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Abstract:  
 

Parkinson’s disease (PD) detection using machine learning presents significant potential 

for improving diagnostic accuracy. This study investigates the classification of PD 

patients and healthy controls (HC) using Striatal Binding Ratio (SBR) values derived 

from DaTSCAN imaging data. Initial exploratory analysis, including Principal 

Component Analysis (PCA), revealed a complex, nonlinear data distribution, prompting 

the use of models adept at handling such patterns. The study primarily evaluates Support 

Vector Machines (SVM) with different kernel functions—Radial Basis Function (RBF), 

Polynomial, and Sigmoid—leveraging their ability to model nonlinear relationships. 

Comparative analysis demonstrated that the SVM-RBF kernel outperformed other 

kernels, achieving 98.12% accuracy. The Polynomial kernel followed with 94.63% 

accuracy (C=10, degree=3), while the Sigmoid kernel lagged at 91.68%. The superior 

performance of the RBF kernel underscores its effectiveness in capturing the intricate 

nonlinear patterns in DaTSCAN SBR data. Furthermore, when benchmarked against 

Random Forest, Logistic Regression, K-Nearest Neighbors (KNN), and Convolutional 

Neural Networks (CNN), the SVM-RBF model consistently exhibited the highest 

classification accuracy. This study establishes that an optimized SVM with an RBF kernel 

provides a robust and highly accurate machine learning approach for distinguishing PD 

patients from healthy controls using DaTSCAN data. 

 

1. Introduction 
 

Parkinson’s disease (PD) is a progressive 

neurodegenerative disorder characterized by the 

degeneration of dopaminergic neurons in the 

substantia nigra pars compacta, leading to 

debilitating motor dysfunction. Clinically, PD 

manifests with cardinal symptoms, including 

bradykinesia, resting tremor, rigidity, and postural 

instability [1]. Traditional diagnosis relies on 

subjective clinical assessments of these motor 

features, which often leads to misdiagnosis due to 

overlapping symptomatology with atypical 

Parkinsonian syndromes. Moreover, non-motor 

symptoms—such as olfactory dysfunction, REM 

sleep behavior disorder, and autonomic 

disturbances—frequently precede motor onset but 
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are under-recognized in early-stage detection. To 

address these diagnostic challenges, machine 

learning (ML) has emerged as a transformative tool, 

enabling the data-driven quantification of 

biomarkers to improve diagnostic accuracy, 

sensitivity, and specificity. 

The striatum, a critical component of the basal 

ganglia, comprises the caudate nucleus and putamen, 

which play pivotal roles in motor control and 

dopaminergic signaling. Embryologically and 

functionally linked, these structures integrate 

cortical inputs to modulate movement via the direct 

and indirect pathways of the basal ganglia-

thalamocortical circuit [2]. The caudate nucleus 

exhibits a C-shaped morphology, anatomically 

subdivided into the head (adjacent to the lateral 

ventricle), body (dorsal to the thalamus), and tail 

(extending into the temporal lobe to synapse with the 

amygdala) [3]. It is separated from the putamen by 

the internal capsule, except at its rostral aspect, 

where the two structures merge. The putamen, the 

outermost division of the lentiform nucleus, lies 

lateral to the globus pallidus and serves as the 

primary input nucleus for motor regulation [4]. 

 

  

Figure 1. Substania Nigra region of Brain [25] 

The extrapyramidal motor system, which mostly 

controls voluntary movements, depends on the 

caudate nucleus and putamen shown in the Figure 1. 

These structures prevent undesired or maladaptive 

motions while facilitating the performance of 

optimal motor actions. By affecting the timing, 

scale, and retention of motor programs for well-

known tasks, they play a crucial role in the planning 

and programming of motions [5]. As seen in 

Parkinson's disease, where dopaminergic depletion 

impairs motor performance, disorders in the caudate 

nucleus and putamen can cause severe abnormalities 

in motor control. This results in recognisable 

symptoms such as tremors, stiffness, and akinesia, 

underscoring the vital function of these nuclei in 

preserving motor integrity [6]. Expressing 

dopaminergic signalling, the caudate nucleus and 

putamen have essential roles in the circuitry of the 

basal ganglia, modulating both motor control and 

cognitive processes. Dopamine is a critical 

neurotransmitter involved in processing emotions, 

motor control, and reinforcement of the brain’s 

reward system. Figure 2 shows the decrease in the 

concentration of dopamine in Parkinson’s patients 

and Healthy Control in DaTSCAN image.  

