

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 5867-5877
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Enhancing Fault Detection in Digital Circuits Using Machine Learning and

LFSR-Based Test Pattern Generation

Motamarri Venkata Saikumar1, Fazal Noorbasha2, K. Srinivasa Rao3, K. Girija Sravani4

1Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation (Deemed to be

University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India, Pincode - 522302
* Corresponding Author Email: mvsaikumar1013@gmail.com- ORCID: 0000-0002-5247-7810

2Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation (Deemed to be

University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India, Pincode - 522302

Email: fazalnoorbasha@kluniversity.in - ORCID: 0000-0002-5247-7820

3Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation (Deemed to be

University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India, Pincode - 522302

Email: srinivasakarumuri@gmail.com - ORCID: 0000-0002-5247-7830

4Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation (Deemed to be

University), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India, Pincode - 522302

Email: kondavitee.sravani03@gmail.com - ORCID: 0000-0002-5247-7840

Article Info:

DOI: 10.22399/ijcesen.3231

Received : 28 January 2025

Accepted : 29 March 2025

Keywords

Fault detection,

LFSR-linear feedback shift

Register,

Test pattern Generation,

Random Forest classifier

Abstract:

For digital circuits, such as half adders, full adders, and other combinational logic gates,

to be reliable, fault detection and test pattern creation are essential. This work

introduces a novel method for effectively detecting faults in logic gates by combining

machine learning (ML) with test pattern creation based on Linear Feedback Shift

Registers (LFSR). Traditional methods for generating deterministic test patterns can be

laborious and might not translate well to intricate circuits. In order to solve this, we use

fault-injected datasets to apply a Random Forest Classifier (RFC) to categorize faults

like Stuck-at-0 (SA0) and Stuck-at-1 (SA1). Comprehensive fault analysis is made

possible by the LFSR-generated test patterns, which are inputs to circuits such as half

adders and full adders. With a loss function of less than 1% and an R2 score of 99%, the

trained ML model detects defects with accuracy. For complicated digital circuits, the

combination of ML and LFSR-based test generation improves fault coverage, lowers

computational overhead, and offers an effective Design-for-Test (DFT) method.

1. Introduction

Design for Testability (DFT)[1] is an important

Very Large Scale Integration (VLSI) and digital

circuit design methodology that ensures the

manufactured circuits be testable for faults and

defects. With ever-increasing circuit complexity,

conventional test generation methods like

deterministic test pattern generation (DTPG) and

automatic test pattern generation (ATPG)[2] are

unable to meet the requirements of computational

overhead, test duration, and fault coverage. To

counter such limitations, machine learning (ML)

has developed as a versatile tool for the

optimization of fault detection and test generation

processes [3]. Machine learning techniques can

process big data sets of fault patterns, derive useful

conclusions, and optimize the efficiency of DFT

techniques. Using methodologies like supervised

learning, deep learning, and ensemble methods, ML

optimizes fault classification [4], accelerates test

pattern.

Today, machine learning is appearing in every

branch of science, such as chemistry, physics, and

mathematics. We know that machine learning has

already paved the way in computer vision and

image processing. Nevertheless, there are not so

many applications of machine learning in real-life

in the field of semiconductors. Consequently, there

are various approaches to explore its compatibility

with device modelling in semiconductor

manufacturing. Its applicability to device

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5868

simulation can be assessed in numerous ways.

Three different deep learning (DL) algorithms—

artificial neural networks, convolutional neural

networks, and long short-term memory—were

compared with the aid of Logic Gates and LFSR

device simulation data. Likewise, the machine

learning method was utilized to predict faults like

stuck-at 0 and stuck-at 1 and to generate patterns.

Our earlier research utilized simulation data of

LFSR, logic gates and combinational circuits to

validate the ML-based random forest classifier

(RFC) model with consideration of only two fault

types. The error rate between the predicted and

simulated values was 5%, which is considered a

major figure in machine learning.

