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Abstract:  
 

For digital circuits, such as half adders, full adders, and other combinational logic gates, 

to be reliable, fault detection and test pattern creation are essential. This work 

introduces a novel method for effectively detecting faults in logic gates by combining 

machine learning (ML) with test pattern creation based on Linear Feedback Shift 

Registers (LFSR). Traditional methods for generating deterministic test patterns can be 

laborious and might not translate well to intricate circuits. In order to solve this, we use 

fault-injected datasets to apply a Random Forest Classifier (RFC) to categorize faults 

like Stuck-at-0 (SA0) and Stuck-at-1 (SA1). Comprehensive fault analysis is made 

possible by the LFSR-generated test patterns, which are inputs to circuits such as half 

adders and full adders. With a loss function of less than 1% and an R2 score of 99%, the 

trained ML model detects defects with accuracy. For complicated digital circuits, the 

combination of ML and LFSR-based test generation improves fault coverage, lowers 

computational overhead, and offers an effective Design-for-Test (DFT) method. 

 

1. Introduction 
 

Design for Testability (DFT)[1] is an important 

Very Large Scale Integration (VLSI) and digital 

circuit design methodology that ensures the 

manufactured circuits be testable for faults and 

defects. With ever-increasing circuit complexity, 

conventional test generation methods like 

deterministic test pattern generation (DTPG) and 

automatic test pattern generation (ATPG)[2] are 

unable to meet the requirements of computational 

overhead, test duration, and fault coverage. To 

counter such limitations, machine learning (ML) 

has developed as a versatile tool for the 

optimization of fault detection and test generation 

processes [3]. Machine learning techniques can 

process big data sets of fault patterns, derive useful 

conclusions, and optimize the efficiency of DFT 

techniques. Using methodologies like supervised 

learning, deep learning, and ensemble methods, ML 

optimizes fault classification [4], accelerates test 

pattern.  

Today, machine learning is appearing in every 

branch of science, such as chemistry, physics, and 

mathematics. We know that machine learning has 

already paved the way in computer vision and 

image processing. Nevertheless, there are not so 

many applications of machine learning in real-life 

in the field of semiconductors. Consequently, there 

are various approaches to explore its compatibility 

with device modelling in semiconductor 

manufacturing. Its applicability to device 

http://dergipark.org.tr/en/pub/ijcesen
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simulation can be assessed in numerous ways. 

Three different deep learning (DL) algorithms— 

artificial neural networks, convolutional neural 

networks, and long short-term memory—were 

compared with the aid of Logic Gates and LFSR 

device simulation data. Likewise, the machine 

learning method was utilized to predict faults like 

stuck-at 0 and stuck-at 1 and to generate patterns. 

Our earlier research utilized simulation data of 

LFSR, logic gates and combinational circuits to 

validate the ML-based random forest classifier 

(RFC) model with consideration of only two fault 

types. The error rate between the predicted and 

simulated values was 5%, which is considered a 

major figure in machine learning.  

The quick development of digital circuit 

architecture has made fault diagnosis and detection 

more difficult. Conventional testing techniques use 

deterministic algorithms and human debugging, 

which can be laborious and ineffective for large-

scale circuits. Researchers have incorporated 

machine learning (ML) approaches into fault 

detection procedures to increase fault coverage and 

lower testing expenses. By examining input-output 

behavior, machine learning algorithms like Random 

Forest Classifier (RFC)[5] and Neural Networks 

may effectively classify defects. Furthermore, the 

creation of test patterns based on Linear Feedback 

Shift Registers (LFSR) improves the detection of 

Stuck-at-0 (SA0) and Stuck-at-1 (SA1) faults, 

guaranteeing thorough fault diagnostics in digital 

circuits.  

In order to achieve accurate classification, this 

study combines an RFC model with test patterns 

generated by LFSR to investigate the ML-based 

fault detection framework. High accuracy and 

efficiency are ensured by evaluating performance 

using confusion matrices, RMSE, and R2 score. By 

reducing computing overhead, the use of machine 

learning in logic gate fault detection greatly 

enhances testing procedures. 