 

Figure 2. DaTscan with putamen and caudate regions 

marked by high contrast [17] 

Dopamine receptors, especially those of the D1 and 

D2 subtypes, are very abundant in the caudate and 

putamen, and are critical for interpreting 

dopaminergic signals originating from the substantia 

nigra [7]. This dopaminergic interaction facilitates 

cognitive and motor processes, including learning, 

habit formation, and reward processing. Dopamine 

signaling through these structures is crucial in 

controlling motivational behaviours and 

movements, allowing adaptive responses to reward-

seeking behaviours [8]. 

Parkinson’s disease (PD) is characterized by the 

degeneration of dopaminergic neurons in the 

substantia nigra, leading to depleted dopamine levels 

in the caudate and putamen. This neuronal loss 

disrupts motor function, causing hallmark symptoms 

such as rigidity, bradykinesia, and tremors [9]. 

Beyond motor impairments, PD also affects 

cognitive functions, impairing movement planning, 

execution, and reward-based learning. 

Recent advances in artificial intelligence (AI) have 

enabled more accurate PD detection using machine 

learning (ML) and deep learning (DL) techniques. 

Studies leveraging datasets from the Parkinson’s 

Progression Markers Initiative (PPMI) have 

employed learning to achieve high diagnostic 

accuracy, sensitivity, and specificity [10-11]. AI-

driven approaches, particularly those integrating 

multi-modal data and advanced feature extraction, 

show significant promise in early PD diagnosis. 

However, challenges remain, including the need for 

large, high-quality datasets, model interpretability 
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issues, and risks of overfitting [12]. Addressing these 

limitations could further enhance AI's role in 

revolutionizing PD diagnosis and treatment 

strategies. 

 

2. Related Works 

 
Parkinson’s Disease (PD) diagnosis has been 

significantly advanced through machine learning 

(ML) and deep learning (DL) techniques, leveraging 

diverse data modalities such as neuroimaging (DAT-

SPECT, DaTscan SPECT, MRI), clinical 

assessments, and genetic markers. Recent studies 

highlight the efficacy of deep neural networks in PD 

detection, though methodological and 

generalizability challenges persist. One notable 

study employed an AlexNet-based artificial neural 

network (ANN) to analyze DAT-SPECT images, 

specifically focusing on the putamen region, 

achieving an accuracy of 86% in PD identification 

[13]. While this demonstrates the feasibility of 

ANNs in PD diagnosis, the study’s reliance on a 

limited dataset raises concerns about model 

generalizability. Additionally, variability in imaging 

protocols across different medical institutions may 

further constrain the model’s applicability, 

suggesting a need for larger, multi-center datasets to 

enhance robustness.Deep CNNs have shown 

remarkable performance in PD classification using 

DaTscan SPECT images. A study leveraging the 

InceptionV3 architecture, pre-trained on ImageNet, 

achieved an impressive 98.48% accuracy on the 

Parkinson’s Progression Markers Initiative (PPMI) 

dataset (n=659, 449 PD, 210 non-PD) [14]. Key 

methodological strengths included rigorous 

preprocessing to enhance dopaminergic regions, 

data augmentation, and ten-fold cross-validation to 

mitigate overfitting. To enhance diagnostic stability, 

an ensemble approach combining four pre-trained 

CNNs (VGG16, ResNet50, InceptionV3, Xception) 

with Fuzzy Rank Level Fusion (FRLF) was 

proposed, achieving 98.45% accuracy on the PPMI 

dataset (n=645, 432 PD, 213 non-PD) [15]. The 

FRLF method effectively aggregated predictions 

from multiple models, reducing individual network 

biases. 

Classical machine learning (ML) techniques have 

been extensively applied to Parkinson’s disease (PD) 

diagnosis, though their performance varies 

significantly depending on methodology and data 

constraints. A comparative study leveraging PPMI 

data (n=548) evaluated Principal Component 

Analysis (PCA) and Linear Discriminant Analysis 

(LDA) for feature reduction, with LDA 

outperforming PCA in discriminative capability. 

