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Abstract:  
 

Adaptive Hormesis-Based Optimization (AHBO) is an adaptation of the Hormesis-

Based Optimization (HBO) framework for task offloading in edge computing, targeting 

Industrial IoT (IIoT) environments. AHBO enhances the original HBO model by 

introducing an adaptive tuning method. The algorithm operates online, does not require 

any training and maintains almost a linear time complexity, making it suitable for edge 

scenarios in IIoT with a frequently varying environment. AHBO is evaluated against 

Reinforcement Learning Q-learning (RLQ), Harris Hawks Optimization (HHO), and 

Slime Mould Algorithm (SMA) across 12 different simulation configurations. It 

consistently outperforms RLQ, SMA and HHO algorithms in most configurations, 

offering up to 200–300% latency reduction in high-load, low-resource conditions. 

While SMA shows slight latency advantages in a few low-load cases, its decision time 

is still significantly higher than AHBO, making AHBO a compelling solution for real-

time IIoT task scheduling under variable system stress. 

 

1. Introduction 
 

The landscape of modern computing is changing 

very rapidly. It is evolving at fast pace through 

optimized system performance with the help of 

efficient resource allocation and workload 

distribution [1]. The demand for optimization has 

particularly affected sectors including cloud 

computing, manufacturing, and real-time systems. 

This need is even more pronounced in the Industrial 

Internet of Things (IIoT), where the convergence of 

manufacturing machinery with real-time data 

processing creates complex and demanding 

operational environments. The complexity and 

variability in these environments make the adaptive 

solutions a necessity to maintain the efficiency and 

feasibility of the system [2]. In order to implement 

the optimization effectively, several types of 

methods are used. These methods have their pros 

and cons based on the demands of the scenario. For 

example, the traditional optimization methods, such 

as linear and integer programming, are effective for 

simpler, static settings, but their performance 

degrades when the number of constraints increases 

the complexity and demands for real time 

adaptation [3]. Similarly, heuristic methods are 

computationally efficient but may become trapped 

in local optima [4]. The machine learning (ML) 

techniques have emerged very strongly in last 

decade, including neural networks and deep 

learning, and offers very powerful solutions for 

complex, high-dimensional problems [5]. However, 

these methods require extensive datasets, 

substantial computational power, and model re-

trainings in resource-constrained environments, 

limiting their applicability [6]. Therefore, the 

approaches which provide a quality solution with 

low computational cost and without intensive 

training-retraining phases can be beneficial [7]. 

These approaches can enhance decision-making 

processes in edge computing by effectively 

balancing resource utilization and performance 

requirements, ultimately leading to improved 

system efficiency. 

Edge computing brings data processing closer to 

the source of computation, Figure 1. It significantly 

reduces task latency and increases the real-time 

performance and reliability [8]. This capability is 

crucial for IIoT applications, where delays in 

processing data from sensors and actuators can 

http://dergipark.org.tr/en/pub/ijcesen
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impact production efficiency and safety. However, 

edge servers are not as capable as cloud servers and 

often possess limited computing power and storage 

capacity. It means that increasing workload beyond 

a certain point reduces the efficiency of the edge 

servers because their scalability is limited and it 

may become impractical to offload all tasks to them 

[9]. Hence, a dynamic and intelligent task 

offloading strategy to select computing nodes 

optimally is needed [10]. The advanced methods 

like reinforcement learning (RL) algorithms have 

done well in dynamic environments [11]. These 

architectures use agents which learn from 

interactions but their deployment in complex 

mobile edge computing (MEC) environments faces 

difficulties such as inaccurate reward calculations 

due to queuing, which leads to suboptimal task 

scheduling [12]. Deep Reinforcement Learning 

(DRL) models also incur significant computation 

and storage overhead due to the use of complex 

neural network architectures [13].  

 

 
Figure 1. Overview of the edge computing architecture 

considered in this study. 

In response to these challenges, the biologically 

inspired algorithms can be a promising solution. 

These methods often pack inherent adaptive 

mechanisms which are simple to manifest and can 

overcome many limitations of traditional and ML 

approaches [14]. The Hormesis-Based Optimization 

(HBO) algorithm is a biologically inspired 

computational approach which is designed to 

achieve optimization with low computational cost 

[15]. HBO is fundamentally inspired by the 

phenomenon of hormesis, where small doses of 

stress can strengthen biological systems and 

enhance their performance in extreme environments 

[16]. In a biological system, stress can be the 

excessive workload on muscles during exercise, the 

exposure to low levels of radiation that trigger cell 

repair, or the temporary lack of food during fasting 

which help the body adapt and become stronger 

[17]. Equivalently, in computational systems, the 

multiple performance parameters can be translated 

into stress which helps to trigger certain behavior. 

Appropriate and controlled application of stress 

gives beneficial results in natural system and HBO 

attempts to use this characteristic in the 

computational systems. The key strength of HBO 

lies in its ability to tackle a NP-hard problem in 

multi-constrained systems without exhaustive 

exploration of all possible solutions. 

HBO converts multiple system parameters into a 

unified "stress" metric, for a predictive-reactive 

dynamic job shop scheduling problem (DJSS) [18], 

simplifying a complex and multi-constrained 

optimization into a single-objective problem. This 

strategy enables the HBO to achieve reduced time 

complexity of the order of 𝑂(𝑛 𝑙𝑜𝑔 𝑛) which is 

usually at least 𝑂(𝑛²) for such NP-hard problems. 

HBO achieves this through rule-based framework 

which provides straightforward solution, but, with 

adaptive functionalities. 

In this work, we introduce Adaptive HBO (AHBO) 

algorithm which is an enhanced version and 

incorporates automated hyperparameter tuning into 

the core stress-based decision process. In highly 

dynamic edge computing environments, where 

workload characteristics change rapidly, static 

parameters can lead to suboptimal performance 

[19]. AHBO addresses this by continuously fine-

tuning key control parameters based on real-time 

performance feedback. The fundamental shift from 

fixed heuristics to self-optimizing control 

differentiates AHBO from its predecessor, enabling 

robust and context-aware adaptation to fluctuating 

system demands. We demonstrate how AHBO 

addresses the critical need for simple, deterministic, 

yet adaptive methods that do not require extensive 

training data or possess rigid strategies. We 

rigorously compare AHBO's performance against 

three prominent optimization techniques, such as 

Harris Hawks Optimization (HHO) [20] and Slime 

Mould Algorithm (SMA) [21] and ϵ-greedy Q-

Learning method (RLQ) [22] which is a tabular 

reinforcement learning approach, for making 

offloading decision in edge computing scenario. 

