

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 4429-4442
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

Adaptive Hormesis-Based Optimization (AHBO) for Efficient Task Offloading

in Industrial IoT Edge Environments

Amit Malik1*, Amita Rani2

1 Department of Computer Science and Engineering, SRM University, Delhi-NCR, Sonepat, Haryana, India.
* Corresponding Author Email: malik.dcrust@gmail.com- ORCID: 0009-0008-0407-7183

2 Department of Computer Science and Engineering, DCRUST, Murthal, Sonepat, Haryana, India.
Email: amitamalik.cse@dcrustm.org- ORCID: 0000-0002-7385-4045

Article Info:

DOI: 10.22399/ijcesen.3067

Received : 22 March 2025

Accepted : 17 June 2025

Keywords

Hormesis,

Edge Computing

Nature Inspired Optimization

Task Offloading

Latency

Bio-inspired.

Abstract:

Adaptive Hormesis-Based Optimization (AHBO) is an adaptation of the Hormesis-

Based Optimization (HBO) framework for task offloading in edge computing, targeting

Industrial IoT (IIoT) environments. AHBO enhances the original HBO model by

introducing an adaptive tuning method. The algorithm operates online, does not require

any training and maintains almost a linear time complexity, making it suitable for edge

scenarios in IIoT with a frequently varying environment. AHBO is evaluated against

Reinforcement Learning Q-learning (RLQ), Harris Hawks Optimization (HHO), and

Slime Mould Algorithm (SMA) across 12 different simulation configurations. It

consistently outperforms RLQ, SMA and HHO algorithms in most configurations,

offering up to 200–300% latency reduction in high-load, low-resource conditions.

While SMA shows slight latency advantages in a few low-load cases, its decision time

is still significantly higher than AHBO, making AHBO a compelling solution for real-

time IIoT task scheduling under variable system stress.

1. Introduction

The landscape of modern computing is changing

very rapidly. It is evolving at fast pace through

optimized system performance with the help of

efficient resource allocation and workload

distribution [1]. The demand for optimization has

particularly affected sectors including cloud

computing, manufacturing, and real-time systems.

This need is even more pronounced in the Industrial

Internet of Things (IIoT), where the convergence of

manufacturing machinery with real-time data

processing creates complex and demanding

operational environments. The complexity and

variability in these environments make the adaptive

solutions a necessity to maintain the efficiency and

feasibility of the system [2]. In order to implement

the optimization effectively, several types of

methods are used. These methods have their pros

and cons based on the demands of the scenario. For

example, the traditional optimization methods, such

as linear and integer programming, are effective for

simpler, static settings, but their performance

degrades when the number of constraints increases

the complexity and demands for real time

adaptation [3]. Similarly, heuristic methods are

computationally efficient but may become trapped

in local optima [4]. The machine learning (ML)

techniques have emerged very strongly in last

decade, including neural networks and deep

learning, and offers very powerful solutions for

complex, high-dimensional problems [5]. However,

these methods require extensive datasets,

substantial computational power, and model re-

trainings in resource-constrained environments,

limiting their applicability [6]. Therefore, the

approaches which provide a quality solution with

low computational cost and without intensive

training-retraining phases can be beneficial [7].

These approaches can enhance decision-making

processes in edge computing by effectively

balancing resource utilization and performance

requirements, ultimately leading to improved

system efficiency.

Edge computing brings data processing closer to

the source of computation, Figure 1. It significantly

reduces task latency and increases the real-time

performance and reliability [8]. This capability is

crucial for IIoT applications, where delays in

processing data from sensors and actuators can

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4430

impact production efficiency and safety. However,

edge servers are not as capable as cloud servers and

often possess limited computing power and storage

capacity. It means that increasing workload beyond

a certain point reduces the efficiency of the edge

servers because their scalability is limited and it

may become impractical to offload all tasks to them

[9]. Hence, a dynamic and intelligent task

offloading strategy to select computing nodes

optimally is needed [10]. The advanced methods

like reinforcement learning (RL) algorithms have

done well in dynamic environments [11]. These

architectures use agents which learn from

interactions but their deployment in complex

mobile edge computing (MEC) environments faces

difficulties such as inaccurate reward calculations

due to queuing, which leads to suboptimal task

scheduling [12]. Deep Reinforcement Learning

(DRL) models also incur significant computation

and storage overhead due to the use of complex

neural network architectures [13].

Figure 1. Overview of the edge computing architecture

considered in this study.