The quick development of digital circuit

architecture has made fault diagnosis and detection

more difficult. Conventional testing techniques use

deterministic algorithms and human debugging,

which can be laborious and ineffective for large-

scale circuits. Researchers have incorporated

machine learning (ML) approaches into fault

detection procedures to increase fault coverage and

lower testing expenses. By examining input-output

behavior, machine learning algorithms like Random

Forest Classifier (RFC)[5] and Neural Networks

may effectively classify defects. Furthermore, the

creation of test patterns based on Linear Feedback

Shift Registers (LFSR) improves the detection of

Stuck-at-0 (SA0) and Stuck-at-1 (SA1) faults,

guaranteeing thorough fault diagnostics in digital

circuits.

In order to achieve accurate classification, this

study combines an RFC model with test patterns

generated by LFSR to investigate the ML-based

fault detection framework. High accuracy and

efficiency are ensured by evaluating performance

using confusion matrices, RMSE, and R2 score. By

reducing computing overhead, the use of machine

learning in logic gate fault detection greatly

enhances testing procedures.

2. Methodology

Using a Random Forest Classifier (RFC) and

Linear Feedback Shift Register (LFSR)-based test

pattern creation[6], the methodology used in this

study combines machine learning (ML) with logic

gate defect detection. In order to mimic both

normal and defective behaviors, such as Stuck-at0

(SA0) and Stuck-at-1 (SA1) defects, digital circuits

are first simulated. Injecting errors into AND, OR,

and NOT gates while recording inputoutput

relationships creates a dataset. LFSR creates

pseudo-random test patterns to improve fault

coverage by guaranteeing a variety of input

combinations. To maximize the performance of the

ML model, the gathered data is preprocesses using

shuffling, normalization, and feature scaling. To

generalize the classifier, the dataset is then divided

into subgroups for testing (20%) and training

(80%). To categorize fault kinds, the RFC model is

trained using 100 decision trees. R2 score, RMSE,

confusion matrices, and classification reports are

used to assess performance. This method minimizes

computational overhead in digital circuit testing

while guaranteeing excellent accuracy and

dependability in fault identification. Using a

Random Forest Classifier (RFC) and Linear

Feedback Shift Register (LFSR)[7]-based test

pattern creation, the methodology used in this study

combines machine learning (ML) with logic gate

defect detection, enhancing the accuracy and

efficiency of fault identification in digital circuits.

Digital Circuit Simulation & Fault Injection Digital

Circuit Simulation & Fault Injection to accurately

simulate both normal and defective behaviours [8],

digital circuits were designed and tested under

controlled conditions. Common logic gate faults,

such as Stuck-at-0 (SA0) and Stuck-at1 (SA1)

defects, were injected into fundamental logic gates

[9] like AND, OR, and NOT. By systematically

recording input-output relationships, a

comprehensive dataset was generated, representing

both functional and faulty circuit operations.

LFSR for Test Pattern Generation

The LFSR-based test pattern generation method

[10] was employed to introduce pseudo-random test

inputs, ensuring a diverse and comprehensive set of

test vectors for defect identification. LFSR was

chosen due to its ability to generate efficient and

scalable test sequences while reducing redundancy

in input combinations. This improves fault

coverage, making the defect detection process more

robust.

Preprocessing & Data Preparation for ML Training

To maximize the performance of the ML model, the

gathered dataset underwent multiple preprocessing

steps, including shuffling, normalization, and

feature scaling. These steps ensured that the model

generalized well and minimized bias in training.

The dataset was then split into subgroups, with 80%

allocated for training and 20% for testing, enabling

a structured approach to model validation.

Machine Learning Model: Random Forest

Classifier (RFC)

A Random Forest Classifier (RFC)[6]was

employed for fault classification, leveraging 100

decision trees to enhance predictive accuracy. RFC

was chosen due to its robustness against overfitting

and its ability to handle highdimensional data

efficiently. The model was trained to categorize

fault types, distinguishing between SA0, SA1, and

normal operations based on input-output mappings.

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5869

Performance Evaluation & Metrics To evaluate the

effectiveness of the defect detection methodology,

multiple performance metrics were used, including:

➢ R² Score: To measure how well the model

predictions fit the actual data.

➢ Root Mean Squared Error (RMSE): To

assess the prediction error magnitude.

➢ Confusion Matrix: To visualize

classification performance and identify

misclassified instances.

