiomics features are 

used: 1) Shape-based features, which characterize 

the 2D or 3D geometry and size of the tumor, such 

as volume, surface area, compactness, sphericity, 

elongation, flatness, maximum diameter, and 

surface-to-volume ratio; 2) Intensity-based features 

(first-order statistics), which describe voxel intensity 

distributions, including mean, median, standard 

deviation, skewness, kurtosis, entropy, and energy; 

and 3) Texture-based features (second-order and 

higher-order statistics), which capture spatial 

relationships and patterns among voxel intensities, 

including five subcategories: Gray Level Co-

occurrence Matrix (GLCM), measuring pixel 

intensity pair frequency (contrast, correlation, 

homogeneity, energy, dissimilarity, angular second 

moment); Gray Level Run Length Matrix 

(GLRLM), quantifying consecutive voxels With 

consistent intensity, (short run emphasis, long run 

emphasis, gray level non-uniformity, run 

percentage); Gray Level Size Zone Matrix 

(GLSZM), detecting homogeneous region sizes 

(small area emphasis, large area emphasis, zone 

entropy); Neighboring Gray Tone Difference Matrix 

(NGTDM), evaluating intensity differences between 

a voxel and its neighbors (coarseness, contrast, 
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busyness, complexity); and Gray Level Dependence 

Matrix (GLDM), focusing on voxel dependencies 

with similar intensities (dependence non-uniformity, 

large dependence emphasis). Using PyRadiomics 

tools, 1544 radiomics features are extracted and 

organized into a CSV file as showed in the next 

table: 

 
Table 1. Radiomics Features distribution. 

Features  
Per 

Modality 

Per 

Region 
× (4 

Modalities) 

Total  
× (3 Regions 

+ Whole) 

Shape - 14 56 

Intensity 18 72 288 

T
ex

tu
re

 

GLCM 24 96 384 

GLRLM 16 64 256 

GLSZM 16 64 256 

NGTDM 5 20 80 

GLDM 14 56 224 

Grand Total 93 386 1544 

 

The next figure shows the steps of radiomics features 

extraction from selected IRM scans and features 

selection: 

 

 
 
Figure 3. Radiomics features extraction from IRM scans 

and features selection from csv file. 

 

3.3 Feature selection 

 

Feature selection is a critical step in machine 

learning, aimed at enhancing model performance, 

reducing computational complexity, and improving 

interpretability by identifying the most impactful 

features for predictive modeling. A robust approach 

to feature selection involves leveraging the strengths 

of LightGBM and CatBoost, two powerful gradient-

boosting algorithms known for their efficiency and 

accuracy in handling complex datasets. In this 

method, both LightGBM and CatBoost 

independently rank features based on their 

importance, which reflect each feature’s 

contribution to the model’s predictive power. By 

combining the insights from these algorithms, we 

select the top 15 features that consistently 

demonstrate high importance across both models, 

ensuring a consensus-driven approach to feature 

selection. The results of this feature selection 

process are presented in the next figure.  

 

 
 

Figure 4. Results of features selection steps using 

LightGBM and CatBoost. 

 

3.4 Dataset Splitting 

 

The dataset used for predicting MGMT methylation 

status, stored as a CSV file, was meticulously 

preprocessed to ensure data quality and reliability. In 

the first step, all rows and columns containing 

multiple missing values were removed to eliminate 

incomplete or unreliable data points. Additionally, 

duplicate columns were identified and eliminated to 

avoid redundancy, resulting in a refined dataset 

comprising 1530 features across 490 patients. Then, 

the dataset was divided into training (85%) and test 

(15%) sets using stratified sampling. This approach 

ensured that the distribution of MGMT methylation 

status, a critical binary outcome, remained balanced 

across both subsets, preserving the 

representativeness of the data as showed in the next 

figure. 

 

 
 

Figure 5. Dataset distribution over subsets. 
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3.5 Data Normalization 

  

In this step, all feature values in the dataset were 

converted to the float32 data type to ensure 

computational efficiency and consistency across 

numerical operations. Then, the features were 

normalized using the Standard Scaler to transform 

their values to a standardized range of [-1, 1]. This 

normalization process centers the data by subtracting 

the mean and scaling it by the standard deviation, 

ensuring zero mean and one variance, which 

stabilizes machine learning algorithms and 

accelerates training convergence. The formula for 

transforming a feature x is given by:  

 

𝑥𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝜇

𝜎
            (1) 

 

where: x is the original feature value, μ is the mean 

of the feature, and σ is the standard deviation of the 

feature. 