 

2. Methodology 
 

Using a Random Forest Classifier (RFC) and 

Linear Feedback Shift Register (LFSR)-based test 

pattern creation[6], the methodology used in this 

study combines machine learning (ML) with logic 

gate defect detection. In order to mimic both 

normal and defective behaviors, such as Stuck-at0 

(SA0) and Stuck-at-1 (SA1) defects, digital circuits 

are first simulated. Injecting errors into AND, OR, 

and NOT gates while recording inputoutput 

relationships creates a dataset. LFSR creates 

pseudo-random test patterns to improve fault 

coverage by guaranteeing a variety of input 

combinations. To maximize the performance of the 

ML model, the gathered data is preprocesses using 

shuffling, normalization, and feature scaling. To 

generalize the classifier, the dataset is then divided 

into subgroups for testing (20%) and training 

(80%). To categorize fault kinds, the RFC model is 

trained using 100 decision trees. R2 score, RMSE, 

confusion matrices, and classification reports are 

used to assess performance. This method minimizes 

computational overhead in digital circuit testing 

while guaranteeing excellent accuracy and 

dependability in fault identification. Using a 

Random Forest Classifier (RFC) and Linear 

Feedback Shift Register (LFSR)[7]-based test 

pattern creation, the methodology used in this study 

combines machine learning (ML) with logic gate 

defect detection, enhancing the accuracy and 

efficiency of fault identification in digital circuits. 

Digital Circuit Simulation & Fault Injection Digital 

Circuit Simulation & Fault Injection to accurately 

simulate both normal and defective behaviours [8], 

digital circuits were designed and tested under 

controlled conditions. Common logic gate faults, 

such as Stuck-at-0 (SA0) and Stuck-at1 (SA1) 

defects, were injected into fundamental logic gates 

[9] like AND, OR, and NOT. By systematically 

recording input-output relationships, a 

comprehensive dataset was generated, representing 

both functional and faulty circuit operations.  

LFSR for Test Pattern Generation  

The LFSR-based test pattern generation method 

[10] was employed to introduce pseudo-random test 

inputs, ensuring a diverse and comprehensive set of 

test vectors for defect identification. LFSR was 

chosen due to its ability to generate efficient and 

scalable test sequences while reducing redundancy 

in input combinations. This improves fault 

coverage, making the defect detection process more 

robust.  

Preprocessing & Data Preparation for ML Training  

To maximize the performance of the ML model, the 

gathered dataset underwent multiple preprocessing 

steps, including shuffling, normalization, and 

feature scaling. These steps ensured that the model 

generalized well and minimized bias in training. 

The dataset was then split into subgroups, with 80% 

allocated for training and 20% for testing, enabling 

a structured approach to model validation.   

Machine Learning Model: Random Forest 

Classifier (RFC)  

A Random Forest Classifier (RFC)[6]was 

employed for fault classification, leveraging 100 

decision trees to enhance predictive accuracy. RFC 

was chosen due to its robustness against overfitting 

and its ability to handle highdimensional data 

efficiently. The model was trained to categorize 

fault types, distinguishing between SA0, SA1, and 

normal operations based on input-output mappings. 
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Performance Evaluation & Metrics To evaluate the 

effectiveness of the defect detection methodology, 

multiple performance metrics were used, including:  

  

➢ R² Score: To measure how well the model 

predictions fit the actual data.  

➢ Root Mean Squared Error (RMSE): To 

assess the prediction error magnitude.  

➢ Confusion Matrix: To visualize 

classification performance and identify 

misclassified instances.  

➢ Classification Report: To analyze precision, 

recall, and F1-score, providing insights into the 

model’s strengths and areas for improvement.   

