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Abstract:  
 

Background Palm trees are one of the main components of global ecosystems and 

economies, but leaf spot diseases in palm trees can significantly harm their health and 

productivity. The early discovery of these diseases is a vital step that is essential for 

effective disease management and prevention. This paper combines Convolutional 

Neural Networks (CNNs) for feature extraction and an XGBoost Classifier to propose a 

new palm tree leaf disease classification. Our proposed method makes use of CNNs, 

which are suitable for extracting the features while at the same time extracting the most 

discriminative information from palm tree leaf images. It uses XGBoost to classify 

regular and infectious (spotted) leaves by the features. Our method was validated using a 

large dataset of images, achieving an accuracy of 0.86, proving our approach's 

effectiveness and robustness for palm tree disease detection. We outperform traditional 

methods and standalone models, demonstrating the promise of our approach for practical 

palm tree disease management and agricultural uses. 

 

1. Introduction 
 

In this write-up, palm trees. Now, the grand palm 

trees with their tall stature and swaying fronds are 

more than just a botanical marvel; they are a key 

component of many ecosystems worldwide and 

almost an attractive, economical source in 

industries ranging from agriculture to landscaping. 

Nevertheless, several diseases constantly threaten 

the health and vigor of palm trees, and leaf-spotting 

diseases [9] are some of the best known. Such 

diseases affect the aesthetic value of palm trees and 

cause substantial economic losses to the 

agricultural and horticultural sectors; therefore, 

early and precise identification of these diseases is 

crucial for disease management and crop 

protection. Advancements in technology, 

especially in deep learning and computer vision, 

have paved a new way towards revolutionizing our 

approach to plant disease detection over the last 

few years. Deep learning [8], which is a machine 

learning (ML) technique based on artificial neural 

networks (which comprise multiple layers of 

abstraction), has exhibited exceptional potential in 

visual data analysis and interpretation, making this 

technique appealing for image-based disease 

detection. This brought about deeper network 

architectures in deep learning CNN [6], which 

became more prominent for picture order and 

highlight extraction. CNNs are structured with 

inspiration from the mammalian visual cortex, 

allowing them to efficiently learn image processing 

functions and automatically extract features from 

raw image data. CNNs use convolutional, pooling, 

and activation layers to learn complex features and 

textures in images, allowing them to pick up on 

slight differences suggesting disease presence [6]. 

Additionally, CNNs are suitable to process the 

complex and heterogeneous nature of plant images, 

even for palm tree images infested with diseases, 

since CNNs have the capacity to adapt and learn 

through large quantities of data. However, CNNs 

excel at feature extraction but are not inherently 

designed for classification tasks. This is where 

traditional machine learning algorithms, such as 

Random Forest, come into play. SVMs are 

supervised learning models that excel in binary  
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classification tasks by finding the optimal 

hyperplane that separates data points belonging to 

different classes with maximum margin. 

Combined with a nonlinear kernel, such as the 

Random Forest, it can handle complex, nonlinear 

relationships between features, making them 

ideal candidates for classifying high-dimensional 

data extracted by CNNs.The integration of CNNs 

for feature extraction and Random Forest for 

classification forms the foundation of our 

proposed palm tree leaf disease classification 

methodology. By leveraging the complementary 

strengths of these two techniques, we aim to 

develop a robust and accurate system capable of 

distinguishing between regular and spotted palm 

tree leaves with high precision and reliability. 

 

2. Related work 

 
The interest in deep learning approaches, 

especially CNNs, for plant disease detection has 

grown rapidly in recent years. In studies [1, 2, and 

6] conducted before, the high effectiveness of 

CNN in the classification of image data of 

different types of plant diseases was proved. In 

particular, they have detected leaf spot diseases in 

crops such as tomatoes, potatoes, and wheat. 

Ensemble learning methods, for example, 

Random Forests introduced by Barbedo [3], are 

now widespread in agricultural research, as they 

can deal with noisy and high-dimensional data. 

Binary classification of diseased and healthy 

plants based on image features extracted from 

leaf imagery has been successfully achieved 

using ensemble techniques in plant disease 

detection. Most studies concentrated on 

exploiting deep learning or machine learning-

type techniques, until recent work has examined 

hybrid approaches. For instance, Fuentes et al. In 

[4], the feature extraction and representation were 

improved using CNN and SVM classifiers to 

increase the accuracy of the disease classification. 