The key contributions of this study are: 

a) We provide a detailed explanation of the 

AHBO algorithm, highlighting its adaptive 

parameter tuning mechanism that 

distinguishes it from the original HBO. 

b) We emphasize the crucial advantage of 

adaptive, biologically inspired algorithms that 
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operate effectively without large datasets or 

complex training phases, making them ideal 

for resource-constrained and dynamic 

environments. 

c) We present a comprehensive comparative 

analysis of AHBO against HHO, SMA and 

RLQ in an edge computing scenario, 

evaluating key performance indicators such 

as latency, tail latency, maximum task 

completion time, and decision cost. 

d) We demonstrate that AHBO offers a robust 

and efficient solution for resource 

optimization, proving its competitive 

performance against other advanced meta-

heuristic algorithms while maintaining a low 

computational footprint and inherent 

adaptability which is highly relevant to 

relevant in IIoT settings. 

 

The remainder of this paper is organized as follows. 

Section 2 reviews related work on task offloading 

strategies in edge computing. Section 3 presents the 

design of the proposed AHBO algorithm. Section 4 

describes the simulation setup, including system 

parameters, task models, and performance metrics. 

Section 5 reports the experimental results, 

comparing AHBO with three baseline methods 

(HHO, SMA, and RLQ) across varying workloads 

and infrastructure scales, followed by a detailed 

analysis and discussion. Finally, Section 6 

concludes the paper and outlines potential 

directions for future work. 

 

2. Related Work 

 

Traditional computational techniques such as linear 

programming, dynamic programming, and heuristic 

algorithms have long served as the foundation for 

solving optimization problems in MEC. However, 

these methods face severe limitations under 

dynamic environments. For instance, linear 

programming assumes linear relationships and 

struggles with scalability, especially when integer 

or binary decision variables are required [3, 15, 23 

and 24]. Dynamic programming methods are 

capable of breaking down problems into 

manageable sub-problems, but their efficiency is 

hampered when used for problems dealing with 

large number of dimensions, making it 

computationally infeasible for real-time MEC 

scenarios [23, 25]. 

Heuristic algorithms like Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO) are widely 

used due to their simplicity and scalability to large 

problems. Nonetheless, they also often get trapped 

in local optima and have difficulty balancing 

exploration and exploitation, particularly in real-

time mobile settings [4, 11, 26 and 27]. Moreover, 

they lack adaptability to evolving conditions, which 

is critical in MEC where workloads, network states, 

and resource availability change rapidly [24, 26]. 

The computational overhead required for iterative 

exploration also adds to their inefficiency in 

latency-sensitive contexts [12, 23]. 

These limitations have sparked growing interest in 

nature-inspired and bio-inspired methods. 

Algorithms like Ant Colony Optimization, Firefly 

Algorithm, and Differential Evolution emulate 

natural processes and are shown to be more 

resilient and effective in high-dimensional search 

problems [20, 26, 27, 28]. Their inherent 

stochasticity and feedback mechanisms allow these 

models to adapt better to dynamic states, 

outperforming static approaches across various 

performance indicators such as convergence time, 

load balancing, and energy efficiency [26, 28]. 

Among these, algorithms based on biological stress 

adaptation mechanisms—particularly hormesis—

are receiving attention for their capacity to encode 

environmental variability as a stimulus for system-

level resilience. Hormesis, defined as a biphasic 

response to stress where low doses improve 

function and high doses inhibit it, has been 

integrated into computing to support dynamic 

system stabilization [16, 17, 30 and 31]. HBO 

operationalizes this concept by translating multiple 

parameters into a single stress signal that guides 

optimization—streamlining computation while 

retaining adaptability [15, 16]. 

Recent advances suggest that adaptive 

hyperparameter tuning further enhances such 

methods. Static parameters, while useful in stable 

settings, limit responsiveness in unpredictable 

environments. Studies show that real-time tuning 

frameworks improve learning and forecasting 

across fields from machine learning to epidemic 

modeling [10, 19, 32 and 33]. Bio-inspired designs 

like Artificial Hormone Systems (AHS) and 

hormone-guarded agents in organic computing 

demonstrate robust decision-making and fault-

tolerance in distributed systems [28, 34]. These 

developments support the motivation behind 

AHBO, which aims to combine biological 

resilience with dynamic adaptability for edge task 

offloading. 

 

3. Methodology 

 

In this section, we detail the proposed Adaptive 

Hormesis-Based Optimization (AHBO) algorithm, 

which is an enhancement of the Hormesis-Based  
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Optimization (HBO) algorithm [15] and is designed 

for dynamic computation offloading decisions in 

edge computing environments. The algorithm is 

presented in two parts: Algorithm 1, AHBO, 

outlines the adaptation of core HBO mechanism for 

edge computing scenario. It makes real-time 

offloading decisions for incoming computation 

tasks to Edge datacenters by using the principles of 

hormesis, aiming to balance the workload and 

minimize latency. Algorithm 2 then describes the 

details of adaptive tuning process subroutine used 

in AHBO, which continuously adjusts the 

operational parameters. The proposed AHBO 

algorithm aims to enhance the performance by 

making intelligent task scheduling based on real-

time performance feedback in rapidly changing 

edge computing scenarios. 

 

3.1. Adaptive Hormesis-Based Optimization 

(AHBO) for Edge Computing 

 

In this subsection, we present the details of the 

proposed AHBO offloading strategy which is 

described in the Algorithm 1. AHBO is the 

decision-making component which is responsible 

for orchestrating the dynamic allocation of 

computational tasks across Edge Datacenters 

(EdgeDCs) in edge computing scenario. It 

continuously monitors key performance indicators 

of latency, queue length, and CPU utilization from 

various edge datacenters in the network and these 

parameters serve as ingredients for the 

computational stress calculated for each EdgeDC. It 

uses the biological principle of hormesis which says 

that the controlled doses of stress induce beneficial 

adaptation in a natural system. In this case the 

computational stress is used to produce the positive 

effects in the computational system comprising of 

edge datacenters. AHBO aims to maintain system 

performance within optimal operating ranges, 

referred to as hormetic zones, under varying 

computational loads in an edge computing scenario. 