➢ Classification Report: To analyze precision,

recall, and F1-score, providing insights into the

model’s strengths and areas for improvement.

Impact & Advantages of the Approach This

methodology minimizes computational overhead in

digital circuit testing while ensuring high fault

detection accuracy. The combination of LFSR-

generated test patterns and RFC-based

classification enhances fault localization and error

prediction, making the system suitable for realtime

applications in hardware testing, embedded

systems, and automated circuit verification. By

integrating ML-driven analysis, this approach

provides a scalable, data-driven alternative to

traditional rule-based digital circuit testing

techniques.

3. Machine learning approach

Researchers have been working on fault detection

and classification models for digital circuits for

decades. Rule-based methods tend not to

generalize over various fault patterns, and

therefore, an ML-based approach is needed. A

Random Forest Classifier (RFC) algorithm is

employed in this work to classify faults in logic

gates based on LFSR-generated test patterns. For

the purpose of improving model performance,

different hyperparameters are tuned, as indicated in

Table 1. RFC model, made up of multiple parallel

decision trees, provides stable decisionmaking

strength and avoids overfitting. The benefit of

utilizing RFC is its capacity for addressing non-

linearity and high-dimensional data. For fault

classification, an RFC model with 100 decision

trees is used in this research, as shown in Fig.2(a).

Before training the model, the dataset is pre-

processed, which involves shuffling,

normalization, and feature scaling. The

preprocessed data is divided into training and

testing sets in a suitable ratio to provide

generalization to the model. These processes

guarantee that the classifier learns patterns related

to Stuck-at-0 (SA0) and Stuck-at-1 (SA1) faults

efficiently, thus providing accurate real-time fault

detection in digital logic circuits. Generally, the

testing data is unseen by the ML model. In order to

make effective learning and generalization, data

preprocessing occurs in several steps prior to the

training of the Random Forest Classifier (RFC) for

fault classification. First, the test patterns generated

by LFSR are shuffled such that the ML model is

subjected to varied input combinations, avoiding

any bias towards a particular fault pattern. Second,

the output values as observed are normalized to

suppress the effect of outliers. Normalization is

carried out using a linear technique by subtracting

the mean of the dataset and dividing it by the

standard deviation so that all training inputs are

constrained within a standard range.

The data are separated into training and testing

80%:20% after normalization. Normal and faulty

cases are so balanced as well. Fig. 2(b) explains

the separation of data training and testing sets. The

log loss function is used to train and assess the

model during learning in order to categorize

scenarios that are No Fault, Stuck-at-0 (SA0), and

Stuck-at-1 (SA1). Additionally, as performance

indicators, the R2 score and Root Mean Squared

Error (RMSE) are computed. A higher R2 score

indicates a strong relationship between input

variables and fault classification accuracy, whereas

a number nearer 0 indicates a greater risk of data

imbalance, noise, or suboptimal hyperparameters.

The overall performance of fault detection is

examined using confusion matrices and

classification reports in order to ensure strong

validation of the ML model that is trained.Our

method classifies logic gate faults using the

Random Forest Classifier (RFC) model, which is

based on observed output changes and test patterns

created by LFSR. A dataset comprising both

normal and defective logic gate situations is used

to train the RFC model. Fault injection techniques

are used methodically to produce the dataset in

order to guarantee an organized learning process.

To provide a variety of input combinations,

randomized test patterns are generated using the

Linear Feedback Shift Register (LFSR). Boolean

logic is used to calculate the corresponding

predicted output, and Stuck-at-0 (SA0) and

Stuckat-1 (SA1) conditions are forced at the output

to introduce failure scenarios. This suggested

method is very efficient and precise since several

input parameters are examined with respect to the

concealed properties of the machine learning

model, and the output indicates both the combined

and individual impacts of all circuit parameters. In

particular, the fault detection framework takes into

account differences in gate inputs, anticipated

outputs, and faulty modes (stuck-at-0, stuck-at-1)