Nonetheless, although there is overwhelming 

analysis in plant illness detection for several 

crops, there is a limited variety of associated 

investigations for the identification of palm tree 

ailments. However, the research on using 

computer vision approaches, such as deep 

learning methods, for palm tree disease detection 

is still in its infancy. In contrast, Chen [5] trained 

CNN-based models to classify images of palm 

tree leaves facing diseases like Fusarium wilt. 

Transfer learning, [6] a technique wherein models 

trained on one task are adapted for related tasks, 

has shown promise in plant disease detection. 

Pre-trained CNN models such as VGG, ResNet, 

and Inception have been fine-tuned on plant 

disease datasets, yielding competitive 

performance while mitigating the need for 

extensive training data. 

Data augmentation [7] is pivotal in enhancing the 

generalization and robustness of deep learning 

models for plant disease detection. Techniques 

such as rotation, flipping, cropping, and color 

jittering have artificially expanded training 

datasets, augmenting model performance. 

Integrating multiple modalities for plant disease 

detection [8], such as leaf images and spectral 

data, has garnered attention. Fusing 

complementary information from diverse sources 

has demonstrated enhanced disease identification 

capabilities and heightened model robustness. 

The advent of real-time disease monitoring 

systems leveraging deep learning [9] and edge 

computing technologies has gained momentum. 

These systems enable continuous plant health 

surveillance in agricultural fields, provide early 

warnings of disease outbreaks, and facilitate 

timely interventions. Interpretability and 

explainability of deep learning models [10]. are 

paramount for instilling trust and acceptance in 

practical applications. Techniques such as 

attention mechanisms, saliency maps, and model 

visualization tools have been employed to 

provide insights into the decision-making process 

of plant disease detection models. 

Furthermore, semi-supervised [11] and weakly 

supervised learning methods have been explored 

to mitigate the requirement for large annotated 

datasets. Techniques such as self-training,co- 

training and knowledge distillation leverage 

unlabeled or weakly labeled data to enhance 

model performance. Techniques for domain 

adaptation [12] focus on domains with different 

distributions so that a model learnt in a source 

domain can be adapted to work in a target 

domain. While the methods for domain 

adaptation allow models to generalize over 

various environmental conditions and cultivation 

practices for plant diseases [68], they fail to learn 

general representations [73] for other symptoms. 
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Model predictions of future states can only be 

used for decision-making in the plant disease 

management context to the extent that they reflect 

a quantifiable uncertainty. Probabilistic measures 

of prediction certainty provided by Bayesian deep 

learning [13] frameworks and uncertainty 

quantification methods allow stakeholders to 

make informed decisions based on model 

trustworthiness. Due to privacy issues over 

agricultural data [16], plant disease detection is 

being studied to protect privacy [14] and 

traditional signal processing delay approaches to 

data mining output. Methods of federated 

learning / differential privacy / encrypted 

computation allow us to train over models others 

have developed without exposing sensitive 

information on crop health or farming practices. 

Multi-scale and multi-resolution methods [15] 

utilize hierarchical representations 

of plant images to consider both fine semantic 

details and rich global contextual information at 

the same time. This improves the discriminability 

of models that detect plant diseases and reinforces 

their resilience against scale changes. Graph-

based methods [16] model the spatial relationship 

among plants to predict how disease would 

spread in agricultural fields. With the 

advancement of disease propagation dynamics 

simulation and control methods, graph neural 

networks and diffusion models open up an avenue 

for researchers to model disease spreading 

mechanisms and evaluate the effectiveness of 

control strategies. Various hyperparameter 

optimization techniques and Automated Machine 

Learning (AutoML) frameworks [17] facilitate 

the modelling phase and boost the accuracy of 

plant disease detection approaches. 

Hyperparameter tuning and model selection often 

use Bayesian optimization, genetic algorithms, 

and neural architecture search algorithms. 

Several crowdsourcing and citizen science 

platforms involve farmers [18], researchers, and 

enthusiasts to contribute information to enable 

data collection and annotation on plant diseases. 

Together, these allow community-led data 

collection, annotation, and model validation for 

more robust and inclusive systems for plant 

disease detection. For developing and 

implementing plant disease detection systems, 

ethical considerations around data privacy [19], 

algorithmic bias, and fair access to technology are 

also indispensable [20]. As a topic of growing 

importance, ethical guidelines and responsible 

practices ensure technological equity and 

transparency within agricultural technology. 