AHBO inherits its conceptual framework from the 

original Hormesis-Based Optimization (HBO) 

algorithm [15], including the definitions of stress, 

dose, and hormetic boundaries, along with control 

parameters such as the adjustment factor 𝑘, a 

redistribution coefficient 𝜃, a sensitivity threshold 𝛿 

for filtering out minor fluctuations from the original 

HBO algorithm. In addition, AHBO introduces an 

adaptation interval 𝑇𝑎𝑑𝑗, which determines how 

frequently the system re-evaluates its hormetic 

zones. Percentile boundaries 𝑃𝑙𝑜𝑤 and 𝑃ℎ𝑖𝑔ℎ are 

also employed to demarcate the upper and lower 

bounds of these zones for each EdgeDC. 

The algorithm AHBO begins by reading the 

historical performance data from each EdgeDCs. In 

step 1.1, it reads three key input metrics: CPU 

utilization, queue length, and response latency. In 

this discussion, step 1.1 will refer to line numbered 

as 1 in Algorithm 1 and step 2.1 will refer to line 

numbered as 1 in Algorithm 2, and so on. So, the 

metric 𝜇𝑖,𝑗 in step 1.1 represents the internal state of 

an EdgeDC and is used to convert this internal state 

into a unified value referred to as “computational 

stress” or simply “stress” (𝜙𝑖) on each EdgeDC in 

step 1.3. In order to produce a unified stress value, 

AHBO algorithm first calculates the absolute 

correlation |𝑐𝑜𝑟𝑟(𝜇𝑖,𝑗, 𝐿𝑖)| between each metric 𝜇𝑗 

(j= CPU utilization, Queue Length, Latency) and 

latency 𝐿𝑖 of that edge datacenter and then 

normalize (step 1.2) these correlation values to 

produce a set of weights 𝑤𝑗 which reflect their 

relative importance.  

Algorithm 1: Adaptive Hormesis-Based Optimization 

(AHBO) for Edge Computing 

Input: 

𝑁: Number of Edge Datacenters (EdgeDCs) 

𝑇: Number of time steps 

𝑘: Adjustment factor for workload allocation 

𝜃: Redistribution factor for workload balancing 

𝛿: Threshold for significant workload adjustments 

𝜇: Performance metrics for EdgeDCs 

𝑇𝑎𝑑𝑗: Hormetic zone adjustment period 

𝑃𝑙𝑜𝑤, 𝑃ℎ𝑖𝑔ℎ: Percentiles for hormetic zone boundaries 

a) Calculate Metric Weights 

1. 𝑤𝑗 =  |𝑐𝑜𝑟𝑟(𝜇𝑖,𝑗 , 𝐿𝑖)| 

2. Normalize: Σ𝑗𝑤𝑗 = 1 

b) Initialize Hormetic Zones for each EdgeDCs 

3. Compute stress metric: 𝜙𝑖 = Σ𝑗𝑤𝑗  ⋅ 𝜇𝑖,𝑗 

4. Compute hormetic zone: 𝑍𝑖 =  [𝛼𝑖 , 𝛽𝑖], where, 

5.      𝛼𝑖 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝜙𝑖 , 𝑃𝑙𝑜𝑤) 

6.     𝛽𝑖  = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝜙𝑖 , 𝑃ℎ𝑖𝑔ℎ) 

c) Real-time Workload Adjustment 

7. for each time step 𝑡: 

8.     for each new task 𝝉: 
9.         Get 𝜇𝑖,𝑗(𝑡) 

10.         Compute stress metric: 𝜙𝑖 = Σ𝑗𝑤𝑗  ⋅ 𝜇𝑖,𝑗(𝑡) 

11.         Choose 𝐸𝑑𝑔𝑒𝐷𝐶𝑖 = argmax𝑖[𝛽𝑖 − 𝜙𝑖(𝑡)] 
12.         Assign 𝜏 to 𝐸𝑑𝑔𝑒𝐷𝐶𝑖 

d) Task Re-distribution 

13.     for each 𝑬𝒅𝒈𝒆𝑫𝑪𝒊 where 𝜙𝑖(𝑡) > 𝛽𝑖 + 𝜃: 
14.         compute excess load: 

                Δ𝑖 = 𝑘 ⋅ (𝜙𝑖(𝑡)  − 𝛽𝑖)  ⋅ δ 

15.         Identify tasks to offload using Δ𝑖  

16.         offload to 𝐸𝑑𝑔𝑒𝐷𝐶𝑢 with 𝜙𝑢(𝑡) < 𝛼𝑢   

e) Hormetic Zone Readjustment 

17.     if 𝒕 mod 𝑻𝒂𝒅𝒋 = 𝟎 

18.         Recalculate Hormetic Zones 

19.         Update zone: 𝑍𝑖  =  [𝛼𝑖  , 𝛽𝑖] 
f) Adaptive Parameter Tuning 

20. Call: “Adaptive Parameter Tuning Subroutine” 

(Algorithm 2) 
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The stress value 𝜙𝑖 is used to determine that 

whether an EdgeDC is underutilized, overburdened 

or is in its optimal zone. As per the hormesis 

principle, the effect of stress on a natural system is 

beneficial within a range of stress doses. If the 

stress is lesser than, or increases this range, then the 

performance of the system declines. This optimal 

range, where the effect of the stress is beneficial, is 

referred to as hormetic zone and is defined by upper 

and lower bound of the beneficial range in natural 

systems. In AHBO, the hormetic zone is defined 

as 𝑍𝑖 = [𝛼𝑖 , 𝛽𝑖] for each EdgeDC and is calculated 

as shown in step 1.4 to 1.6. Any EdgeDC is 

underutilized if 𝜙𝑖 < 𝛼𝑖 (lower bound) and is 

overburdened if 𝜙𝑖 > 𝛽𝑖 (upper bound). Both 

underutilized and overburdened EdgeDCs are not 

beneficial for the system of EdgeDCs. The idea of 

the algorithm is to keep the EdgeDCs within 

hormetic zone, as much as possible, in order to 

minimize the latency among the offloaded tasks in 

the overall system.  According to AHBO algorithm, 

for each new task τ arriving at time 𝑡, the most 

underutilized machine is located by using 

calculations, given in step 1.9 to step 1.12, and the 

new tasks are assigned to it. The excessive load  Δ𝑖 

is also redistributed to comparatively less burdened 

EdgeDCs if any aree found to be overburdened. In 

such a case, the amount of excess load is calculated, 

and the corresponding number of tasks is migrated 

from the overburdened to comparatively 

underutilized EdgeDCs. This process is depicted by 

steps 1.13 to 1.16, where 𝑘, the adjustment factor 

determines how strongly the algorithm reacts to 

excess stress, and 𝛿, the redistribution coefficient 

controls how aggressively workload is moved to 

other available datacenters. The stress on an 

EdgeDC is directly comparable to latency and we 

offload the tasks to underutilized EdgeDCs in 

proportional to the difference between upper 

bound  𝛽𝑖 and stress 𝜙𝑖registered on these 

datacenters.  