 

3.6 Class Balancing 

 

To address class imbalance in the MGMT 

methylation status classification task, we utilized the 

Synthetic Minority Over-sampling Technique 

(SMOTE). This technique generates synthetic 

samples for the minority class by interpolating 

between existing samples and their nearest 

neighbors, resulting in a balanced training subset 

distribution. By augmenting the representation of the 

minority class, SMOTE optimizes the training 

process, thereby enhancing the efficacy of machine 

learning models.. 

 

3.7 Data Augmentation 

 

To improve model generalization and mitigate the 

challenges of a limited dataset, we employed data 

augmentation by injecting controlled noise into the 

training sub-dataset. This approach enhances the 

diversity of training samples while preserving the 

semantic integrity of the data. By introducing subtle 

variations, this technique reduces the risk of 

overfitting, thereby enhancing the robustness and 

stability of the machine learning models. 

 

3.8 Evaluation Metrics 

 

The performance of the models was evaluated on the 

test subset using several metrics, including accuracy, 

precision, area under the receiver operating 

characteristic curve (AUC-ROC), F1 score, and 

Cohen's Kappa. Additionally, we generated plots to 

visualize the evaluation accuracy, AUC, as well as 

the ROC curve and confusion matrix for the test set. 

 Accuracy: Quantifies the overall precision of 

predictive outcomes in a model. 

 

Acc =
TP + TN

 TP + TN + FP + FN
            (2) 

 
Where: TP = True Positives, TN = True Negatives, 

FP = False Positives, FN = False Negatives 

 

 F1 Score: The harmonic means of precision and 

recall, useful for imbalanced datasets. 

 

F1 score =
2×Precision×Recall

Precision+Recall
            (3) 

 
Where:  

Precision =
TP

 TP + FP 
            (4) 

 

Recall =
TP

 TP + FN 
            (5) 

 

 AUC-ROC: Measures the model’s ability to 

distinguish between classes. The ROC curve 

plots the relationship between True Positive Rate 

(TPR called Recall) and False Positive Rate 

(FPR):  

 

FPR =
FP

 FP +TN 
            (6) 

 

AUC is the area under this curve, typically 

calculated using the trapezoidal rule. 

 Cohen’s Kappa: Evaluates classification 

agreement between predicted and actual labels, 

adjusting for chance. 

 

κ =
P0−Pe

 1−Pe 
            (7) 

Where: 

{
P0 =

TP+TN

 Total 
− 𝑂𝐴 

P𝑒 =
(TP+FP)(TP+FN)+(FN+TN)(FP+TN)

 Total2 
− 𝐸𝐴

        (8) 

 

OA: Observed agreement, EA: Expected agreement 

 Confusion Matrix: is the table that summarizes 

prediction outcomes. 

 
Table 2. Confusion matrix. 

 
Predicted 

Negative 

Predicted 

Positive 

Actual 

Negative 

True Negative  

(TN) 

False Positive 

(FP) 

Actual 

Positive 

False Negative 

(FN) 

True Positive 

(TP) 

 

3.9 Training Models 

 

In this study, we trained four state-of-the-art 

machine learning models—CatBoost, XGBoost, 
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LightGBM, and Random Forest—on the augmented 

subset. These models were selected for their robust 

performance on tabular data and their ability to 

effectively capture complex feature interactions. 

Following individual model evaluation, we 

developed an ensemble approach that integrates the 

predictions of these models through a majority 

voting strategy. This voting-based ensemble 

capitalizes on the diverse strengths of the base 

models, enhancing prediction accuracy and 

robustness, particularly for the classification of 

MGMT methylation status. 

 

4. Results And Discussions 
 

In this study, we evaluated five machine learning 

models—CatBoost, XGBoost, LightGBM, Random 

Forest (RF), and a Voting Ensemble (VE)—on a 

binary classification task using a test set of 15 

radiomics features. The feature selection process, 

justified in Figure 6, illustrates the accuracy and 

AUC for each model across varying counts of the 

most important features. 

 

 
Figure 6. Accuracy and AUC of each model using 

different numbers of most important features. 

 

The models were assessed using accuracy (Acc), 

AUC, precision, recall, F1 score, and Cohen’s 

kappa, as summarized in Table 3. These metrics 

provide a comprehensive evaluation of classification 

performance, discriminative ability, and agreement 

beyond chance. 

 
Table 3. Test performance metrics (%). 

Model ACC AUC 
Preci 

sion 
Recall 

F1 

Score 
Kappa 

CatBoost 90.48 94.82 86.79 97.87 92.00 80.34 

XGBoost 83.33 92.52 83.67 87.23 85.42 65.99 

LightGBM 90.48 96.09 88.24 95.74 91.84 80.45 

RF 88.10 93.90 83.64 97.87 90.20 75.28 

VE 92.86 96.84 90.20 97.87 93.88 85.34 

 

The Voting Ensemble (VE) model achieved the 

highest performance across most metrics, with an 

accuracy of 92.86%, an AUC of 96.84%, a precision 

of 90.20%, an F1 Score of 93.88%, and a Kappa of 

85.34%. This suggests that combining the strengths 

of individual models (CatBoost, XGBoost, 

LightGBM, and RF) through ensemble voting 

enhances overall predictive performance, 

particularly in terms of accuracy and robustness (as 

indicated by the high Kappa score). The VE model 

also matched the highest recall (97.87%), shared 

with CatBoost and RF, indicating excellent 

sensitivity to positive class identification. 