Stakeholders can enhance the practical utility of 

developed models for plant disease detection 

using decision support systems [20]. Model 

predictions result in real-time disease risk 

assessment, treatment recommendations, and 

crop management strategies, enabling users to 

make decisions and optimize agricultural 

practices. 

 

3. Methodology 

 
We have devised a novel technique, illustrated in 

Figure 1, to identify leaf spots on palm trees. Our 

approach capitalizes on CNN architecture for 

feature extraction, a widely adopted deep-

learning methodology in image processing tasks. 

To ensure data consistency, all input images are 

standardized to a uniform size of 200 x 200 

pixels. Subsequently, we partition the dataset into 

training and testing subsets utilizing an image 

generator to assess the model's effectiveness. We 

integrate data augmentation techniques through 

the image generator to enrich the training data and 

fortify the model's resilience. These techniques 

introduce synthetic variations like rotation, 

shifting, shearing, and zooming to enhance 

dataset diversity and mitigate risks of overfitting. 

We configure the rotation range to 20 degrees and 

apply width and height shifts, shear, and zoom 

ranges of 0.2. Sample images from the dataset, 

exemplifying the intricate details of palm tree 

leaves and potential spotting indicative of disease 

presence, are presented in Figures 2 and 3. Post-

preprocessing and data augmentation, Figure 4 

showcases our dataset's total number of samples, 

highlighting a substantial volume of data for 

model training and evaluation. Figure 5 

delineates the architecture of our approach, where 

CNN is solely used for feature extraction. CNN 

autonomously learns and extracts significant 

features from input images by combining 

convolutional, pooling, and dense units. These 

features are then leveraged by an XGBoost 

classifier with 100 estimators for classification 

purposes, and the final class is determined based 

on voting as in equation (5). Pre-processed and 

data-augmented images are then fed into the CNN 
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model during training,  and classification is 

performed using an XGBoost classifier. Via 

backpropagation and gradient descent, the model 

iteratively updates its parameters to classify 100 

palm leaves correctly with features extracted 

using the same CNN. This work represents a leap 

in palm tree leaf spot detection thanks to our 

method. By taking advantage of CNNs for the 

feature extraction process and XGboost for 

classification, it provides a solid and automated 

approach. Our methodology provides a strong 

basis for the future of research regarding an 

automated plant disease detection system since it 

provides reliability and generalizability based on 

images obtained from 6 different varieties of 

palm tree leaves. In addition, it helps fulfill the 

broader ambition of promoting sustainable 

agribusiness and responsible management of the 

environment. 

 

 
 Figure 1. Proposed CNN+ XGBoost classifier model 

 

A CNN+XGBoost classifier model for detecting 

diseases in palm tree leaves (Architecture) is 

depicted in Figure 1. Our input for the process is 

an image of palm leaf, image then continues to 

pass through multiple layers of Convolutional 

Neural Network (CNN) where several 

convolutional operations are performed [8]. 

Responsible to extract more meaning full 

features and hierarchical features out of input 

image at different stages. The major features are 

then selected in the later feature extraction stage 

and are then sent for classification. This XGBoost 

classifier is the primary classification engine, 

and the extracted train and test features are passed 

to it separately. XGBoost works on these feature 

variables and predicts class probabilities for 

every sample. Finally, a majority voting 

mechanism is applied to the output to provide a 

more robust final classification by aggregating 

the predictions of the modules. The true power of 

this hybrid approach lies in the complementary 

strengths of CNN in feature extraction and the 

XGBoost algorithm which is known for 

performing highly efficient and accurate 

classification tasks, thus allowing for greater 

robustness in the task of detecting the presence of 

diseases in the palm tree leaves. 

 

𝑓(𝑥, 𝑦) = ∑(𝐼 ∗ 𝑊)(𝑥, 𝑦)                  (1) 

 

𝑝(𝑥, 𝑦) = 𝑀𝑎𝑥 𝑝𝑜𝑜𝑙( 𝑓(𝑥, 𝑦))          (2) 

 

𝑦 = 𝑓(𝑤𝑥 + 𝑏)                                (3) 
 

𝑙𝑜𝑠𝑠(𝑦tr 𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =
1

𝑚
− ∑(𝑦𝐶 log (

𝑐

𝑐=1

𝑝𝐶))       (4) 

 

Classification==arg_ma𝑥𝐶 ∑  𝑇
𝑡=1 [𝑐𝑡(𝑥)𝑐]        (5) 

 

  

4.Result Analysis 
 

We trained our CNN model for ten epochs using 

0.001 learning rate for feature extraction for both 

training and test dataset. We then classify the 

extracted features with a XGBoost model. Our 

training routine attempted to optimize the 

parameters of the model using a batch size of 16. 