The procedure described so far aims to keep the 

EdgeDCs within their hormetic zone. However, 

when the rate at which tasks are received by the 

EdgeDCs increases permanently, or when all the 

EdgeDCs are continuously underutilized, we may 

need to re-adjust the hormetic zones for EdgeDCs. 

In AHBO, we achieve it by re-computing the 

hormetic zone after a fixed interval of time 

controlled by variable 𝑇𝑎𝑑𝑗, as shown in steps 1.17 

to 1.19. In the end, AHBO concludes each 

simulation cycle by refining its control parameters 

through a subroutine call mentioned in step 1.20, 

which implements adaptive feedback mechanism 

into AHBO to fine-tune itself across cycles 

described in Algorithm 2. 

 

3.2. Adaptive Parameter Tuning Subroutine for 

AHBO 

 

The pseudocode for adaptive parameter tuning 

subroutine for AHBO is given in Algorithm 2. It re-

adjustments the key parameters (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗) used 

by Algorithm 1 and enables the AHBO framework 

to continuously self-optimize in ever-changing edge 

computing environments. This adaptive tuning 

mechanism improves performance metrics, average 

latency (𝐿) and maximum completion time 𝐶𝑚𝑎𝑥. 

The algorithm takes the current, previous, and best-

recorded performance metrics as input, along with 

adjustment directions 𝐷, parameter-specific 

hormetic zones 𝑍𝑝𝑎𝑟𝑎𝑚 , and step size 𝑆𝑝. The 

subroutine first calculates the amount of 

change (Δ𝑓) in performance metric, step 2.1 and 

2.2. The change will be none at initialization, hence 

the algorithm will continue without adaptation at 

the beginning. If the change in performance 

parameter is in desired direction (step 2.3), then we 

Algorithm 2: Adaptive Parameter Tuning Subroutine 

Input: 

𝑃𝑐𝑢𝑟𝑟  =  {𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗 }: Current parameter values 

𝑓𝑐𝑢𝑟𝑟  =  {�̅�, 𝐶𝑚𝑎𝑥}: Current performance metrics 

𝑓𝑝𝑟𝑒𝑣  =  {�̅�, 𝐶𝑚𝑎𝑥}  : Previous performance metrics 

𝐷 =  {𝑑𝑘 , 𝑑𝜃 , 𝑑𝛿 , 𝑑𝑇𝑎𝑑𝑗
}  : Adjustment directions, 

where 𝑑 𝜖 {−1, 1} 

𝑍𝑝𝑎𝑟𝑎𝑚 : Hormetic zones for parameters 

𝑆𝑝  =  {𝑠𝑘 , 𝑠𝜃 , 𝑠𝛿 , 𝑠𝑇𝑎𝑑𝑗
}  : Step sizes 

𝑓𝑏𝑒𝑠𝑡 : Best performance metrics 

𝑃𝑏𝑒𝑠𝑡 : Parameters corresponding to 𝑓𝑏𝑒𝑠𝑡 

𝜖 : Performance change threshold 

a) Calculate Performance Change 

1. if 𝑓𝑝𝑟𝑒𝑣  =  𝑁𝑜𝑛𝑒, continue 

2. Compute change: Δ 𝑓 =  𝑓𝑐𝑢𝑟𝑟[�̅�]  − 𝑓𝑝𝑟𝑒𝑣[�̅�] 

b) Determine Adjustment and Update Direction/Step 

Size 

3.  if (Δ 𝑓 <  −𝜖) then 

4.      𝑎𝑑𝑗 =  𝐷𝑝 ⋅  𝑆𝑝 

5. else if (Δ 𝑓 > 𝜖) : 

6.     𝑃𝑐𝑢𝑟𝑟  =  𝑃𝑏𝑒𝑠𝑡 

7.     𝑆𝑝  =  𝑚𝑎𝑥(𝑆𝑝 ⋅  0.5, 𝑆𝑚𝑖𝑛) 

8.     𝐷𝑝  =  −𝐷𝑝 

9.     𝑎𝑑𝑗 =  𝐷𝑝 ⋅  𝑆𝑝 

10. else : 

11.     𝑎𝑑𝑗 =  𝐷𝑝 ⋅  𝑆𝑝 

c) Apply Adjustment and Enforce Bounds 

12. Update parameter: 𝑃𝑛𝑒𝑥𝑡[𝑝]  =  𝑃𝑐𝑢𝑟𝑟[𝑝]  +  𝑎𝑑𝑗 

13. if (𝑃𝑛𝑒𝑥𝑡[𝑝] <  𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑖𝑛]): 

14.     𝑃𝑛𝑒𝑥𝑡[𝑝]  =  𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑖𝑛] 

15.     𝐷𝑝  =  −𝐷𝑝 

16. if (𝑃𝑛𝑒𝑥𝑡[𝑝]  >  𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑎𝑥]) : 

17.     𝑃𝑛𝑒𝑥𝑡[𝑝]  =  𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑎𝑥] 

18.     𝐷𝑝  =  −𝐷𝑝  

d) Ensure Integer for 𝑻𝒂𝒅𝒋  

19. if (𝑝 =  𝑇𝑎𝑑𝑗) : 