Among clustering methods (DBSCAN, K-means, 

Hierarchical Clustering), Hierarchical Clustering 

achieved the highest accuracy (64%), though the 

study acknowledged limitations in handling high-

dimensional data and the necessity for external 

validation [16]. 

Recent advances in deep learning have demonstrated 

superior performance in PD classification. A transfer 

learning approach using VGG16 on DaTSCAN 

images (PPMI) achieved 95.2% accuracy, with 

model interpretability enhanced through the Local 

Interpretable Model-Agnostic Explainer (LIME) 

framework. However, the authors highlighted the 

need for broader validation and further refinement of 

interpretability mechanisms [17]. Similarly, an 

automated CAD system employing Haralick texture 

features and SVM classification on DaTSCAN 

SPECT images attained 95.9% accuracy and 97.3% 

sensitivity, though computational complexity and 

image quality dependencies were noted as key 

limitations [18]. Further improvements were 

proposed through advanced ML architectures and 

larger datasets. 

Hybrid deep learning models have shown particular 

promise. A fusion of VGG-16 and AlexNet for 

feature extraction, combined with a Multi-Kernel 

SVM (MSVM), achieved remarkable classification 

accuracy (98.60%) on PPMI DaTSCAN images. 

Despite this, the study emphasized the critical need 

for validation across diverse, larger cohorts to ensure 

generalizability [19]. Multimodal approaches 

integrating MRI, SPECT, and CSF biomarkers were 

explored using both feature-level (deep learning on 

combined data) and modal-level (MRI feature 

reduction followed by fusion) frameworks. While 

CNNs achieved accuracies of 93.33% and 92.38%, 

respectively, the study’s conclusions were 

constrained by a small, imbalanced dataset (73 PD, 

59 healthy) [20]. 

Beyond imaging, genomic and clinical data have 

also been leveraged. A GenoML-based model 

trained on PPMI data and externally validated with 

PDBP achieved an AUC of 89.72% (85.03% in 

external validation). The authors suggested further 

optimization via hyperparameter tuning and 

multimodal integration [21]. Premotor symptom-

based models have also been investigated. A deep 

learning model outperformed twelve other ML 

methods in classifying early-stage PD (96.45% 

accuracy) using premotor features (REM sleep 

behavior disorder, olfactory loss) from PPMI data 

(183 healthy, 401 PD). Despite high accuracy, the 

small sample size restricted broader applicability 

[22].  

A comparison of parametric (logistic regression) and 

non-parametric (KNN) models on PPMI data 

(n=919) revealed that optimized KNN (96.8% 
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accuracy) surpassed logistic regression (94.82%), 

with ANOVA-driven feature selection. However, 

the need for larger datasets and cross-validation 

remains a limitation [23]. Finally, a Random Forest 

model analyzing Striatal Binding Ratio (SBR) 

values in DaTSCAN images (PPMI, n=2,071) 

achieved 97% accuracy, underscoring the potential 

of early detection and multimodal enhancements 

[24]. While existing studies demonstrate the efficacy 

of ML in PD diagnosis, several limitations persist: 

reliance on single-center datasets (e.g., PPMI) raises 

concerns about generalizability; small or imbalanced 

cohorts limit statistical power; interpretability 

remains a challenge despite tools like LIME; and 

computational complexity hinders clinical 

translation. Future work should prioritize analyzing 

the data patterns (linear or nonlinear), large-scale 

multimodal validation, robust interpretability 

frameworks, and efficient model architectures for 

real-world deployment. 

 

3. Proposed Methodology 

3.1 Dataset 

 

The dataset comprises Striatal Binding Ratio (SBR) 

values derived from DaTSCAN imaging, 

specifically focusing on the caudate and putamen 

regions of the brain. These measurements were 

obtained from the Parkinson’s Progression Markers 

Initiative (PPMI), a leading research database 

dedicated to Parkinson’s disease (PD) studies. The 

dataset taken is already preprocessed by removing 

the duplicate values and outliers using the iForest 

algorithm, which is having 1,862 samples, with 

1,449 from Parkinson’s disease patients and 413 

from healthy controls [24], reflecting a real-world 

clinical distribution where PD cases are more 

prevalent than controls. 