Impact & Advantages of the Approach This 

methodology minimizes computational overhead in 

digital circuit testing while ensuring high fault 

detection accuracy. The combination of LFSR-

generated test patterns and RFC-based 

classification enhances fault localization and error 

prediction, making the system suitable for realtime 

applications in hardware testing, embedded 

systems, and automated circuit verification. By 

integrating ML-driven analysis, this approach 

provides a scalable, data-driven alternative to 

traditional rule-based digital circuit testing 

techniques. 

 

3. Machine learning approach 
 

Researchers have been working on fault detection 

and classification models for digital circuits for 

decades. Rule-based methods tend not to 

generalize over various fault patterns, and 

therefore, an ML-based approach is needed. A 

Random Forest Classifier (RFC) algorithm is 

employed in this work to classify faults in logic 

gates based on LFSR-generated test patterns. For 

the purpose of improving model performance, 

different hyperparameters are tuned, as indicated in 

Table 1. RFC model, made up of multiple parallel 

decision trees, provides stable decisionmaking 

strength and avoids overfitting.  The benefit of 

utilizing RFC is its capacity for addressing non-

linearity and high-dimensional data. For fault 

classification, an RFC model with 100 decision 

trees is used in this research, as shown in Fig.2(a). 

Before training the model, the dataset is pre-

processed, which involves shuffling, 

normalization, and feature scaling. The 

preprocessed data is divided into training and 

testing sets in a suitable ratio to provide 

generalization to the model. These processes 

guarantee that the classifier learns patterns related 

to Stuck-at-0 (SA0) and Stuck-at-1 (SA1) faults 

efficiently, thus providing accurate real-time fault 

detection in digital logic circuits.  Generally, the 

testing data is unseen by the ML model. In order to 

make effective learning and generalization, data 

preprocessing occurs in several steps prior to the 

training of the Random Forest Classifier (RFC) for 

fault classification. First, the test patterns generated 

by LFSR are shuffled such that the ML model is 

subjected to varied input combinations, avoiding 

any bias towards a particular fault pattern. Second, 

the output values as observed are normalized to 

suppress the effect of outliers. Normalization is 

carried out using a linear technique by subtracting 

the mean of the dataset and dividing it by the 

standard deviation so that all training inputs are 

constrained within a standard range.  

The data are separated into training and testing 

80%:20% after normalization. Normal and faulty 

cases are so balanced as well. Fig. 2(b) explains 

the separation of data training and testing sets. The 

log loss function is used to train and assess the 

model during learning in order to categorize 

scenarios that are No Fault, Stuck-at-0 (SA0), and 

Stuck-at-1 (SA1). Additionally, as performance 

indicators, the R2 score and Root Mean Squared 

Error (RMSE) are computed. A higher R2 score 

indicates a strong relationship between input 

variables and fault classification accuracy, whereas 

a number nearer 0 indicates a greater risk of data 

imbalance, noise, or suboptimal hyperparameters. 

The overall performance of fault detection is 

examined using confusion matrices and 

classification reports in order to ensure strong 

validation of the ML model that is trained.Our 

method classifies logic gate faults using the 

Random Forest Classifier (RFC) model, which is 

based on observed output changes and test patterns 

created by LFSR. A dataset comprising both 

normal and defective logic gate situations is used 

to train the RFC model.  Fault injection techniques 

are used methodically to produce the dataset in 

order to guarantee an organized learning process. 

To provide a variety of input combinations, 

randomized test patterns are generated using the 

Linear Feedback Shift Register (LFSR). Boolean 

logic is used to calculate the corresponding 

predicted output, and Stuck-at-0 (SA0) and 

Stuckat-1 (SA1) conditions are forced at the output 

to introduce failure scenarios. This suggested 

method is very efficient and precise since several 

input parameters are examined with respect to the 

concealed properties of the machine learning 

model, and the output indicates both the combined 

and individual impacts of all circuit parameters. In 

particular, the fault detection framework takes into 

account differences in gate inputs, anticipated 

outputs, and faulty modes (stuck-at-0, stuck-at-1) 

for various logic gates.In addition, Table 1 
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describes the set of parameters used in the Random 