20.     𝑃𝑛𝑒𝑥𝑡[𝑇𝑎𝑑𝑗]  =  ⌊𝑃𝑛𝑒𝑥𝑡  [𝑇𝑎𝑑𝑗]  +  0.5⌋ 

21.     𝑃𝑛𝑒𝑥𝑡[𝑇𝑎𝑑𝑗] =  𝑚𝑎𝑥(𝑃𝑛𝑒𝑥𝑡[𝑇𝑎𝑑𝑗], 1) 
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continue to adapt by calculating the adjustment 

amount as per step 2.4 and update the 

parameters (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗) using step 2.12. If the 

performance metric degrades (step 2.5), then we 

fall back to the parameter values associated with 

best value recorded for performance metric so far, 

using step 2.6 and decides the amount of 

adjustment using the equations in step 2.7 to step 

2.9. Consequently, the new parameter values are 

decided using the step 2.12. Additionally, we can 

define the boundaries for the lowest and highest 

values allowed for each of the 

parameter (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗) using the predefined 

hormetic zone 𝑍𝑝𝑎𝑟𝑎𝑚 as per Step 2.13 to Step 

2.18. In Step 2.19 to Step 2.21, we ensure that the 

value of 𝑇𝑎𝑑𝑗 is integer as it defines a time interval 

for hormetic adjustments in AHBO.      

 

3.3. Simulation Setup 

 

To evaluate both our proposed and baseline 

offloading strategies, we built a lightweight, time-

stepped simulation environment using Python. This 

simulator represents a network of edge datacenters, 

each of which tracks dynamic system metrics like 

CPU usage, queue depth, and latency. The tasks are 

introduced into the scenario by using pre-built 

traces and follows discrete time intervals in 

scheduling. We have used both online and offline 

strategies for comparison and the tasks are 

dispatched in real-time or batch mode depending 

upon the strategy. The offline strategies (HHO and 

SMA) use batch mode, whereas the online 

strategies (AHBO and RLQ) uses real-time task 

dispatch [8]. The simulator is much simpler than 

the other simulators used in this domain, but the 

idea is to captures key system-level behaviors, such 

as, load balancing, latency impacts, and decision 

overhead, which are important in this case scenario. 

The architecture of the simulator, as depicted in 

Figure 2, is organized into different modular 

components, such as, the EdgeSimulatorEngine, 

which manages the simulation timeline and 

facilitates interactions across multiple modules. The 

module which handles the task generation and 

scheduling is TaskArrivalModel module. This 

module follows predefined patterns and processing 

demands. The InfrastructureModel module includes 

the edge datacenter layer (EdgeDCs), while the 

TaskExecutionEngine module manages task queues 

and execution based on available capacity. The 

OffloadingPolicyInterface module controls the task 

orchestration, offloading and redistribution, and is 

the place where the core logic of different 

offloading algorithms is introduced. Further, the 

simulation events, system states, and task life 

cycles are tracked by the MonitorAndLogger 

module, and the summarized performance metrics 

are exported via the ResultsExporter module. 

 

 
Figure 2. The modular architecture of the custom simulation environment. 

The simulation experiments model task offloading 

scenarios across infrastructures comprising 3, 5, 10, 

and 15 EdgeDCs. For each configuration, 

simulations are conducted using task sets of 500, 

1000, and 5000 tasks, with a dynamically varying 

task generation rate. In this setup, the task arrival 

times and processing demands are sourced from 

pre-generated traces to ensure uniformity in the 

execution conditions and input data across all 

algorithms which are being assessed. The 

simulation parameter and the algorithm specific 

configurations are listed in the Table 2. 

The experimental setup is carefully designed for 

evaluating the AHBO algorithm for its comparison 

with leading metaheuristic and reinforcement 

learning approaches. We explored a wide range of 

simulation scenarios by varying the number of 

Edge Datacenters from 3 to 15, and running task 

sets of 500, 1000, and 5000 tasks for each 

configuration, as summarized in Table 2.  
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However, AHBO and RLQ are online, adaptive 

strategies that make decisions on the fly as tasks 

arrive and HHO and SMA are offline optimizers 

that work by computing an entire batch of tasks in 

advance. This fundamental difference between 

these two categories of algorithm brings specific 

challenges in measuring performance. We have 

addressed these challenges by using the metric for 

decision overhead and computational cost. As the 

online methods spread decision-making throughout 

the simulation, with small, frequent computations, 

while offline methods require a larger optimization 

effort before execution even begins, we have 

provisioned the simulator to track the total decision 

overhead for each algorithm during the 

experiments. 

We also put significant effort in configuring RLQ 

and to obtain right set of hyperparameters. We 

carried out an in-depth tuning phase, testing 

multiple combinations of learning rate, discount 

factor, and epsilon decay. The result of the tuning 

effort is shown in the 3D surface plot, Figure 3, 

which shows that how the learning rate and 

discount factor affect average latency. This plot 

highlights how sensitive performance can be to 

these choices and confirms that RLQ was fine-

tuned to perform at its best.  

 

 
Figure 3. 3D surface plot illustrating the hyper 

parameter tuning for the RLQ agent; highlighting the 

optimal parameter space identified 

 

The performance of each algorithm is evaluated 

using the following key indicators: 

 

a) Average Latency ( 𝐿): The mean total time 

from task arrival to its completion. 

b) Maximum Completion Time (𝐿𝑚𝑎𝑥): The 

total time elapsed until the last task in a 

given simulation run is completed. 

c) 99th Percentile Latency: To capture tail 

latency, indicating the worst-case 

performance for the majority of tasks. 

d) Total Decision Overhead: The cumulative 

computational time spent by an algorithm 

in making offloading and redistribution 

decisions. For batch optimizers, this 

represents their total optimization time. 

Finally, all simulations in this study were executed 

on the Google Colab platform using its default CPU 

runtime 2-core Xeon processor, with approximately 

12 GB RAM and no GPU or TPU acceleration was 

employed during the execution for any of the 

algorithm evaluated here. 

 

4. Results and Analysis 

 

This section presents the experimental evaluation of 

the AHBO algorithm against the metaheuristic 

algorithms HHO, SMA, and reinforcement learning 

based RLQ. The algorithms used as baseline here 

are well performing algorithms used in various 

edge computing scenarios in recent studies [21, 35 

and 36]. We analyze the performance using key 

indicators, such as, average latency, makespan, 

99th percentile latency, and total decision overhead, 

to provide an extensive understanding of the 

efficiency of each algorithm. 