LightGBM and CatBoost both exhibited strong 

performance, each with an accuracy of 90.48%. 

LightGBM slightly outperformed CatBoost in AUC 

(96.09% vs. 94.82%) and precision (88.24% vs. 

86.79%), while CatBoost achieved a marginally 

higher recall (97.87% vs. 95.74%). These results 

highlight the competitive nature of gradient boosting 

models in handling complex datasets, with 

LightGBM excelling in distinguishing between 

classes (higher AUC) and CatBoost maintaining a 

balance across metrics. 

Random Forest (RF) showed robust performance 

with an accuracy of 88.10% and a high recall of 

97.87%, matching CatBoost and VE. However, its 

precision (83.64%) was the lowest among the 

models, suggesting a higher rate of false positives. 

This trade-off indicates RF’s strength in capturing 

true positives but at the cost of reduced specificity 

compared to other models. 

XGBoost recorded the lowest performance across all 

metrics, with an accuracy of 83.33%, AUC of 

92.52%, and Kappa of 65.99%. While still 

competitive, its lower scores suggest it may be less 

suited to this specific dataset compared to the other 

models, potentially due to overfitting or sensitivity 

to hyperparameter settings. 

Additional visualizations provided further insights 

into the models’ performance across different 

thresholds and error types: 

The superior performance of the Voting Ensemble 

(VE) model suggests that combining predictions 

from multiple models effectively leverages their 

individual strengths, leading to improved 
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Figure 7. ROC Curve comparison of the VE model with 

others models 
 

 
 

Figure 8. Accuracy comparison of the VE model with 

others models 

 

 
 

Figure 9. F1 Score comparison of the VE model with 

others models 

 

generalization and robustness. The high Kappa score 

(85.34%) further confirms VE’s reliability in 

handling class imbalances, as it accounts for 

agreement beyond chance.  

 

  
Figure 10. Accuracy and AUC comparison. 

 

The AUC scores across all models were consistently 

high (>92.52%), indicating good discriminative 

ability between classes. However, VE’s slight edge 

in AUC (96.84%) reinforces its overall superiority. 

The variation in Kappa scores suggests differences 

in how well each model handles class imbalance, 

with VE and LightGBM being the most robust. 

 

 
 

Figure 11. Confusion matrix of the proposed model 

using 15 most important radiomics features 
 

The confusion matrix for VE at the fixed threshold 

(likely 0.5) showed 48 true positives (TP), 46 true 

negatives (TN), 3 false positives (FP), and 3 false 

negatives (FN), yielding an accuracy of 92.86%, 

precision of 90.20%, recall of 97.87%, and F1 score 

of 93.88%. These values align with the table, except 

for Accuracy, which is reported as 92.86% in the 

table, likely reflecting the maximum accuracy 

achievable at an optimal threshold. The reported 

sample size in the matrix (N=84) indicates a 

potential inconsistency with important features 

count equal 15, suggesting either a typographical 
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error or the utilization of a more extensive dataset for 

this particular analysis. 

In summary, the voting ensemble model 

outperformed individual models, leveraging their 

collective strengths to achieve superior accuracy, 

precision, and robustness. LightGBM and CatBoost 

also demonstrated strong capabilities, making them 

viable alternatives depending on the specific 

requirements of the task. Further analysis could 

explore feature importance, model interpretability, 

and the impact of hyperparameter tuning to optimize 

performance further. 

  

5. Conclusions 
 

The study highlights the efficacy of a machine 

learning approach in predicting MGMT methylation 

status in glioblastoma (GBM) patients using 

radiomics features derived from multi-sequence 

MRI scans. The proposed model's robust 

performance, with an accuracy of 92.84% and an 

AUC of 96.84%, underscores its high predictive 

reliability, making it a promising tool for non-

invasive biomarker assessment. The incorporation of 

important features through multi-modal data 

analysis significantly enhances the model's 

effectiveness, offering a valuable alternative to 

traditional methods. These results emphasize the 

potential of machine learning to advance precision 

medicine in GBM, facilitating personalized and 

informed treatment strategies. Moving forward, 

validating the model with larger, more diverse 

datasets and integrating it into clinical workflows 

will be crucial to maximize therapeutic outcomes for 

patients with this aggressive brain tumor. 
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