Forest Regressor (RFR) algorithm modeling for 

logic gate fault detection and LFSR-based test 

pattern generation. The chosen attributes, such as 

input logic values, observed outputs, and simulated 

fault conditions, lead to correct classification of 

faults in circuits, improving predictive accuracy 

and diagnosis reliability. Efficient fault detection 

and classification are essential for dependable 

digital circuit functioning. The first step in the data 

gathering [11]and simulation procedure is to create 

test patterns for basic logic gates, such as AND, 

OR, and NOT gates, using a Linear Feedback Shift 

Register (LFSR). These test patterns act as input 

stimuli to mimic the circuit's normal and 

malfunctioning characteristics. In order to simulate 

fault injection, the device simulation framework 

introduces logical faults like Stuck-at-0 (SA0) and 

Stuck-at-1 (SA1). These faults indicate situations 

in which a signal is locked at logic 0 or 1, affecting 

the expected behavior of the circuit. Inputs, 

expected outputs, and observed outputs under fault 

situations are all included in the labeled datasets 

produced by the simulation. Training and 

evaluating a machine learning-based fault 

categorization system requires this organized 

dataset.  

Device Simulation for Fault Injection  

SA0 and SA1 conditions are regularly injected into 

AND, OR, and NOT gates in order to simulate 

errors in digital circuits. The AND gate (Y = A & 

B), OR gate (Y = A | B), and NOT gate (Y = ~A) 

are the logic equations that govern the regular 

Boolean behavior of these gates. An LFSR creates 

pseudo-random binary input patterns, which are 

subsequently fed into the circuit to examine failure 

behavior. Based on pre-established fault 

circumstances, incorrect outputs are introduced and 

expected outputs are calculated using a simulation 

framework based on Python. Three categories—(0) 

No Fault, (1) Stuck-at-1, and (2) Stuck-at-0—are 

applied to the dataset. The dataset is made useful 

for machine learning models that are intended to 

identify and categorize circuit anomalies by 

methodically introducing these flaws into digital 

circuits.   

Fault Types Considered: Stuck-at-0 (SA0) and 

Stuck-at-1 (SA1)  

The primary faults considered in this study are 

SA0 and SA1. In digital circuits, a stuck-at fault 

occurs when a node in the circuit is permanently 

fixed at a logic high (1) or low (0) value, 

regardless of the actual input conditions. Such 

faults can arise due to defects in semiconductor 

fabrication, aging effects, or environmental 

interference. The LFSRgenerated test patterns 

ensure that a wide range of input conditions is 

covered, allowing for comprehensive fault 

detection. By incorporating SA0 and SA1 faults 

into the dataset, the study enables the development 

of a robust fault classification model that can 

accurately identify circuit failures.  

  

Fault Injection Process  
Logical faults are methodically introduced into the 

circuit as part of the fault injection procedure, and 

their effects on circuit behavior are examined. 

Incorrect outputs result from stuck-at errors, which 

interfere with logic gates' regular operation. 

Labeled datasets are produced by applying test 

patterns to circuits and documenting output 

deviations brought on by inserted defects in order 

to investigate these effects. Machine learningbased 

defect detection is based on the labeled dataset. 

Based on observed departures from expected 

outputs, the classifier learns to differentiate 

between circuit behaviors that are normal and 

those that are defective. Through training on such a 

dataset, the model improves test efficiency and 

digital circuit dependability by achieving high 

accuracy in real-time fault classification.  

Description of Data collection procedures and 

Device simulation  

In modern digital circuit design and testing, 

ensuring the reliability of logic gates is crucial. 

Faults such as Stuck-at-0 (SA0) and Stuck-at-1 

(SA1) can impact circuit performance. This section 

describes the data collection procedures and device 

simulation for fault detection in logic gates and 

Linear Feedback Shift Register (LFSR)generated 

test patterns.  