 

4.1.Results 
 

The simulation results presented in this sub-section 

are obtained from the experimental setup which is 

Table 2: Simulation Configuration Parameters 

Parameter : Value(s) 

Number of Edge 

Datacenters (N) 
: 3, 5, 10, 15 

Total Tasks (Jobs) : 500, 1000, 5000 

Task Arrival Model : 𝑇𝑟𝑎𝑐𝑒𝑑 

Task Processing 

Time  
: 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 

Metrics Used (𝜇𝑖,𝑗 ) : 𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑄𝑢𝑒𝑢𝑒 𝐿𝑒𝑛𝑔𝑡ℎ, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 

AHBO Specific Configuration 

Adjustment factor 

(𝑘) 
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 1.5, 𝑅𝑎𝑛𝑔𝑒: [1.0, 2.0] 

Redistribution factor 

(𝛿) 
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 1.5, 𝑅𝑎𝑛𝑔𝑒: [1.0, 2.0] 

Adjustment 

Threshold (𝜃) 
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 0.3, 𝑅𝑎𝑛𝑔𝑒: [0.1, 0.5] 

Hormetic zone 

adjustment period 

(𝑇𝑎𝑑𝑗) 
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 10, 𝑅𝑎𝑛𝑔𝑒: [5, 20] 

HHO/SMA Specific Configuration 

Population Size : 30, 50, 100 
Max Iterations : 20, 50 
Objective Function  : 𝐿𝑚𝑎𝑥 +0.1 ⋅  �̄� 
RLQ Specific Configuration 

Learning Rate :  𝑇𝑢𝑛𝑒𝑑( 0.1, 0.2, 0.5) 
Discount Factor : 𝑇𝑢𝑛𝑒𝑑 (0.7, 0.9) 
Epsilon Decay Rate : 𝑇𝑢𝑛𝑒𝑑 (0.995, 0.999) 
Min Epsilon : 0.01 / 0.05 
Training Episodes : 200 (𝑡𝑢𝑛𝑖𝑛𝑔), 1000 (𝑓𝑖𝑛𝑎𝑙 𝑟𝑢𝑛) 
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detailed in Section 4 and are presented across 

different scenarios varying in the number of Edge 

Datacenters (3, 5, 10, 15) and total tasks (500, 

1000, 5000).  

Table 3 provides the relative percentage difference 

in average latency between AHBO and the baseline 

algorithms used in this study. The metric used to 

generate these values is relative percentage 

difference computed by using the 

formula ((
𝐿𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝐿𝐴𝐻𝐵𝑂

𝐿𝐴𝐻𝐵𝑂
) ×  100). In these 

readings, which are measured across the scenarios, 

AHBO demonstrates significant improvements in 

average latency, often reducing it by over 200–

300% compared to HHO and RLQ. The 

performance advantage is particularly noticeable in 

resource-constrained, high-load scenarios. For 

instance, with 3 EdgeDCs managing 5000 tasks, 

AHBO achieves latency reductions of 306% and 

194% relative to HHO and RLQ, respectively. 

 
Table 3. Relative percentage difference in average 

latency between AHBO and baseline algorithms across 

scenarios. 
No. of  

EdgeDCs 
No. of  

Tasks 
Relative Difference in Average 

Latency with AHBO (%) 
HHO SMA RLQ 

3 500 250.04 249.23 96.6 
3 1000 286.23 269.41 43.12 
3 5000 306.29 301.33 193.8 
5 500 263.01 142.81 245.16 
5 1000 305.95 198.92 300.33 
5 5000 311.45 233.41 413.25 

 

The extent of these improvements was initially 

unexpected. However, thorough validation of both 

the implementation and metric calculations 

confirms that AHBO has performed consistently 

well because the adaptive stress balancing and 

dynamic hormetic zone re-adjustment mechanism 

contributes to its strong performance across 

different workload conditions. Nevertheless, further 

analysis is required to fully understand the 

magnitude of this improvement, particularly when 

compared to optimization-driven strategies 

operating under identical constraints. 

In contrast to HHO and RLQ, SMA outperforms 

AHBO in certain large-scale, low-load 

configurations, e.g. when the number of EdgeDCs 

(≥ 10) is more and number of tasks (=500) is lesser, 

reducing the latency up to 53%. This outcome 

highlights the advantage of batch-optimized 

methods when workloads are predictable and 

system resources are sufficiently available. 

However, this improvement comes with an 

increased decision overhead, as SMA introduces 

significantly higher scheduling latency explained in 

subsequent subsections. 

Continually, Table 4 provides a detailed overview 

of the key performance metrics, including, Average 

Latency, Maximum Completion Time, 99th 

Percentile Latency and Total Decision Overhead. It 

reports the values achieved by AHBO and the 

comparative algorithms HHO, SMA, RLQ across 

all tested edge datacenter configurations and task 

loads. Each value represents the aggregate 

performance observed over the respective 

simulation cycles or optimization runs, offering a 

precise numerical foundation for the visual trends 

and in-depth analysis discussed in the subsequent 

subsections. Overall, AHBO presents a well-

balanced approach to offloading by combining 

responsiveness with performance. Its capability to 

dynamically adapt to varying workload demands 

while maintaining low latency makes it a suitable 

option for real-time edge computing environments. 

 

4.1.1 Average Latency (�̅�) 

Figure 4 illustrates the trend reported in Table 3 

and Table 4 visually. It shows the comparative 

performance of AHBO, HHO, SMA, and RLQ in 

terms of average latency plotted against different  

 

Figure 4. Comparison of average latency for AHBO, HHO, RLQ and SMA across different scenarios 
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Table 4. Results obtained for Average Latency, Maximum Completion Time and 99th percentile Latency for different 

simulation scenarios 

 

number of EdgeDCs using three graphs, one for 

each set of 500, 1000 and 5000 tasks. As shown in 

these graphs, the AHBO consistently outperforms 

HHO, SMA, and RLQ in minimizing average 

tasklatency for the heavy and moderate workload 

configurations. However, the trend changes for 

SMA rapidly for the configurations where enough 

resources are available and the workload is low. In 

such situations, as explained already, SMA 

outperforms even the AHBO algorithm by up to 

53% whereas in high workload configurations, 

AHBO outperformed SMA by up to 300% (N=3, 

Tasks = 5000). The curves indicate that increase in 

latencies for HHO, SMA and RLQ can be 

exponential, whereas, AHBO shows almost linear 

curve as the complexity of the scenario increases. 