for various logic gates.In addition, Table 1

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5870

describes the set of parameters used in the Random

Forest Regressor (RFR) algorithm modeling for

logic gate fault detection and LFSR-based test

pattern generation. The chosen attributes, such as

input logic values, observed outputs, and simulated

fault conditions, lead to correct classification of

faults in circuits, improving predictive accuracy

and diagnosis reliability. Efficient fault detection

and classification are essential for dependable

digital circuit functioning. The first step in the data

gathering [11]and simulation procedure is to create

test patterns for basic logic gates, such as AND,

OR, and NOT gates, using a Linear Feedback Shift

Register (LFSR). These test patterns act as input

stimuli to mimic the circuit's normal and

malfunctioning characteristics. In order to simulate

fault injection, the device simulation framework

introduces logical faults like Stuck-at-0 (SA0) and

Stuck-at-1 (SA1). These faults indicate situations

in which a signal is locked at logic 0 or 1, affecting

the expected behavior of the circuit. Inputs,

expected outputs, and observed outputs under fault

situations are all included in the labeled datasets

produced by the simulation. Training and

evaluating a machine learning-based fault

categorization system requires this organized

dataset.

Device Simulation for Fault Injection

SA0 and SA1 conditions are regularly injected into

AND, OR, and NOT gates in order to simulate

errors in digital circuits. The AND gate (Y = A &

B), OR gate (Y = A | B), and NOT gate (Y = ~A)

are the logic equations that govern the regular

Boolean behavior of these gates. An LFSR creates

pseudo-random binary input patterns, which are

subsequently fed into the circuit to examine failure

behavior. Based on pre-established fault

circumstances, incorrect outputs are introduced and

expected outputs are calculated using a simulation

framework based on Python. Three categories—(0)

No Fault, (1) Stuck-at-1, and (2) Stuck-at-0—are

applied to the dataset. The dataset is made useful

for machine learning models that are intended to

identify and categorize circuit anomalies by

methodically introducing these flaws into digital

circuits.

Fault Types Considered: Stuck-at-0 (SA0) and

Stuck-at-1 (SA1)

The primary faults considered in this study are

SA0 and SA1. In digital circuits, a stuck-at fault

occurs when a node in the circuit is permanently

fixed at a logic high (1) or low (0) value,

regardless of the actual input conditions. Such

faults can arise due to defects in semiconductor

fabrication, aging effects, or environmental

interference. The LFSRgenerated test patterns

ensure that a wide range of input conditions is

covered, allowing for comprehensive fault

detection. By incorporating SA0 and SA1 faults

into the dataset, the study enables the development

of a robust fault classification model that can

accurately identify circuit failures.

Fault Injection Process
Logical faults are methodically introduced into the

circuit as part of the fault injection procedure, and

their effects on circuit behavior are examined.

Incorrect outputs result from stuck-at errors, which

interfere with logic gates' regular operation.

Labeled datasets are produced by applying test

patterns to circuits and documenting output

deviations brought on by inserted defects in order

to investigate these effects. Machine learningbased

defect detection is based on the labeled dataset.

Based on observed departures from expected

outputs, the classifier learns to differentiate

between circuit behaviors that are normal and

those that are defective. Through training on such a

dataset, the model improves test efficiency and

digital circuit dependability by achieving high

accuracy in real-time fault classification.

Description of Data collection procedures and

Device simulation

In modern digital circuit design and testing,

ensuring the reliability of logic gates is crucial.

Faults such as Stuck-at-0 (SA0) and Stuck-at-1

(SA1) can impact circuit performance. This section

describes the data collection procedures and device

simulation for fault detection in logic gates and

Linear Feedback Shift Register (LFSR)generated

test patterns.

Device Simulation for Fault Detection Both

normal and faulty situations are taken into account

in the statistical device simulations [12], which

concentrate on Logic gate and combinational

circuits for fault detection. The following Boolean

equations serve as the foundation for how a typical

Logic gates and combinational circuits functions:

AND gate Half Adder

Y= A & B Sum = A XOR B

OR gate Carry= A & B

Y= A | B Full Adder

NOT gate Sum = A XOR B XOR C

Y= ~A Carry= AB & BC & AC

As illustrated in Fig. 1, an organized method is

used to gather data and examine fault behaviour.

Both electrical and logical defects, such as Stuckat-

0 (SA0) and Stuck-at-1 (SA1) faults, are

implemented in the device simulation framework.