In response to these challenges, the biologically

inspired algorithms can be a promising solution.

These methods often pack inherent adaptive

mechanisms which are simple to manifest and can

overcome many limitations of traditional and ML

approaches [14]. The Hormesis-Based Optimization

(HBO) algorithm is a biologically inspired

computational approach which is designed to

achieve optimization with low computational cost

[15]. HBO is fundamentally inspired by the

phenomenon of hormesis, where small doses of

stress can strengthen biological systems and

enhance their performance in extreme environments

[16]. In a biological system, stress can be the

excessive workload on muscles during exercise, the

exposure to low levels of radiation that trigger cell

repair, or the temporary lack of food during fasting

which help the body adapt and become stronger

[17]. Equivalently, in computational systems, the

multiple performance parameters can be translated

into stress which helps to trigger certain behavior.

Appropriate and controlled application of stress

gives beneficial results in natural system and HBO

attempts to use this characteristic in the

computational systems. The key strength of HBO

lies in its ability to tackle a NP-hard problem in

multi-constrained systems without exhaustive

exploration of all possible solutions.

HBO converts multiple system parameters into a

unified "stress" metric, for a predictive-reactive

dynamic job shop scheduling problem (DJSS) [18],

simplifying a complex and multi-constrained

optimization into a single-objective problem. This

strategy enables the HBO to achieve reduced time

complexity of the order of 𝑂(𝑛 𝑙𝑜𝑔 𝑛) which is

usually at least 𝑂(𝑛²) for such NP-hard problems.

HBO achieves this through rule-based framework

which provides straightforward solution, but, with

adaptive functionalities.

In this work, we introduce Adaptive HBO (AHBO)

algorithm which is an enhanced version and

incorporates automated hyperparameter tuning into

the core stress-based decision process. In highly

dynamic edge computing environments, where

workload characteristics change rapidly, static

parameters can lead to suboptimal performance

[19]. AHBO addresses this by continuously fine-

tuning key control parameters based on real-time

performance feedback. The fundamental shift from

fixed heuristics to self-optimizing control

differentiates AHBO from its predecessor, enabling

robust and context-aware adaptation to fluctuating

system demands. We demonstrate how AHBO

addresses the critical need for simple, deterministic,

yet adaptive methods that do not require extensive

training data or possess rigid strategies. We

rigorously compare AHBO's performance against

three prominent optimization techniques, such as

Harris Hawks Optimization (HHO) [20] and Slime

Mould Algorithm (SMA) [21] and ϵ-greedy Q-

Learning method (RLQ) [22] which is a tabular

reinforcement learning approach, for making

offloading decision in edge computing scenario.

The key contributions of this study are:

a) We provide a detailed explanation of the

AHBO algorithm, highlighting its adaptive

parameter tuning mechanism that

distinguishes it from the original HBO.

b) We emphasize the crucial advantage of

adaptive, biologically inspired algorithms that

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4431

operate effectively without large datasets or

complex training phases, making them ideal

for resource-constrained and dynamic

environments.

c) We present a comprehensive comparative

analysis of AHBO against HHO, SMA and

RLQ in an edge computing scenario,

evaluating key performance indicators such

as latency, tail latency, maximum task

completion time, and decision cost.

d) We demonstrate that AHBO offers a robust

and efficient solution for resource

optimization, proving its competitive

performance against other advanced meta-

heuristic algorithms while maintaining a low

computational footprint and inherent

adaptability which is highly relevant to

relevant in IIoT settings.

The remainder of this paper is organized as follows.

Section 2 reviews related work on task offloading

strategies in edge computing. Section 3 presents the

design of the proposed AHBO algorithm. Section 4

describes the simulation setup, including system

parameters, task models, and performance metrics.

Section 5 reports the experimental results,

comparing AHBO with three baseline methods

(HHO, SMA, and RLQ) across varying workloads

and infrastructure scales, followed by a detailed

analysis and discussion. Finally, Section 6

concludes the paper and outlines potential

directions for future work.

2. Related Work

Traditional computational techniques such as linear

programming, dynamic programming, and heuristic

algorithms have long served as the foundation for

solving optimization problems in MEC. However,

these methods face severe limitations under

dynamic environments. For instance, linear

programming assumes linear relationships and

struggles with scalability, especially when integer

or binary decision variables are required [3, 15, 23

and 24]. Dynamic programming methods are

capable of breaking down problems into

manageable sub-problems, but their efficiency is

hampered when used for problems dealing with

large number of dimensions, making it

computationally infeasible for real-time MEC

scenarios [23, 25].