 

4.1.2 Maximum Completion Time (𝑪𝒎𝒂𝒙) 

Figure 5 depicts the maximum completion times 

achieved by each algorithm under the same varying 

conditions. As expected, the maximum completion 

time metric results mirror the trends observed for 

No. of 

EdgeDCs 

No. of Tasks Algorithm Average 

Latency 

Max Completion 

Time 

99th Percentile 

Latency 

3 

500 

AHBO 189.54 733.79 342.27 

RLQ 372.63 1219.26 819.68 

SMA 661.93 1683.89 1283.22 

HHO 663.46 1731.67 1317.54 

1000 

AHBO 344.28 1440.95 650.87 

RLQ 492.75 1662.79 1044.4 

SMA 1271.8 3333.54 2533.16 

HHO 1329.71 3805.23 2967.03 

5000 

AHBO 1602.33 6997.64 3142.33 

RLQ 4707.69 13407.53 9490.36 

SMA 6430.65 16710.16 12723.05 

HHO 6510.12 17800.85 13772.35 

5 

500 

AHBO 127.0 620.55 217.96 

SMA 308.37 1044.03 632.08 

RLQ 438.35 1323.45 916.87 

HHO 461.02 1708.62 1276.32 

1000 

AHBO 219.77 1158.39 397.01 

SMA 656.94 2037.35 1274.21 

RLQ 879.81 2604.56 1828.69 

HHO 892.16 3308.1 2516.42 

5000 

AHBO 931.92 5579.96 1821.83 

SMA 3107.11 10088.3 6250.34 

HHO 3834.37 14769.52 10752.09 

RLQ 4783.04 13399.48 9559.64 

10 

500 

SMA 70.98 576.68 168.71 

AHBO 72.39 526.2 114.55 

HHO 167.58 1135.89 688.17 

RLQ 438.36 1337.0 920.66 

1000 

AHBO 114.43 966.89 196.45 

SMA 137.25 1063.88 295.4 

HHO 366.63 2342.08 1504.54 

RLQ 907.31 2648.63 1859.21 

5000 

AHBO 441.09 4782.01 838.27 

SMA 562.85 5172.15 1186.24 

HHO 2751.22 14042.52 9749.48 

RLQ 4870.9 13698.21 9664.95 

15 

500 

SMA 25.12 453.86 62.88 

AHBO 53.79 475.71 82.29 

HHO 297.76 1506.65 1069.39 

RLQ 441.74 1325.72 920.18 

1000 

SMA 32.98 851.17 101.82 

AHBO 79.54 919.06 129.13 

HHO 487.5 2728.08 1860.31 

RLQ 951.48 2722.6 1910.67 

5000 

SMA 53.43 3784.7 193.15 

AHBO 276.18 4255.65 512.92 

HHO 1704.82 11275.55 7373.6 

RLQ 4841.21 13459.08 9626.67 
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average latency. AHBO’s superior capability in 

reducing the total time required to complete all 

tasks is particularly evident in high-load scenarios. 

While SMA can achieve competitive makespan in 

smaller scenarios, the superiority of the AHBO in 

intensive environments is again verified by the fact 

that it has lesser maximum completion time than 

SMA in the scenario where SMA achieved lower 

average latency i.e. when N=10 and tasks=500. 

This reason for this trend is because the tail latency 

of AHBO is lesser than SMA for this case scenario. 

 

 

 
Figure 5. Maximum completion time for AHBO, HHO, RLQ and SMA across different scenarios 

 

4.1.3 99th Percentile Latency  

 

Figure 6 provides insights into the tail latency 

performance, indicating the worst-case experience 

for 99% of tasks. Crucially, the 99th percentile 

latency reveals AHBO's robustness in handling 

peak loads and avoiding significant delays for 

critical tasks. AHBO consistently maintains lower 

tail latencies compared to its counterparts across 

almost all configurations, indicating more 

predictable and stable system behavior even under 

stress. Also, as it is already seen in previous 

subsections, SMA performs well in scenarios where 

workload is lighter. However, its performance as 

per this metric is not as distinct as for average 

latency metric. Summary, AHBO is much more 

effective at preventing performance bottlenecks that 

disproportionately affect a small fraction of tasks. 

 

 

Figure 6. Comparison of 99th percentile (tail) latency for AHBO, HHO, RLQ and SMA across different scenarios. 

4.1.4 Total Decision Overhead 
 

Figure 7 illustrates the computational overhead 

associated with the decision-making process of 

each algorithm. It clearly differentiates between 

online (AHBO, RLQ) and offline (HHO, SMA) 

algorithms in terms of how this overhead is 

accumulated. While HHO and SMA incur a single, 

upfront optimization cost, AHBO and RLQ 

demonstrate continuous decision-making overhead 
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per time step. Despite being an online adaptive 

algorithm, AHBO maintains a remarkably low 

decision overhead, often comparable to the 

continuous decision costs of RLQ and significantly 

less than the upfront costs of HHO and SMA. 

Seemingly, the RLQ algorithm is quicker than all 

other algorithms but the decision overhead in 

Figure 7 does not include the RLQ model’s training 

time, without which a machine learning or 

reinforcement learning algorithm may provide very 

unreliable solution. The training cost for RLQ, in 

terms of time, is depicted in Figure 8. As it is 

evident, the time required for training is on a much 

larger scale than the time required for decision-

making. This makes AHBO highly suitable for real-

time edge environments where immediate and 

computationally inexpensive decisions are critical 

because it requires no training or re-training. 

 

 

Figure 7. Total decision overhead (log scale) for AHBO, HHO, RLQ and SMA across different scenarios. 

4.2. Analysis and Discussion 

 

In this subsection we dive deeper to explore the 

underlying reasons and present more insights for 

the performances observed in section 5.1. This will 

help us to understand the position of AHBO 

algorithm in the broader context of edge computing 

optimization. 

  

4.2.1 Behavioral Comparison  
 

AHBO has consistently recorded superior 

performance, up to 200-300% decrease in latency 

during high workloads, which can be directly 

linked to its core hormesis principle and adaptive 

mechanisms. It maintains EdgeDCs within their 

optimal stress zones dynamically and balances the 

workload according to the situation taking very low 

decision time. This helps AHBO to prevent both 

underutilization and overburdening of edge 

datacenters. AHBO continuously fine tunes its 

control parameters (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗), by using the 

adaptive parameter tuning subroutine which allows 

AHBO to dynamically adjust its offloading and 

redistribution strategies in response to real-time 

changes in workload characteristics and state of 

edge datacenters.  