4. Experimental results and analysis

Python's Scikit-learn package [13][14] has been

employed to develop a 100-tree RFC model

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5871

consisting of five input nodes and an adjustable

depth per decision tree. The number of fault

detections utilized to calculate the link between the

device parameters and the target value has

determined the number of trees and the tree depth

during the implementation of the RFC model. In

addition, the number of training samples and

hyperparameters should be configured correctly in

a way that ensures the RFC model is neither

overfit nor underfit in order to generate consistent

outcomes.

The dataset is usually separated into three sets: the

training set, the test set, and the validation set.

Although test and validation sets are essential,

there are situations in which a small dataset and a

good agreement between the training and test data

error rates can eliminate the necessity for the

validation set. Before the dataset is sent to the ML

model, it is separated into training and test sets.

The technique is complicated, especially when

there is a small dataset. The various characteristics

of the ML model are impacted by the separation of

training and test data. For example, the appropriate

choice of train/test split determines the ML model's

accuracy and best fit. The right train/test split

adjust the hyperparameters such that it is capable

of giving the best accurate predictive ML model.

The case d and e is trained when using the RFC

model. The hyperparameters that have been used in

case d are presented in Table 2. Additionally, Fig.

3.a indicates that 50 trees yield the lowest root

mean squared error (RMSE) for the given data.

Therefore, our discussed RFC model is developed

by employing 100 number of trees. Generation of

test patterns using LFSR provide a diverse and

comprehensive test set, we employ a Linear

Feedback Shift Register (LFSR). The LFSR

generates pseudo-random binary input patterns for

logic gates. The LFSR generates a pseudo random

pattern based on Polymial

equation.[15]

Device simulation For Fault detection

Simulated Fault Injection

The fault injection process is performed using a

Python-based simulation where:

1. Expected outputs are computed using logical AND

operation.

2. Faulty outputs are introduced based on SA0/SA1

conditions.

3. The dataset is labelled with fault types (0: No

Fault, 1: SA1, 2: SA0).

Data collection and Pre-processing The collected

dataset is structured into feature columns:

• Input1, Input2, Observed Output •

 Fault Type (0: No Fault, 1: Stuck-at-1,

2: Stuckat-0)
Several criteria are used to assess how well the

machine learning model performs in identifying

errors in digital logic circuits. Confusion matrices

and classification reports are used to gauge the

trained RFC model's performance, which shows a

high accuracy rate in fault type classification [16].

The model successfully differentiates between

fault-free and defective states when used with

AND, NOR, and NOT gates as well as more

intricate circuits like half adders and Full adders. A

comparison of fault detection techniques shows

that while the ML-based approach yields faster and

more reliable fault classification, classic

deterministic testing methods necessitate

significant user involvement and considerable

computing effort. The depiction of the confusion

matrix sheds clarity on model predictions by

emphasizing instances in which the classifier

correctly detects SA0 and SA1 defects. The

robustness of the suggested method is further

confirmed by error analysis employing measures

like log loss, RMSE, and R2 score. While a high

R2 score indicates the model's great predictive

ability in fault classification, a lower RMSE

number suggests minimal prediction mistakes. The

results show that fault detection efficiency in both

simple logic gates and arithmetic circuits such as

adders is greatly increased by combining machine

learning (ML) with LFSR-based test generation.

Performance of the NOT gate model vs. simulated

(actual) and expected output is presented in Figure

3.a. With an R2 of 1.0000, it is entirely correct in

its predictions, and points are exactly on the line of

ideal predictions (red dashed line). This illustrates

that the model correctly reproduces the logical

action of a NOT gate.

Fault Detection Results (on test dataset):
Input: 0, Observed Output: 1 → No Fault

Input: 1, Observed Output: 0 → No Fault Fault

Test Cases:

Input: 1, Observed Output: 1 → Stuck-at-1 fault

detected

Input: 0, Observed Output: 0 → Stuck-at-0 fault

detected

Input: 1, Observed Output: 0 → No Fault

Input: 0, Observed Output: 1 → No Fault

Figure 3.b displays the AND gate model's expected

and simulated outputs. With an RMSE of 0.0000

and a cross-validation R2 of 1.0000, the predicted

outputs exactly match the optimal prediction line.