Heuristic algorithms like Genetic Algorithm (GA)

and Particle Swarm Optimization (PSO) are widely

used due to their simplicity and scalability to large

problems. Nonetheless, they also often get trapped

in local optima and have difficulty balancing

exploration and exploitation, particularly in real-

time mobile settings [4, 11, 26 and 27]. Moreover,

they lack adaptability to evolving conditions, which

is critical in MEC where workloads, network states,

and resource availability change rapidly [24, 26].

The computational overhead required for iterative

exploration also adds to their inefficiency in

latency-sensitive contexts [12, 23].

These limitations have sparked growing interest in

nature-inspired and bio-inspired methods.

Algorithms like Ant Colony Optimization, Firefly

Algorithm, and Differential Evolution emulate

natural processes and are shown to be more

resilient and effective in high-dimensional search

problems [20, 26, 27, 28]. Their inherent

stochasticity and feedback mechanisms allow these

models to adapt better to dynamic states,

outperforming static approaches across various

performance indicators such as convergence time,

load balancing, and energy efficiency [26, 28].

Among these, algorithms based on biological stress

adaptation mechanisms—particularly hormesis—

are receiving attention for their capacity to encode

environmental variability as a stimulus for system-

level resilience. Hormesis, defined as a biphasic

response to stress where low doses improve

function and high doses inhibit it, has been

integrated into computing to support dynamic

system stabilization [16, 17, 30 and 31]. HBO

operationalizes this concept by translating multiple

parameters into a single stress signal that guides

optimization—streamlining computation while

retaining adaptability [15, 16].

Recent advances suggest that adaptive

hyperparameter tuning further enhances such

methods. Static parameters, while useful in stable

settings, limit responsiveness in unpredictable

environments. Studies show that real-time tuning

frameworks improve learning and forecasting

across fields from machine learning to epidemic

modeling [10, 19, 32 and 33]. Bio-inspired designs

like Artificial Hormone Systems (AHS) and

hormone-guarded agents in organic computing

demonstrate robust decision-making and fault-

tolerance in distributed systems [28, 34]. These

developments support the motivation behind

AHBO, which aims to combine biological

resilience with dynamic adaptability for edge task

offloading.

3. Methodology

In this section, we detail the proposed Adaptive

Hormesis-Based Optimization (AHBO) algorithm,

which is an enhancement of the Hormesis-Based

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4432

Optimization (HBO) algorithm [15] and is designed

for dynamic computation offloading decisions in

edge computing environments. The algorithm is

presented in two parts: Algorithm 1, AHBO,

outlines the adaptation of core HBO mechanism for

edge computing scenario. It makes real-time

offloading decisions for incoming computation

tasks to Edge datacenters by using the principles of

hormesis, aiming to balance the workload and

minimize latency. Algorithm 2 then describes the

details of adaptive tuning process subroutine used

in AHBO, which continuously adjusts the

operational parameters. The proposed AHBO

algorithm aims to enhance the performance by

making intelligent task scheduling based on real-

time performance feedback in rapidly changing

edge computing scenarios.

3.1. Adaptive Hormesis-Based Optimization

(AHBO) for Edge Computing

In this subsection, we present the details of the

proposed AHBO offloading strategy which is

described in the Algorithm 1. AHBO is the

decision-making component which is responsible

for orchestrating the dynamic allocation of

computational tasks across Edge Datacenters

(EdgeDCs) in edge computing scenario. It

continuously monitors key performance indicators

of latency, queue length, and CPU utilization from

various edge datacenters in the network and these

parameters serve as ingredients for the

computational stress calculated for each EdgeDC. It

uses the biological principle of hormesis which says

that the controlled doses of stress induce beneficial

adaptation in a natural system. In this case the

computational stress is used to produce the positive

effects in the computational system comprising of

edge datacenters. AHBO aims to maintain system

performance within optimal operating ranges,

referred to as hormetic zones, under varying

computational loads in an edge computing scenario.