Examining the training and validation plots in 

Figure 2, we see a nicely balanced path of the loss 

and accuracy. Such a balanced progression 

indicates that some tuning is required to get the 

model to an adequate level of balance and 

performance. This finding signals the stability 

and generalization ability of the trained model 

across different datasets. Moreover, we assessed 

the performance of our model by calculating 

precision, recall and accuracy metrics. The 

precision score is 0.86, which means the 

proportion of true positive samples to all positive 

samples that were classified by our model. 

Likewise, a recall of 0.92 denotes the fraction of 

positive samples that were correctly classified as  

positive classes out of all positive samples. As 

shown in the following table (Table 1), the 

CNN+XGBoost model achieved significantly 



M. Soujanya, E. Aravind / IJCESEN 11-3(2025)5224-5230 

 

5227 

 

better performances than the standard CNN 

model in a comparative evaluation. 

Furthermore, the general accuracy score of 0.86 

indicates the ratio of correctly classed over the 

total number of samples. The classification report 

and true positive and true negative rates exhibit 

favourable results as shown in Table 3. The 

other three metrics combined show how effective 

our CNN+XGBoost model is in differentiating 

the regular and spotted leaves of a palm tree. The 

precision and recall scores are really high, 

proving that the model is good in detecting 

positives while minimizing false postives and 

false negatives. In summary, these outputs prove 

the validation of our proposed method for the 

detection of palm tree disease and also signify 

the practicality of our method to be employed at 

agricultural field populations. 

 

 

 
Figure 2. Train and validation loss and accuracy 

 

The training and validation loss and accuracies 

plotted against the training period of the model, 

for the proposed CNN+XGBoost model are 

shown in Figure 2. In the loss graph, we notice 

Model 1 shows a rapid drop in the training loss at 

the first few epochs, it drops from ~2.0 to near 

zero in the first couple of epochs. Validation loss 

also drops fast like that and immediately 

stabilizes at a very low value pointing. To say, the 

model easily learned the data and does not 

overfit. The corresponding accuracy plot, on the 

other hand, shows a sharp increase in both 

training  

and validation accuracy after the first few epochs, 

which achieves nearly perfect performance 

(about 100% accuracy). Both loss and accuracy 

have a close gap between the training and 

validation curves, which indicates that the model 

has a good generalization ability and the learning 

process for the model reaches good balance. In 

addition, the steady nature of the validation 

curves reinforces the capacity, reliability, and 

stability of proposed CNN+XGBoost model for 

accurate palm tree leaves diseases identification 

without being effected on overfitting and 

underfitting issue. 

 

 
Figure 3. Confusion matrix of the proposed model 

 

Figure 3 Confusion matrix from testing the 

CNN+XGBoost classification model on the test 

data This puts the true labels of the palm tree 

leaves up against the predicted labels from the 

model, where 0 is normal leaves (not spotted) and 

1 is spotted (diseased) leaves. In the matrix, 42 

normal leaves were correctly predicted by the 

model to the normal (the true negatives), while 

only 1 spotted leaf was correctly predicted as 

spotted (the true positive). The model predicted 

9 normal leaves to be diseased (False Positives) 

and 9 diseased leaves to be normal (False 

Negatives). This distribution implies that the 

model is very good at identifying the healthy 

leaves but is much weaker when it comes to 

classifying the diseased ones. The significant 

amount of false negatives and false positives 

suggest difficulty in differentiating extreme 

nuances of the disease, which may exhibit 

majority class bias or less-than-perfect 

modelling. In Conclusion, the model performed 

well to classify healthy samples but needs more 

sensitivity and reliability to classify disease-

affected palm tree leaves. 
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Figure 4: Comparison of Performance Metrics 

between CNN and CNN + XGBoost Models 

 