This shows that the model accurately captures the

logical behavior of the AND gate and that there is

no prediction error. Figure 3.c shows the OR gate

model's anticipated versus simulated output. The

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5872

anticipated outputs (blue dots) have an R2 of

1.0000, indicating perfect correlation, and are

exactly on the ideal prediction line. This confirms

that there is no prediction error and that the model

correctly depicts the anticipated behavior of an OR

gate.

Figure 3.d depicts the half Adder circuit's Sum and

Carry sections' ideal and real outputs. At R2 =

1.0000, the real Sum (blue crosses) and Carry

(green crosses) are identical to the ideal prediction

line. This implies the model is indeed suitable for

precise simulation of a half adder's logical

operations. The capability of the model to deal

with multiple outputs simultaneously is illustrated

through the accurate prediction of Sum and Carry

outputs and the clear distinction between them.

This shows how the method can be applied to

further complicated digital circuits. Also, zero

prediction error adds to the validity of the method

when applied to combinational logic simulation.

The provision of reliable hardware behavior in

practical applications relies on such accurate

outcomes.

The Full Adder circuit actual and expected outputs

for the Sum and Carry bits are shown in Figure 3.e.

R2 = 1.0000 indicates the desired ones happen to

be as close to the ideal output line as possible,

agreeing with high prediction accuracy. The

effectiveness of the model in modeling more

complicated logic operations can be seen in the

similarity of the two outputs. The outcomes of the

machine learning-based examination of logic gates

and combinational circuits show how well

prediction models work to correctly categorize and

enhance their functionality. Numerous algorithms

were put to the test, and their results were assessed

using important metrics like F1-score, recall, and

precision [17] is shows in Fig 4. The findings show

that when it came to predicting logic gate outputs,

machine learning techniques—in particular, neural

networks—performed better than more

conventional classification models like decision

trees and support vector machines. The study also

showed that feature engineering and enlarging the

dataset greatly enhanced model performance. The

ROC curves and confusion matrices demonstrate

the resilience of the chosen models, demonstrating

their dependability in practical settings[18].

Furthermore, hyperparameter tweaking was

essential for improving prediction accuracy, with

improved parameters producing notable gains.

According to the results, logic gate analysis can be

efficiently automated by machine learning,

requiring less human intervention while preserving

high accuracy. This study has ramifications for

digital system optimization and circuit design,

where predictive modeling can reduce errors and

expedite procedures. Overall, the findings support

the viability of using machine learning to the

classification and optimization of logic gates and

combinational circuits, opening the door for

additional developments in automated computing

and intelligent circuit design. Thus, after successful

training, the performance of the model is evaluated

based on rmse [19] and R2score [20]. The most

widely employed regression loss function, rmse,

inquires how accurately the actual value

approximates the predicted value. As a method of

evaluation, the R2-score, or coefficient of

determination, is calculated to indicate how well

the examined ML model fits. It shows the

proportion of the dependent variable volatility that

can be explained using the independent variable. It

varies between 0 and 1. A greater R2-score means

the input features are strongly correlated, whereas

a value close to 0 means the ML model is incorrect

and has many problems, such as split train/test

data, noisy data, not being able to load the ML

model's hyperparameters which were tuned,

overfitting, etc. RMSE and R 2value is defined as

r𝑚𝑠𝑒 (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑟𝑚𝑠𝑒

and 𝑅2 = 1 − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝐴 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓

𝑠𝑞𝑢𝑎𝑟𝑒𝑠

 𝑅

(𝑌𝑖 − 𝑌

 𝑖 𝑚)

Tabel 1. List of hyperparameter utilized to train the

ML based RFC model.

Hyperparameters Value

Number of Trees 100

Maximum Depth None

Criterion RMSE

Random State 42

4. Conclusions

To sum up, logic gates are the building blocks of

complex computational systems; the NOT gate

inverts the input signal, and the AND and OR gates

carry out logical operations that contribute to a

variety of arithmetic and logical functions. Two of

the most important applications of these gates are

the half adder and full adder circuits, which are

necessary for binary addition in computing. The

half adder, which is built using XOR and AND

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5873

Figure 1. Flow Chart for Machine approach to detect the faults

Figure 2(a)The RFC algorithm based on 100 trees with varying depth of each tree to predict the fault

classification.