The key features in this dataset are the DaTSCAN 

SBR values for six specific brain regions: the right 

and left caudate, right and left putamen, and right 

and left anterior putamen. These measurements are 

critical in assessing dopamine transporter (DAT) 

availability, which is typically reduced in 

Parkinson’s disease due to the degeneration of 

dopaminergic neurons.  

The PCA visualization of the DaTSCAN dataset 

(shown in the image) reveals a nonlinear distribution 

of data points, where healthy controls and 

Parkinson’s disease patients are not separable by a 

straight line or simple hyperplane, as shown in 

Figure 3. Instead, the clusters appear intertwined or 

follow curved patterns, indicating that the 

relationship between the features (caudate and 

putamen SBR values) and the target classes (PD vs. 

healthy) is complex and nonlinear. This nonlinearity 

arises because neurodegenerative processes like PD 

affect brain regions in non-uniform ways, leading to 

intricate interactions between variables that cannot 

be captured by linear methods alone. 

 
Figure 3. 2D Visualization of DaTSCAN Dataset 

 
In linear datasets, classes can be separated using 

straight lines (in 2D) or hyperplanes (in higher 

dimensions), making models like Linear SVM or 

Logistic Regression effective. However, nonlinear 

datasets (like the DaTSCAN data) require more 

sophisticated approaches because of boundaries are 

curved or irregular – A linear decision boundary 

would misclassify many points, feature interactions 

matter – Dopamine loss in PD may not follow a 

linear trend across brain regions and Higher-

dimensional patterns exist – Linear projections (like 

PCA) may collapse critical nonlinear separability. 

The kernel functions in SVM help classify complex, 

nonlinear data (like the DaTSCAN brain scan 

results) by cleverly transforming it into a higher-

dimensional space where it becomes easier to 

separate. Imagine trying to draw a straight line to 

divide two mixed-up groups of dots on paper—it’s 

impossible. But if you could lift some dots "up" into 

3D space, as shown in Figure 4, you could slide a flat 

sheet between them. Kernels do this mathematically 

without actually moving the data, using tricks like 

the RBF (Gaussian) or polynomial functions to 

measure similarities between points. For the 

DaTSCAN dataset, this means SVM can detect 

subtle, curved patterns in brain region values that 

linear methods would miss, helping distinguish 

Parkinson’s patients from healthy controls more 

accurately. 

 
 

Figure 4. 3D Visualization of DaTSCAN Dataset 



Nandan N, Sanjay Pande M B, Raveesh B N, Rakesh Pande M S, Chethan Raj C, Sharmila D / IJCESEN 11-3(2025)4483-4492 

 

4487 

 

3.2. Proposed Method 

 

Support Vector Machines (SVM) with kernel 

functions are particularly effective for classifying 

nonlinear DaTSCAN datasets that distinguish 

between Parkinson's patients and healthy 

individuals. By applying the Radial Basis Function 

(RBF) kernel, the SVM transforms the original 3D 

DaTSCAN data—typically comprising striatal 

binding ratios or asymmetry indices—into a higher-

dimensional space where the complex, nonlinear 

patterns of dopamine transporter distribution 

become linearly separable. The RBF kernel 

measures the similarity between data points using a 

Gaussian function, allowing the model to construct a 

flexible decision boundary that adapts to the intricate 

spatial relationships in the data. For instance, it 

captures subtle differences in putamen or caudate 

nucleus uptake that are characteristic of Parkinson's 

disease, even when these patterns overlap in the 

original feature space. The kernel's hyperparameters, 

such as gamma (γ) and the regularization term (C), 

are optimized through cross-validation to balance 

model complexity and generalization, ensuring 

accurate classification while avoiding overfitting to 

noise in the dataset. 