AHBO inherits its conceptual framework from the

original Hormesis-Based Optimization (HBO)

algorithm [15], including the definitions of stress,

dose, and hormetic boundaries, along with control

parameters such as the adjustment factor 𝑘, a

redistribution coefficient 𝜃, a sensitivity threshold 𝛿

for filtering out minor fluctuations from the original

HBO algorithm. In addition, AHBO introduces an

adaptation interval 𝑇𝑎𝑑𝑗, which determines how

frequently the system re-evaluates its hormetic

zones. Percentile boundaries 𝑃𝑙𝑜𝑤 and 𝑃ℎ𝑖𝑔ℎ are

also employed to demarcate the upper and lower

bounds of these zones for each EdgeDC.

The algorithm AHBO begins by reading the

historical performance data from each EdgeDCs. In

step 1.1, it reads three key input metrics: CPU

utilization, queue length, and response latency. In

this discussion, step 1.1 will refer to line numbered

as 1 in Algorithm 1 and step 2.1 will refer to line

numbered as 1 in Algorithm 2, and so on. So, the

metric 𝜇𝑖,𝑗 in step 1.1 represents the internal state of

an EdgeDC and is used to convert this internal state

into a unified value referred to as “computational

stress” or simply “stress” (𝜙𝑖) on each EdgeDC in

step 1.3. In order to produce a unified stress value,

AHBO algorithm first calculates the absolute

correlation |𝑐𝑜𝑟𝑟(𝜇𝑖,𝑗, 𝐿𝑖)| between each metric 𝜇𝑗

(j= CPU utilization, Queue Length, Latency) and

latency 𝐿𝑖 of that edge datacenter and then

normalize (step 1.2) these correlation values to

produce a set of weights 𝑤𝑗 which reflect their

relative importance.

Algorithm 1: Adaptive Hormesis-Based Optimization

(AHBO) for Edge Computing

Input:

𝑁: Number of Edge Datacenters (EdgeDCs)

𝑇: Number of time steps

𝑘: Adjustment factor for workload allocation

𝜃: Redistribution factor for workload balancing

𝛿: Threshold for significant workload adjustments

𝜇: Performance metrics for EdgeDCs

𝑇𝑎𝑑𝑗: Hormetic zone adjustment period

𝑃𝑙𝑜𝑤, 𝑃ℎ𝑖𝑔ℎ: Percentiles for hormetic zone boundaries

a) Calculate Metric Weights

1. 𝑤𝑗 = |𝑐𝑜𝑟𝑟(𝜇𝑖,𝑗 , 𝐿𝑖)|

2. Normalize: Σ𝑗𝑤𝑗 = 1

b) Initialize Hormetic Zones for each EdgeDCs

3. Compute stress metric: 𝜙𝑖 = Σ𝑗𝑤𝑗 ⋅ 𝜇𝑖,𝑗

4. Compute hormetic zone: 𝑍𝑖 = [𝛼𝑖 , 𝛽𝑖], where,

5. 𝛼𝑖 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝜙𝑖 , 𝑃𝑙𝑜𝑤)

6. 𝛽𝑖 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝜙𝑖 , 𝑃ℎ𝑖𝑔ℎ)

c) Real-time Workload Adjustment

7. for each time step 𝑡:

8. for each new task 𝝉:
9. Get 𝜇𝑖,𝑗(𝑡)

10. Compute stress metric: 𝜙𝑖 = Σ𝑗𝑤𝑗 ⋅ 𝜇𝑖,𝑗(𝑡)

11. Choose 𝐸𝑑𝑔𝑒𝐷𝐶𝑖 = argmax𝑖[𝛽𝑖 − 𝜙𝑖(𝑡)]
12. Assign 𝜏 to 𝐸𝑑𝑔𝑒𝐷𝐶𝑖

d) Task Re-distribution

13. for each 𝑬𝒅𝒈𝒆𝑫𝑪𝒊 where 𝜙𝑖(𝑡) > 𝛽𝑖 + 𝜃:
14. compute excess load:

 Δ𝑖 = 𝑘 ⋅ (𝜙𝑖(𝑡) − 𝛽𝑖) ⋅ δ

15. Identify tasks to offload using Δ𝑖

16. offload to 𝐸𝑑𝑔𝑒𝐷𝐶𝑢 with 𝜙𝑢(𝑡) < 𝛼𝑢

e) Hormetic Zone Readjustment

17. if 𝒕 mod 𝑻𝒂𝒅𝒋 = 𝟎

18. Recalculate Hormetic Zones

19. Update zone: 𝑍𝑖 = [𝛼𝑖 , 𝛽𝑖]
f) Adaptive Parameter Tuning

20. Call: “Adaptive Parameter Tuning Subroutine”

(Algorithm 2)