Device Simulation for Fault Detection Both 

normal and faulty situations are taken into account 

in the statistical device simulations [12], which 

concentrate on Logic gate and combinational 

circuits for fault detection. The following Boolean 

equations serve as the foundation for how a typical 

Logic gates and combinational circuits functions:  

AND gate                      Half Adder  

Y= A & B                      Sum = A XOR B  

OR gate                         Carry= A & B  

Y= A | B                        Full Adder                                  

NOT gate                      Sum = A XOR B XOR C  

Y= ~A                           Carry= AB & BC & AC  

As illustrated in Fig. 1, an organized method is 

used to gather data and examine fault behaviour. 

Both electrical and logical defects, such as Stuckat-

0 (SA0) and Stuck-at-1 (SA1) faults, are 

implemented in the device simulation framework.  

 

4. Experimental results and analysis 
 

Python's Scikit-learn package [13][14] has been 

employed to develop a 100-tree RFC model 
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consisting of five input nodes and an adjustable 

depth per decision tree. The number of fault 

detections utilized to calculate the link between the 

device parameters and the target value has 

determined the number of trees and the tree depth 

during the implementation of the RFC model. In 

addition, the number of training samples and 

hyperparameters should be configured correctly in 

a way that ensures the RFC model is neither 

overfit nor underfit in order to generate consistent 

outcomes.  

The dataset is usually separated into three sets: the 

training set, the test set, and the validation set. 

Although test and validation sets are essential, 

there are situations in which a small dataset and a 

good agreement between the training and test data 

error rates can eliminate the necessity for the 

validation set. Before the dataset is sent to the ML 

model, it is separated into training and test sets. 

The technique is complicated, especially when 

there is a small dataset. The various characteristics 

of the ML model are impacted by the separation of 

training and test data. For example, the appropriate 

choice of train/test split determines the ML model's 

accuracy and best fit. The right train/test split 

adjust the hyperparameters such that it is capable 

of giving the best accurate predictive ML model.  

The case d and e is trained when using the RFC 

model. The hyperparameters that have been used in 

case d are presented in Table 2. Additionally, Fig. 

3.a indicates that 50 trees yield the lowest root 

mean squared error (RMSE) for the given data. 

Therefore, our discussed RFC model is developed 

by employing 100 number of trees. Generation of 

test patterns using LFSR   provide a diverse and 

comprehensive test set, we employ a Linear 

Feedback Shift Register (LFSR). The LFSR 

generates pseudo-random binary input patterns for 

logic gates. The LFSR generates a pseudo random 

pattern based on Polymial  

equation.[15]  

Device simulation For Fault detection  

Simulated Fault Injection  

The fault injection process is performed using a  

Python-based simulation where:  

1. Expected outputs are computed using logical AND 

operation.  

2. Faulty outputs are introduced based on SA0/SA1 

conditions.  

3. The dataset is labelled with fault types (0: No 

Fault, 1: SA1, 2: SA0).  

 

Data collection and Pre-processing The collected 

dataset is structured into feature columns:  

•  Input1, Input2, Observed Output • 

 Fault Type (0: No Fault, 1: Stuck-at-1, 

2: Stuckat-0)  
Several criteria are used to assess how well the 

machine learning model performs in identifying 

errors in digital logic circuits. Confusion matrices 

and classification reports are used to gauge the 

trained RFC model's performance, which shows a 

high accuracy rate in fault type classification [16]. 

The model successfully differentiates between 

fault-free and defective states when used with 

AND, NOR, and NOT gates as well as more 

intricate circuits like half adders and Full adders. A 

comparison of fault detection techniques shows 

that while the ML-based approach yields faster and 

more reliable fault classification, classic 

deterministic testing methods necessitate 

significant user involvement and considerable 

computing effort. The depiction of the confusion 

matrix sheds clarity on model predictions by 

emphasizing instances in which the classifier 

correctly detects SA0 and SA1 defects. The 

robustness of the suggested method is further 

confirmed by error analysis employing measures 

like log loss, RMSE, and R2 score. While a high 

R2 score indicates the model's great predictive 

ability in fault classification, a lower RMSE 

number suggests minimal prediction mistakes. The 

results show that fault detection efficiency in both 

simple logic gates and arithmetic circuits such as 

adders is greatly increased by combining machine 

learning (ML) with LFSR-based test generation.  