Algorithm: SVM Kernel Comparison 

Input: 

 Dataset 𝒟 = {(𝐱𝑖, 𝑦𝑖)}𝑖=1
𝑛  where 𝐱𝑖 ∈ ℝ𝑑, 𝑦𝑖 ∈

{0,1} 

 Test size ratio 𝛼 ∈ (0,1) 

Procedure: 

1. Feature Engineering: 

For each subject 𝑖 ∈ {1, . . . , 𝑛}: 

 Asymmetry
𝑖

← [𝑥𝑖
𝐿 − 𝑥𝑖

𝑅 ∀𝑥

∈ {Putamen,Caudate,AntPutamen}] 
 �̃�𝑖 ← [𝐱𝑖 ∥ Asymmetry

𝑖
] 

2. Data Preprocessing: 

 (𝐗𝑡𝑟𝑎𝑖𝑛 , 𝐗𝑡𝑒𝑠𝑡 , 𝐲𝑡𝑟𝑎𝑖𝑛 , 𝐲𝑡𝑒𝑠𝑡) ← Split(𝒟, 𝛼) 
 𝐗𝑡𝑟𝑎𝑖𝑛

𝑠𝑡𝑑 ← StandardScaler(𝐗𝑡𝑟𝑎𝑖𝑛) 
 𝐗𝑡𝑒𝑠𝑡

𝑠𝑡𝑑 ← ApplyScaler(𝐗𝑡𝑒𝑠𝑡) 

3. Kernel Analysis: 

For each kernel 𝑘 ∈ {RBF,Poly,Sigmoid}: 
 𝜃∗ ← arg max

𝜃∈Θ𝑘

 CrossValScore(SVM(𝑘, 𝜃), 𝐗𝑡𝑟𝑎𝑖𝑛
𝑠𝑡𝑑 , 𝐲𝑡𝑟𝑎𝑖𝑛) 

 Train 𝑓𝑘 ← SVM(𝑘, 𝜃∗) 

 𝐲𝑝𝑟𝑒𝑑 ← 𝑓𝑘(𝐗𝑡𝑒𝑠𝑡
𝑠𝑡𝑑 ) 

 Accuracy ←
1

𝑛𝑡𝑒𝑠𝑡

∑𝑖=1
𝑛𝑡𝑒𝑠𝑡  𝕀(𝑦𝑖 = �̂�𝑖) 

 AUC ← ∫
0

1
 ROC(𝑓𝑘)𝑑𝑓 

Output: {𝑓𝑘, Accuracy
𝑘

, AUC𝑘}𝑘∈𝐾 

The algorithm is designed to classify DaTSCAN 

brain imaging data into Parkinson's disease (PD) or 

healthy control (HC) categories using an ensemble 

of machine learning models. It processes striatal 

binding ratio (SBR) values from key brain regions 

(putamen, caudate, and anterior putamen) through a 

systematic pipeline of data preparation, feature 

engineering, model training, and evaluation. 

The process begins with the dataset containing brain 

scan measurements (x_i) and their corresponding 

labels (y_i = 0 for HC, 1 for PD). The algorithm uses 

stratified sampling to create multiple subsets of the 

data, ensuring each subset maintains the original 

ratio of PD to HC cases. This prevents bias in model 

training and provides representative samples for 

each iteration. 

For each brain region, the algorithm calculates the 

difference between left and right hemisphere 

measurements. These asymmetry features are 

clinically significant since PD often manifests with 

uneven dopamine loss between hemispheres. The 

original measurements and these new asymmetry 

features are combined into enhanced input vectors. 

All features are then standardized (mean-centered 

and scaled) to ensure equal contribution during 

model training. 

 The algorithm uses the prepared brain scan data to 

teach the SVM (Support Vector Machine) model 

how to distinguish between healthy patients and 

those with Parkinson's. For each of the three kernels 

(RBF, Polynomial, and Sigmoid), it first performs a 

grid search—testing multiple combinations of 

settings (like sensitivity and complexity) through 

cross-validation to find the optimal configuration. 

The selected kernel then learns patterns from the 

training data by solving an optimization problem: it 

adjusts a mathematical boundary to maximize the 

separation between the two groups while minimizing 

errors. The model’s performance is fine-tuned using 

parameters like the penalty C (for misclassification 

tolerance) and kernel-specific values (e.g., γ for 

RBF). Once trained, the model is ready to classify 

new brain scans based on the learned patterns. 