In contrast, the metaheuristics algorithms like HHO 

and SMA are capable of finding high-quality 

solutions for a given static problem instance but 

their inability to adapt to sudden changes in 

conditions limits their effectiveness in edge 

computing scenarios. These methods find the 

solution depending upon initial static snapshot, 

which quickly degrades as the simulation 

progresses. 

On the other hand, RLQ also falls behind due to 

complexity of state-action space and lack of 

continuous learning and policy updates. 

Reinforcement learning methods heavily depends 

on learning capabilities and can adapt to changing 

environments through its reward mechanism, but 

the state-action space it develops during the 

learning state might not be sufficient in highly 

varying edge computing scenarios. RLQ shows a 

competitive performance with batch processing 

methods, HHO and SMA, but is not able to match 

the adaptive capabilities of AHBO algorithm. 

 

4.2.2 Trade-offs in Computational Cost and 

Scalability 

  

This subsection introspect the trade-off between 

offloading accuracy and time taken in making 

offloading decisions, introduced as decision 

overhead in this study, and is the component of 

computational cost which we intend to minimize. 

The batch mode algorithms, SMA and HHO, 

optimize offloading through population-based 

exploration, but also incur significant overhead in 



Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442 

 

4440 

 

decision-making time. As shown in Figure 7, the 

decision time incurred by these algorithms per 

scheduling cycle remains around 100 to 1000 

seconds, regardless of the scenario. These high 

values reflect the offline nature of their 

optimization logic, which involves full population 

evaluation and fitness evaluation for each batch of 

the tasks. 

In contrast, Figure 7 also shows that AHBO and 

RLQ exhibit decision overheads that are three to 

four orders lower in magnitude, usually ranging 

from 0.005 to 0.15 seconds per time step. This 

places them well within real-time operational 

thresholds for edge environments. However, while 

RLQ’s decision latency appears comparable to 

AHBO, it requires a substantial up-front training 

phase. Figure 8 show that cumulative training time 

of RLQ algorithm spans over ten thousand seconds 

in complex scenarios. This cost scales nonlinearly 

with the size of the system and the number of 

episodes used during policy convergence.  

Together, these results establish that while all 

methods may appear viable from latency 

standpoint, their feasibility in real-time deployment 

depends on decision readiness and computational 

demand. AHBO achieves the most favorable trade-

off, combining online responsiveness with robust 

average and tail latency performance, while SMA 

and HHO trade accuracy for significant 

computational cost, and the utility of RLQ 

algorithm is limited by its offline training 

requirements. 

 

4.2.3 Time Complexity Analysis 

  

The AHBO algorithm is designed to make 

decisions quickly and adaptively and this 

achievement is evident from decision time results 

in Figure 7. Unlike the other algorithms, AHBO 

runs online and makes task offloading decisions at 

each time step without the requirement to see the 

entire workload in advance. AHBO combines the 

important performance parameters like, CPU 

utilization, queue length, and latency into a single 

stress value which helps the algorithm understand 

the state of each datacenter and also keeps the 

decision making process efficient. Due to this 

strategy, the time complexity of AHBO stays close 

to 𝑂(𝑁𝑙𝑜𝑔𝑁), where 𝑁 is the number of edge 

datacenters. Even though AHBO includes an 

adaptive parameter tuning routine, but the routine 

does not run every for time step and only adjusts a 

few parameters, so it does not slow down the 

algorithm in real-time. 

 
Figure 8. Training time required for the RLQ agent; a 

cost that scales with system complexity and is entirely 

avoided by the training-free AHBO algorithm 

 

On the other hand, SMA and HHO use global 

optimization techniques that evaluate large 

populations of possible solutions. Their time 

complexity grows much faster and depends on the 

number of tasks (𝑇), the size of the population (𝐸), 

and the number of iterations (𝑅). Normally, these 

algorithms are said to have time complexity 𝑂(𝐸 ×
𝑇) with the assumption that population and number 

of iterations scale with number of tasks. This leads 

to high decision-making time as also evident in 

Figure 7. Similarly, the time complexity for tuning 

RLQ depends on multiple parameters such as, 

hyper parameter grid combination(𝐺), number of 

training episodes (𝑉), number of edge data 

centers (𝑁), number of tasks(𝑇), but assuming that 

the grid size and number of data centers remain 

small finite values, the time complexity of training 

RLQ can be reduced to 𝑂(𝐸 × 𝑇). Once the policy 

is learned, RLQ runs with linear task complexity. 

Hence, RLQ makes fast decisions once trained, but 

the training process itself is expensive. Figure 8 

shows that RLQ training takes from hundreds to 

over ten thousand seconds depending on the 

number of datacenters and tasks which is a serious 

limitation in dynamic environments where system 

conditions change quickly, and re-training may be 

required frequently.  

Overall, AHBO avoids both the heavy upfront cost 

of RLQ and the runtime delays of SMA and HHO. 

Its ability to make fast decisions using a single 

combined stress value, without needing full 

retraining or batch optimization, makes it well 

suited for real-time, latency-sensitive edge 

computing. 
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5. Conclusion 

 

In this paper, we have addressed the problem of 

computing task offloading in dynamic edge 

computing environments tailored for Industrial IoT 

(IIoT) systems. Taking into account the latency 

sensitivity and the resource constraints of edge 

infrastructure, we formulated a biologically 

inspired decision-making mechanism based on 

hormetic adaptation. Building on this formulation, 

we proposed an Adaptive Hormesis-Based 

Optimization (AHBO) strategy that unifies system 

stress indicators and dynamically adjusts offloading 

policies using percentile-based hormetic zones. The 

aim is to optimize latency while maintaining low 

decision overheads suitable for real-time scenarios.  

The simulation results confirm that AHBO 

significantly reduces average latency compared to 

existing techniques such as HHO, SMA, and Q-

learning, particularly under high-load or bottleneck 

conditions. In future, we plan to extend this 

methodology to incorporate energy consumption 

and to reduce the computational cost further. We 

also intend to explore its application in 

decentralized and federated edge architectures, 

where distributed learning and decision making 

across multiple clusters of edge datacenters may be 

required. 
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