Performance of the NOT gate model vs. simulated 

(actual) and expected output is presented in Figure 

3.a. With an R2 of 1.0000, it is entirely correct in 

its predictions, and points are exactly on the line of 

ideal predictions (red dashed line). This illustrates 

that the model correctly reproduces the logical 

action of a NOT gate.  

Fault Detection Results (on test dataset):  
Input: 0, Observed Output: 1 → No Fault  

Input: 1, Observed Output: 0 → No Fault Fault 

Test Cases:  

Input: 1, Observed Output: 1 → Stuck-at-1 fault 

detected  

Input: 0, Observed Output: 0 → Stuck-at-0 fault  

detected  

Input: 1, Observed Output: 0 → No Fault  

Input: 0, Observed Output: 1 → No Fault  

Figure 3.b displays the AND gate model's expected 

and simulated outputs. With an RMSE of 0.0000 

and a cross-validation R2 of 1.0000, the predicted 

outputs exactly match the optimal prediction line. 

This shows that the model accurately captures the 

logical behavior of the AND gate and that there is 

no prediction error. Figure 3.c shows the OR gate 

model's anticipated versus simulated output. The 
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anticipated outputs (blue dots) have an R2 of 

1.0000, indicating perfect correlation, and are 

exactly on the ideal prediction line. This confirms 

that there is no prediction error and that the model 

correctly depicts the anticipated behavior of an OR 

gate.  

Figure 3.d depicts the half Adder circuit's Sum and 

Carry sections' ideal and real outputs. At R2 = 

1.0000, the real Sum (blue crosses) and Carry 

(green crosses) are identical to the ideal prediction 

line. This implies the model is indeed suitable for 

precise simulation of a half adder's logical 

operations. The capability of the model to deal 

with multiple outputs simultaneously is illustrated 

through the accurate prediction of Sum and Carry 

outputs and the clear distinction between them. 

This shows how the method can be applied to 

further complicated digital circuits. Also, zero 

prediction error adds to the validity of the method 

when applied to combinational logic simulation. 

The provision of reliable hardware behavior in 

practical applications relies on such accurate 

outcomes.  

The Full Adder circuit actual and expected outputs 

for the Sum and Carry bits are shown in Figure 3.e. 

R2 = 1.0000 indicates the desired ones happen to 

be as close to the ideal output line as possible, 

agreeing with high prediction accuracy. The 

effectiveness of the model in modeling more 

complicated logic operations can be seen in the 

similarity of the two outputs. The outcomes of the 

machine learning-based examination of logic gates 

and combinational circuits show how well 

prediction models work to correctly categorize and 

enhance their functionality. Numerous algorithms 

were put to the test, and their results were assessed 

using important metrics like F1-score, recall, and 

precision [17] is shows in Fig 4. The findings show 

that when it came to predicting logic gate outputs, 

machine learning techniques—in particular, neural 

networks—performed better than more 

conventional classification models like decision 

trees and support vector machines. The study also 

showed that feature engineering and enlarging the 

dataset greatly enhanced model performance. The 

ROC curves and confusion matrices demonstrate 

the resilience of the chosen models, demonstrating 

their dependability in practical settings[18].   

Furthermore, hyperparameter tweaking was 

essential for improving prediction accuracy, with 

improved parameters producing notable gains. 