The 3D visualization shows how the SVM with an 

RBF kernel separates brain scan data from healthy 

individuals and Parkinson's patients using three key 

components (likely derived from DaTSCAN 

imaging). The wavy, non-linear pink surface 

represents the decision boundary - a complex 

hyperplane that optimally divides the two classes in 

three-dimensional space in Figure 5. Points above 

this surface would be classified as Parkinson's cases, 

while those below as healthy. The RBF kernel's 

strength is evident in how the boundary curves and 

folds to accommodate clustered data points rather 

than forcing a flat plane. 
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Figure 5. SVM (RBF) Decision Boundary in 3D Space 

This flexibility allows it to capture subtle patterns in 

the asymmetrical dopamine uptake that distinguish 

Parkinson's patients. The varying elevation of the 

surface reflects how the model weights different 

combinations of these components - higher regions 

indicate stronger Parkinson's predictions based on 

specific biomarker interactions.The visualization 

demonstrates SVM's ability to handle non-linear 

relationships in neurological data, where simple 

straight boundaries would fail. The complex terrain 

shows areas of high classification confidence 

(peaks/valleys) versus uncertain zones (gentler 

slopes), which could correspond to borderline cases 

or early-stage Parkinson's detection. This matches 

clinical needs for detecting nuanced 

neurodegenerative patterns. 

 

3.2.1. Radial Basis Function (RBF) Kernel 

The RBF kernel, also known as the Gaussian kernel, 

is the most commonly used kernel for SVM 

classification tasks, particularly with medical 

imaging data like DaTSCAN results. 

Mathematically, it transforms the input space into an 

infinite-dimensional feature space using the formula  

 

𝐾(𝐱𝑖 , 𝐱𝑗) = exp (−𝛾‖𝐱𝑖 − 𝐱𝑗‖2) (1) 

 

 

 
Figure 6. Confusion matrix and ROC curve of SVM 

(RBF Kernel) 

 
where γ>0 is the kernel parameter that determines 

how far the influence of a single training example 

reaches. ∥xi−xj∥2 is the squared Euclidean distance.  

In the results, the RBF kernel achieved outstanding 

performance with 98.12% accuracy and a near-

perfect ROC AUC of 0.994, as shown in Figure 6. 

The optimal parameters found (C=1, gamma=0.1) 

indicate that the model benefits from a moderate 

regularization strength and a reasonably wide 

decision boundary. This exceptional performance 

suggests that the patterns differentiating caudate and 

putamen regions in our DaTSCAN dataset are best 

captured by smooth, non-linear decision boundaries 

that don't require extreme complexity. The balanced 

precision and recall (both around 98.1%) further 

confirm that the RBF kernel handles both positive 

and negative cases equally well without significant 

bias. 

3.2.2. Polynomial Kernel 

The polynomial kernel introduces non-linearity by 

computing the polynomial expansion of features up  
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Figure 7. Confusion matrix and ROC curve of SVM 

(Polynomial Kernel) 

 

to a specified degree. Its mathematical form is  

𝐾(𝐱𝑖, 𝐱𝑗) = (𝛾𝐱𝑖
⊺𝐱𝑗 + 𝑟)𝑑 (2) 

where d is the polynomial degree, γ scales the dot 

product, and r is a coefficient term. In the results, the 

polynomial kernel achieved respectable 

performance with 94.64% accuracy using a 3rd-

degree polynomial (degree=3) and C=10 for 

regularization, as shown in Figure 7. The ROC AUC 

of 0.988 remains excellent, although it is slightly 

lower than that of the RBF kernel. The results 

suggest that while polynomial relationships exist in 

the DaTSCAN data (likely representing 

multiplicative interactions between image features), 

they don't capture the underlying patterns as 

completely as the RBF transformation. The choice 

of gamma='scale' (which automatically uses 

1/(n_features * X.var())) indicates the data benefits 

from feature-wise scaling. The marginally lower F1-

score (0.945) compared to accuracy shows the 

polynomial kernel has a slightly less balanced 

performance than RBF. 

3.2.3. Sigmoid Kernel 

The sigmoid kernel, mathematically expressed as 

K(xᵢ, xⱼ) = tanh(γxᵢᵀxⱼ + r), produces a neural 

network-like transformation of the data.  