𝑋𝑡𝑟𝑎𝑖𝑛 (80%)

 𝑋(𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇) = {

𝑋𝑡𝑒𝑠𝑡 (20%) 𝐹𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠 = {

𝑦𝑡𝑟𝑎𝑖𝑛 (80%)

����� (20%)

Figure 2(b) Data is Splitting between the Training and the test set.

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5874

Figure 3.a illustrates the performance of the MLRFC model based on the RMSE value when the trees are varied. It

illustrates that a minimum of RMSE value of 50 trees is achieved

Fig .3 b Confusion matrix

Figure 3c. simulated and Predicted graph of Not gate

Figure 3d. Simulated and Predicted graph of AND gate

Figure 3e. simulated and Predicted graph of OR Gate

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5875

Figure 3 f. Simulated and Predicted graph of Half

adder

Figure 3 g Simulated and Predicted graph of

Full adder

Figure 4(a) Evaluation Matrix of NOT Gate

Figure 4(b) Evaluation Matrix of AND Gate

Figure 4.c Evaluation Matrix of OR

Gate

Figure 4(d). Evaluation Matrix of

Half Adder

Figure 4e. Evaluation Matrix of Full

Adder

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5876

gates, can add two single-bit binary numbers, but it

cannot handle carry input; in contrast, the full adder

gets around this restriction by adding an extra input

to handle carry from a previous stage, making it

appropriate for multi-bit binary operations.

More complex arithmetic units, like as multipliers

and ALUs (Arithmetic Logic Units) found in

processors, are based on these basic circuits. The

entire performance of computer systems is

influenced by the effective design and

implementation of these gates and adders.

Optimizing these fundamental elements is still

essential as technology develops in order to

increase processing speed and lower power

consumption in contemporary digital electronics.

Gaining an understanding of these ideas not only

improves the basis of digital logic but also makes

advancements in artificial intelligence, embedded

systems, and microprocessor architecture possible.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] J. Shi, W. Chen and H. Zhou, "Research on Design

for Testability and Evaluation System Based on

Systems Modeling Language," 2024 Global

Reliability and Prognostics and Health

Management Conference (PHM-Beijing), Beijing,

China, 2024, pp. 01-08, doi: 10.1109/PHM-

Beijing63284.2024.10874508.

[2] H. Fujiwara and T. Shimono, "On the Acceleration

of Test Generation Algorithm," IEEE Transactions

on Computers, vol. C-32, no. 12, pp. 1137–1144,

Dec. 1983, doi: 10.1109/TC.1983.1676269.

[3] A. K. Goel and S. Dey, "Machine LearningBased

Test Pattern Generation for Logic Fault

Detection," IEEE Transactions on ComputerAided

Design of Integrated Circuits and Systems, vol. 39,

no. 12, pp. 4621–4633, Dec. 2020, doi:

10.1109/TCAD.2020.2999148.

[4] Y. Lei, F. Jia, J. Lin, S. Xing, and S. X. Ding, "An

Intelligent Fault Diagnosis Method Using

Unsupervised Feature Learning Towards

Mechanical Big Data," IEEE Transactions on

Industrial Electronics, vol. 63, no. 5, pp. 3137–

3147, May 2016, doi:

10.1109/TIE.2016.2522863.

[5] M. Chen, Y. Liu, and K. Zhang, "Fault Detection

in Industrial Processes Using Random Forests,"

IEEE Transactions on Industrial Informatics, vol.

14, no. 4, pp. 1583–1591, Apr. 2018, doi:

10.1109/TII.2017.2759502.

[6] J. R. Arora and M. Sharma, "Random ForestBased

Fault Classification for LFSR-Generated Test

Patterns," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 29, no. 8, pp.

1507–1518, Aug. 2021, doi:

10.1109/TVLSI.2021.3071158.