According to the results, logic gate analysis can be 

efficiently automated by machine learning, 

requiring less human intervention while preserving 

high accuracy. This study has ramifications for 

digital system optimization and circuit design, 

where predictive modeling can reduce errors and 

expedite procedures. Overall, the findings support 

the viability of using machine learning to the 

classification and optimization of logic gates and 

combinational circuits, opening the door for 

additional developments in automated computing 

and intelligent circuit design. Thus, after successful 

training, the performance of the model is evaluated 

based on rmse [19] and R2score [20]. The most 

widely employed regression loss function, rmse, 

inquires how accurately the actual value 

approximates the predicted value. As a method of 

evaluation, the R2-score, or coefficient of 

determination, is calculated to indicate how well 

the examined ML model fits. It shows the 

proportion of the dependent variable volatility that 

can be explained using the independent variable. It 

varies between 0 and 1. A greater R2-score means 

the input features are strongly correlated, whereas 

a value close to 0 means the ML model is incorrect 

and has many problems, such as split train/test 

data, noisy data, not being able to load the ML 

model's hyperparameters which were tuned, 

overfitting, etc. RMSE and R 2value is defined as 

r𝑚𝑠𝑒 (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2  

𝑟𝑚𝑠𝑒   

and 𝑅2 = 1 − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠  

𝐴 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 

𝑠𝑞𝑢𝑎𝑟𝑒𝑠 

  𝑅  

(𝑌𝑖 − 𝑌 

 𝑖 𝑚) 

 

 
Tabel 1. List of hyperparameter utilized to train the 

ML based RFC model. 

Hyperparameters  Value  

Number of Trees  100  

Maximum Depth  None  

Criterion  RMSE  

Random State  42  

  

4. Conclusions 

 
To sum up, logic gates are the building blocks of 

complex computational systems; the NOT gate 

inverts the input signal, and the AND and OR gates 

carry out logical operations that contribute to a 

variety of arithmetic and logical functions. Two of 

the most important applications of these gates are 

the half adder and full adder circuits, which are 

necessary for binary addition in computing. The 

half adder, which is built using XOR and AND 
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Figure 1. Flow Chart for Machine approach to detect the faults 

  

 
Figure 2(a)The RFC algorithm based on 100 trees with varying depth of each tree to predict the fault 

classification. 

 

𝑋𝑡𝑟𝑎𝑖𝑛   (80%) 

 𝑋(𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇 ) = {   

𝑋𝑡𝑒𝑠𝑡 (20%)                        𝐹𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠 = {   

𝑦𝑡𝑟𝑎𝑖𝑛   (80%) 

����� (20%) 
  

Figure 2(b) Data is Splitting between the Training and the test set. 
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Figure 3.a illustrates the performance of the MLRFC model based on the RMSE value when the trees are varied. It 

illustrates that a minimum of RMSE value of 50 trees is achieved 

  

 
Fig .3 b Confusion matrix  

 

 
Figure 3c. simulated and Predicted graph of Not gate 

 

 

 
Figure 3d. Simulated and Predicted graph of AND gate 

 

Figure 3e. simulated and Predicted graph of OR Gate 
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Figure 3 f. Simulated and Predicted graph of Half 

adder 

 

 
Figure 3 g Simulated and Predicted graph of 

Full adder  

 

 

 

 

Figure 4(a) Evaluation Matrix of NOT Gate 

 

  
Figure 4(b) Evaluation Matrix of AND Gate 

 

 

 
Figure 4.c Evaluation Matrix of OR 

Gate 

 
Figure 4(d). Evaluation Matrix of 

Half Adder 

 
Figure 4e. Evaluation Matrix of Full 

Adder 
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gates, can add two single-bit binary numbers, but it 

cannot handle carry input; in contrast, the full adder 

gets around this restriction by adding an extra input 

to handle carry from a previous stage, making it 

appropriate for multi-bit binary operations.  

More complex arithmetic units, like as multipliers 

and ALUs (Arithmetic Logic Units) found in 

processors, are based on these basic circuits. The 

entire performance of computer systems is 

influenced by the effective design and 

implementation of these gates and adders. 

Optimizing these fundamental elements is still 

essential as technology develops in order to 

increase processing speed and lower power 

consumption in contemporary digital electronics. 

Gaining an understanding of these ideas not only 

improves the basis of digital logic but also makes 

advancements in artificial intelligence, embedded 

systems, and microprocessor architecture possible. 
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