𝐾(𝐱𝑖 , 𝐱𝑗) = tanh (𝛾𝐱𝑖
⊺𝐱𝑗 + 𝑟) (3) 

Where tanh(⋅) is the hyperbolic tangent function. 

𝛾 controls the slope of the sigmoid, and r is the 

intercept term. In the results, it showed the weakest 

performance among the three kernels with 91.69% 

accuracy and ROC AUC of 0.959, as shown in 

Figure 8. The 

 

 

 

Figure 8. Confusion matrix and ROC curve of SVM 

(Sigmoid Kernel) 

 

optimal parameters (C=0.1, gamma=0.1, coef0=0) 

suggest the model required stronger regularization 

(higher C might lead to overfitting) and didn't benefit 

from an intercept term (coef0=0). The performance 

gap between the sigmoid and the other kernels 

indicates that the hyperbolic tangent transformation 

doesn't align as well with the underlying data 

structure of DaTSCAN images. Interestingly, the 

precision (92.12%) is slightly higher than the recall 

(91.69%), suggesting the sigmoid kernel is 

somewhat more conservative in making positive 

predictions. This kernel might be more suitable for 

data that naturally follows a neural network 

activation pattern, which doesn't appear to be the 

case for our caudate/putamen analysis. 

The study compared three SVM kernels in Table 1 f

or classifying Parkinson's disease using DaTSCAN 

imaging data and shown in Figure 9, with the RBF 

kernel achieving superior performance (98.12% acc

uracy, 0.993 ROC AUC, and balanced precision/rec

all of 0.981) using optimal parameter C=1 and gam

ma=0.1. The polynomial kernel followed with 94.6

3% accuracy (degree=3, C=10), while the sigmoid 

kernel trailed at 91.68% accuracy (C=0.1, gamma=

0.1). The results demonstrate that non-linear RBF tr

ansformations best capture the

SVM Kernel Performance Comparison 
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Table 1. SVM Kernel Performance Comparison  

Kernel 
Accurac

y 
Parameters 

ROC 

AUC 
Precision Recall F1 

RBF 98.12% {'C': 1, 'gamma':0.1} 0.993 0.981 0.981 0.981 

Polynomial 94.63% 
{'C': 10, 'degree': 3, 'gamma': 

'scale'} 
0.988 0.946 0.946 0.944 

Sigmoid 91.68% 
{'C': 0.1, 'coef0': 0, 'gamma': 

0.1} 
0.959 0.921 0.916 0.918 

 

 
Figure 9. SVM Kernel Performance Comparison 

 

 complex patterns in caudate-putamen degeneration 

when compared to the polynomial kernels and 

sigmoid kernels. 

Comparison of the Proposed Model Performance 
Several studies have analyzed DaTSCAN striatal 

binding ratio (SBR) values in the putamen and 

caudate regions to differentiate between Parkinson’s 

disease (PD) patients and healthy controls (HC), 

utilizing data from the Parkinson’s Progression 

Markers Initiative (PPMI) database. Table 2 presents 

a comparative analysis of these prior findings 

alongside the results of our proposed model. 

Table 2. Comparison Proposed model Performance 

Additionally, we evaluate each approach using the 

dataset from the suggested model that computes the 

difference between measurements from the left and 

right hemispheres. Since Parkinson's disease (PD) 

frequently presents with unequal dopamine loss 

between hemispheres, these asymmetry traits are 

clinically significant. Improved input vectors are 

created by combining these new asymmetry features 

with the original measurements. To guarantee 

equitable contribution during model training, all 

features are subsequently standardized (mean-

centered and scaled). Table 3 shows the outcomes of 

the algorithms (CNN, Random Forest, KNN, 

Logistic Regression, and SVM(RBF)). 