The following figure 4 shows the comparison of 

the performance metrics for CNN and the hybrid 

CNN + XGBoost model Four important metrics 

are used for performance evaluation: Precision, 

Recall, F1-Score, and Accuracy. Precision is the 

number of true positives predicted over the total 

number of positive predictions from the model, 

while Recall is how many actual positive cases 

the model wanted to identify that were correctly 

identified. We then compute the F1-Score, our 

main metric, which captures the balance between 

Precision and Recall, and provides a measure of 

the model performance by considering both types 

of errors, false positive and false negative. The 

accuracy is the ratio of correct predictions made 

by the model, regardless of class. The blue bars 

represent the CNN + XGBoost model and the red 

bars CNN model independently, and the bar chart 

indicates that although both models achieve 

similar performance results, the CNN + XGBoost 

model generally outperforms the CNN model 

across all metrics, with the greatest gains in the 

F1-Score and Accuracy metrics. Table 1: 

Comparison of Performance Metrics between 

Models of CNN and Proposed CNN+XGBoost 

Model In case of CNN model Normal Class 

Precision-Recall-F1-Score: 0.84-0.91-0.91, 

Spotted Class Precision-Recall-F1-Score: 0.87-

0.91-0.89 Achieved an overall accuracy of 84 % 

by CNN model. It comes with a macro average 

F1-score of 0.46, while the weighted average F1-

score is 0.76: moderate performance. As opposed 

to this, the classification results are improved a 

little with CNN+XGBoost model. The first class 

being "Normal" had precision, recall, F1-score 

of 0.85, 0.91, and 0.91 respectively while the 

second class "Spotted" had precision, recall, F1-

score of 0.87, 0.91, and 0.90 respectively. As we 

can see, CNN+XGBoost Model results in an 

overall accuracy of 86% which is more than its 

counterparts. The macro F1-score, on the other 

hand, achieves an improvement of 0.50, while 

the weighted average F1-score improves to 0.77. 

These results shows that combination of 

XGBoost with CNN tends to enhance the 

performance of model mainly improving the 

classification consistency and class-wise 

accuracy. 

Table 1. Comparison of CNN model and CNN+XGBoost model 

Model  Precision Recall F1-Score Support 

CNN Normal 0.84 0.91 0.91 52 

Spotted 0.87 0.91 0.89 49 

Accuracy   0.84 61 

Macro 

_avg 

0.42 0.50 0.46 61 

Weighted_ avg 0.70 0.84 0.76 61 

CNN + XGBoost Normal 0.85 0.91 0.91 52 

Spotted 0.87 0.91 0.90 49 

Accuracy   0.86 61 

Macro_ avg 0.54 0.55 0.50 61 

Weighted         avg 0.71 0.78 0.77 61 
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5. Conclusion 

 
We present a new hybrid approach is given in our 

research, specially developed for the classification 

of diseases in palm tree leaves. In clever manner, it 

wisely concatenantise a CNN upon Extreme 

Gradient Boosting 

Algorithm(XGBoostAlgorithm). Our approach 

uses the CNN for feature extraction from the leaf 

images and then employs XGBoost as a classifier 

and in our framework CNN features are use to 

extract significant patterns and details from leaf 

images, the XGBoost classifier is trained to classify 

healthy and diseased leaves from those features. 

We conducted extensive experimentation and 

thorough evaluation, leading us to confidently 

conclude that our hybrid CNN+XGBoost model 

outperforms standard CNN-based methods 

significantly. ResultsThe proposed system 

attained a promising classification accuracy of 

0.86, a significant enhancement compared to 

traditional methods. The current research 

demonstrates the potency of deep learning and 

ensemble machine learning methods to solve 

agricultural disease detection problems. In 

addition, we tracked the training process using the 

loss and accuracy curves that evolved smoothly 

and uniformly during the epochs. Such behavior 

shows that our model still has good generalization 

power and avoids the common problems of 

overfitting and underfitting. These plots also reflect 

the reliability of hybrid model stability and 

robustness. Beyond thisaccuracy metric, we 

calculated precision and recall scores since these 

metrics give us better insights into our model 

performance. A high precision score of 0.86 

implies that the model has a good ability to predict 

true positive cases while making sure that false 

positive cases are not significantly high. Likewise, 

high recall score (0.91) highlighted the ability of 

model in capturing most of the positive instances 

and not missing any positives (lower false 

negatives). All of these metrics together verify the 

ability of our proposed approach to recognize the 

healthy and infected palm leaves with high 

sensitivity and specificity. In conclusion, our 

results underscore that the CNN+XGBoost hybrid 

model is a very accurate, reliable and 

computationally efficient method for the early and 

accurate detection of palm tree leaf diseases which 

could be a very promising agricultural application. 
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