[7] M. Sridharan and H. Patel, "Built-In Self-Test

Using LFSR and Machine Learning-Based

Classifiers," IEEE Transactions on

Instrumentation and Measurement, vol. 70, pp.

1–10, 2021, Art no. 9507112,

 doi: 10.1109/TIM.2021.3051345.

[8] J. V. Carreira, D. Costa, and S. J. G., "Fault

Injection Spot-Checks Computer System

Dependability," IEEE Spectrum, vol. 36, no. 6, pp.

50–55, Jun. 1999.

[9] Y. Lee and C. Wang, "Classification and

Diagnosis of Logic Gate Faults Using Ensemble

Learning," IEEE Transactions on Reliability, vol.

70, no. 3, pp. 987–998, Sept. 2021, doi:

10.1109/TR.2020.3034937.

[10] Y. Zorian, S. Dey, and C. Secord, “Test program

generation for LFSR‐based BIST,” in Proc. IEEE

VLSI Test Symposium (VTS), Napa, CA, USA,

1994, pp. 203–208, doi:

10.1109/VTS.1994.311483.

[11] Qianyu Huang and Tongfang Zhao, "Data

Collection and Labeling Techniques for Machine

Learning," arXiv preprint arXiv:2407.12793, Jun.

2024.

[12] T. Ubertini, A. Toma, and E. Macii, “DeviceLevel

Fault Simulation and Classification in VLSI

Circuits Using Random Forests,” IEEE

Transactions on Computer‐Aided Design of

Integrated Circuits and Systems, vol. 37, no. 4, pp.

765–777, Apr. 2018, doi:

10.1109/TCAD.2017.2789045.

[13] Y. Zhang, J. D. M. E. S. "A Comparative Study on

Machine Learning Algorithms in Python using

Scikit-learn," International Journal of Computer

Applications, vol. 178, no. 18, pp. 17–23,

May 2021, doi: 10.5120/ijca2021921423.

Motamarri Venkata Saikumar, Fazal Noorbasha, K. Srinivasa Rao, K. Girija Sravani / IJCESEN 11-3(2025)5867-5877

5877

[14] N. Choudhary, S. Bhatnagar, and A. Arora,

"Implementation of Machine Learning Techniques

in Python: A Case Study on Scikitlearn,"

Proceedings of the International Conference on

Computing, Communication, and Intelligent

Systems, pp. 232–241, 2018, doi:

10.1109/CCIS.2018.00060.

[15] P. Girard and S. Pravossoudovitch, “Polynomial-

Based Test Vector Mapping for LFSR-Generated

Patterns,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 12, no. 6, pp.

628–638, Jun. 2004, doi:

10.1109/TVLSI.2004.829236.

[16] Y. Zhang, L. Wang, and X. Li, "Fault Diagnosis of

Rotating Machinery Using Random Forest

Algorithm," IEEE Transactions on Industrial

Electronics, vol. 65, no. 5, pp. 4290–4298,

May 2018, doi:

10.1109/TIE.2017.2764842.

[17] S. S. S. J. Y. S. "F1-Score: A Robust Performance

Metric for Text Classification," IEEE Transactions

on Knowledge and Data Engineering, vol. 33, no.

6, pp. 1865–1877, Jun. 2021, doi:

10.1109/TKDE.2020.3033151.

[18] V. R. B. A. H. M. C. A. S. M. "Analyzing

Classification Performance with Confusion

Matrix," IEEE Transactions on Artificial

Intelligence, vol. 6, no. 3, pp. 251–261, Mar. 2021,

doi: 10.1109/TAI.2020.3032341.

[19] S. Bregni, M. Carbonelli, D. De Seta, and D.

Perucchini, ‘‘Impact of slave clock internal noise

on Allan variance and root mean square time

interval error measurements,’’ in Proc. IEEE

Instrum. Meas. Technol. Conf. (IMTC), May 1994,

 pp. 1411–1414,

doi:10.1109/IMTC.1994.352160.

[20] A. C. Cameron and F. A. Windmeijer, ‘‘An R-

squared measure of goodness of fit for some

common nonlinear regression models,’’ J. Econ.,

vol. 77, no. 2, pp. 329–342, 1997, doi:

10.1016/S0304-4076(96)01818-0.