 
Table 3. Comparison of the performance of different models for the same data 

Models Accuracy Precision Recall F1 ROC AUC Best Params 

SVM (RBF) 0.9812 0.9813 0.9812 0.9813 0.9938 {'C': 1, 'gamma': 0.1} 

Random Forest 0.9759 0.9758 0.9759 0.9758 0.9948 
{'max_depth': 5, 

'n_estimators': 50} 

Logistic 

Regression 
0.9651 0.9649 0.9651 0.9648 0.9928 {'C': 1, 'penalty': 'l2'} 

KNN 0.9705 0.9704 0.9705 0.9704 0.9868 
{'n_neighbors': 5, 'weights': 

'uniform'} 

CNN 0.9732 0.9730 0.9732 0.9731 0.9570 
{'dropout_rate': 0.3, 

'learning_rate': 0.0001} 

Author & Year Feature used Dataset Source & Size 
Learning 

Model 
Results 

WuWang et al. 

(2020) [22] 

Caudate [Left and Right] 

and Putamen  [Left and 

Right] of DaTSCAN 

584 Sample from PPMI 

(183 HC and 401 PD) 

Deep learning 

model 

96.45% 

Accuracy 

Madhusudhana G 

K et al. (2021) 

[23] 

Caudate [Left and Right] 

and Putamen  [Left and 

Right]  of DaTSCAN 

919 Sample from PPM 

(290 HC and 629 PD) 

Logistic 

Regression 

and KNN 

94.82% LR 

and 

96.8% KNN 

Nandan N et 

al.(2024) [24] 

Caudate [Left and Right] 

and Putamen  [Left and 

Right]  of DaTSCAN 

1,862 samples from PPMI 

(413 HC and 1499 PD) 

Random 

Forest 

97% 

Accuracy 

Proposed 

Method 

Caudate [Left and Right] 

and Putamen  [Left and 

Right]  of DaTSCAN 

1,862 samples from PPMI 

(413 HC and 1499 PD) 
SVM (RBF) 

98.12% 

Accuracy 
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A comparative analysis of accuracy across five 

classification models is shown in Figure 10, which 

presents SVM (RBF), Random Forest, Logistic 

Regression, KNN, and CNN. The SVM (RBF) 

model, serving as the performance baseline indicated 

by the red dashed line, achieved the highest accuracy 

at 98.12%. all evaluated models demonstrated high 

predictive accuracy, and the SVM (RBF) has 

outperformed. 

 

 
Figure 10. Models Performance comparison 

 

Conclusion 

 

This study focused on classifying Parkinson's 

disease (PD) patients and healthy controls (HC) 

using Striatal Binding Ratio (SBR) values from 

DaTSCAN data. Initial analysis, including PCA 

visualization, revealed a complex, nonlinear 

distribution of the data, necessitating models capable 

of handling such patterns. Consequently, the core 

methodology centered on evaluating Support Vector 

Machines (SVM) with different kernel functions 

(RBF, Polynomial, Sigmoid) known for their ability 

to manage nonlinearity. The approach was further 

enhanced by engineering asymmetry features, 

reflecting clinical observations of uneven dopamine 

loss in PD, and standardizing all features before 

comparing the optimized SVM model against other 

common machine learning algorithms. 

Based on the comparative analysis of Support Vector 

Machine (SVM) kernel performance, the Radial 

Basis Function (RBF) kernel demonstrates 

significantly superior results across all evaluated 

metrics. Achieving an accuracy of 98.12%, the RBF 

kernel, optimized with parameters C=1 and 

gamma=0.1, stands out as the most effective option. 

The Polynomial and Sigmoid kernels, while 

functional, yielded lower performance compared to 

the RBF kernel. The Polynomial kernel reached an 

accuracy of 94.63% with parameters C=10, 

degree=3. The Sigmoid kernel ranked last, achieving 

91.68% accuracy using parameters C=0.1 and 

gamma=0.1. This suggests that the RBF kernel's 

method of transforming data into a higher-

dimensional space effectively captures the intricate, 

non-linear patterns characteristic of dopaminergic 

changes in PD as measured by DaTSCAN SBR 

values. When compared against Random Forest, 

Logistic Regression, KNN, and CNN using the same 

comprehensive feature set, the SVM-RBF model 

consistently demonstrated superior accuracy. In 

conclusion, the study demonstrates that an optimized 

SVM with an RBF kernel provides a highly accurate 

and robust approach for differentiating PD patients 

from healthy controls based on DaTSCAN imaging 

data, offering potential value for clinical diagnostic 

support systems. 
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