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4433

The stress value 𝜙𝑖 is used to determine that

whether an EdgeDC is underutilized, overburdened

or is in its optimal zone. As per the hormesis

principle, the effect of stress on a natural system is

beneficial within a range of stress doses. If the

stress is lesser than, or increases this range, then the

performance of the system declines. This optimal

range, where the effect of the stress is beneficial, is

referred to as hormetic zone and is defined by upper

and lower bound of the beneficial range in natural

systems. In AHBO, the hormetic zone is defined

as 𝑍𝑖 = [𝛼𝑖 , 𝛽𝑖] for each EdgeDC and is calculated

as shown in step 1.4 to 1.6. Any EdgeDC is

underutilized if 𝜙𝑖 < 𝛼𝑖 (lower bound) and is

overburdened if 𝜙𝑖 > 𝛽𝑖 (upper bound). Both

underutilized and overburdened EdgeDCs are not

beneficial for the system of EdgeDCs. The idea of

the algorithm is to keep the EdgeDCs within

hormetic zone, as much as possible, in order to

minimize the latency among the offloaded tasks in

the overall system. According to AHBO algorithm,

for each new task τ arriving at time 𝑡, the most

underutilized machine is located by using

calculations, given in step 1.9 to step 1.12, and the

new tasks are assigned to it. The excessive load Δ𝑖

is also redistributed to comparatively less burdened

EdgeDCs if any aree found to be overburdened. In

such a case, the amount of excess load is calculated,

and the corresponding number of tasks is migrated

from the overburdened to comparatively

underutilized EdgeDCs. This process is depicted by

steps 1.13 to 1.16, where 𝑘, the adjustment factor

determines how strongly the algorithm reacts to

excess stress, and 𝛿, the redistribution coefficient

controls how aggressively workload is moved to

other available datacenters. The stress on an

EdgeDC is directly comparable to latency and we

offload the tasks to underutilized EdgeDCs in

proportional to the difference between upper

bound 𝛽𝑖 and stress 𝜙𝑖registered on these

datacenters.

The procedure described so far aims to keep the

EdgeDCs within their hormetic zone. However,

when the rate at which tasks are received by the

EdgeDCs increases permanently, or when all the

EdgeDCs are continuously underutilized, we may

need to re-adjust the hormetic zones for EdgeDCs.

In AHBO, we achieve it by re-computing the

hormetic zone after a fixed interval of time

controlled by variable 𝑇𝑎𝑑𝑗, as shown in steps 1.17

to 1.19. In the end, AHBO concludes each

simulation cycle by refining its control parameters

through a subroutine call mentioned in step 1.20,

which implements adaptive feedback mechanism

into AHBO to fine-tune itself across cycles

described in Algorithm 2.

3.2. Adaptive Parameter Tuning Subroutine for

AHBO

The pseudocode for adaptive parameter tuning

subroutine for AHBO is given in Algorithm 2. It re-

adjustments the key parameters (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗) used

by Algorithm 1 and enables the AHBO framework

to continuously self-optimize in ever-changing edge

computing environments. This adaptive tuning

mechanism improves performance metrics, average

latency (𝐿) and maximum completion time 𝐶𝑚𝑎𝑥.

The algorithm takes the current, previous, and best-

recorded performance metrics as input, along with

adjustment directions 𝐷, parameter-specific

hormetic zones 𝑍𝑝𝑎𝑟𝑎𝑚 , and step size 𝑆𝑝. The

subroutine first calculates the amount of

change (Δ𝑓) in performance metric, step 2.1 and

2.2. The change will be none at initialization, hence

the algorithm will continue without adaptation at

the beginning. If the change in performance

parameter is in desired direction (step 2.3), then we

Algorithm 2: Adaptive Parameter Tuning Subroutine

Input:

𝑃𝑐𝑢𝑟𝑟 = {𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗 }: Current parameter values

𝑓𝑐𝑢𝑟𝑟 = {�̅�, 𝐶𝑚𝑎𝑥}: Current performance metrics

𝑓𝑝𝑟𝑒𝑣 = {�̅�, 𝐶𝑚𝑎𝑥} : Previous performance metrics

𝐷 = {𝑑𝑘 , 𝑑𝜃 , 𝑑𝛿 , 𝑑𝑇𝑎𝑑𝑗
} : Adjustment directions,

where 𝑑 𝜖 {−1, 1}

𝑍𝑝𝑎𝑟𝑎𝑚 : Hormetic zones for parameters

𝑆𝑝 = {𝑠𝑘 , 𝑠𝜃 , 𝑠𝛿 , 𝑠𝑇𝑎𝑑𝑗
} : Step sizes

𝑓𝑏𝑒𝑠𝑡 : Best performance metrics

𝑃𝑏𝑒𝑠𝑡 : Parameters corresponding to 𝑓𝑏𝑒𝑠𝑡

𝜖 : Performance change threshold

a) Calculate Performance Change

1. if 𝑓𝑝𝑟𝑒𝑣 = 𝑁𝑜𝑛𝑒, continue

2. Compute change: Δ 𝑓 = 𝑓𝑐𝑢𝑟𝑟[�̅�] − 𝑓𝑝𝑟𝑒𝑣[�̅�]

b) Determine Adjustment and Update Direction/Step

Size

3. if (Δ 𝑓 < −𝜖) then

4. 𝑎𝑑𝑗 = 𝐷𝑝 ⋅ 𝑆𝑝

5. else if (Δ 𝑓 > 𝜖) :

6. 𝑃𝑐𝑢𝑟𝑟 = 𝑃𝑏𝑒𝑠𝑡

7. 𝑆𝑝 = 𝑚𝑎𝑥(𝑆𝑝 ⋅ 0.5, 𝑆𝑚𝑖𝑛)

8. 𝐷𝑝 = −𝐷𝑝

9. 𝑎𝑑𝑗 = 𝐷𝑝 ⋅ 𝑆𝑝

10. else :

11. 𝑎𝑑𝑗 = 𝐷𝑝 ⋅ 𝑆𝑝

c) Apply Adjustment and Enforce Bounds

12. Update parameter: 𝑃𝑛𝑒𝑥𝑡[𝑝] = 𝑃𝑐𝑢𝑟𝑟[𝑝] + 𝑎𝑑𝑗

13. if (𝑃𝑛𝑒𝑥𝑡[𝑝] < 𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑖𝑛]):

14. 𝑃𝑛𝑒𝑥𝑡[𝑝] = 𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑖𝑛]

15. 𝐷𝑝 = −𝐷𝑝

16. if (𝑃𝑛𝑒𝑥𝑡[𝑝] > 𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑎𝑥]) :

17. 𝑃𝑛𝑒𝑥𝑡[𝑝] = 𝑍𝑝𝑎𝑟𝑎𝑚[𝑝𝑚𝑎𝑥]

18. 𝐷𝑝 = −𝐷𝑝

d) Ensure Integer for 𝑻𝒂𝒅𝒋

19. if (𝑝 = 𝑇𝑎𝑑𝑗) :

20. 𝑃𝑛𝑒𝑥𝑡[𝑇𝑎𝑑𝑗] = ⌊𝑃𝑛𝑒𝑥𝑡 [𝑇𝑎𝑑𝑗] + 0.5⌋

21. 𝑃𝑛𝑒𝑥𝑡[𝑇𝑎𝑑𝑗] = 𝑚𝑎𝑥(𝑃𝑛𝑒𝑥𝑡[𝑇𝑎𝑑𝑗], 1)

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4434

continue to adapt by calculating the adjustment

amount as per step 2.4 and update the

parameters (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗) using step 2.12. If the

performance metric degrades (step 2.5), then we

fall back to the parameter values associated with

best value recorded for performance metric so far,

using step 2.6 and decides the amount of

adjustment using the equations in step 2.7 to step

2.9. Consequently, the new parameter values are

decided using the step 2.12. Additionally, we can

define the boundaries for the lowest and highest

values allowed for each of the

parameter (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗) using the predefined

hormetic zone 𝑍𝑝𝑎𝑟𝑎𝑚 as per Step 2.13 to Step

2.18. In Step 2.19 to Step 2.21, we ensure that the

value of 𝑇𝑎𝑑𝑗 is integer as it defines a time interval

for hormetic adjustments in AHBO.

3.3. Simulation Setup

To evaluate both our proposed and baseline

offloading strategies, we built a lightweight, time-

stepped simulation environment using Python. This

simulator represents a network of edge datacenters,

each of which tracks dynamic system metrics like

CPU usage, queue depth, and latency. The tasks are

introduced into the scenario by using pre-built

traces and follows discrete time intervals in

scheduling. We have used both online and offline

strategies for comparison and the tasks are

dispatched in real-time or batch mode depending

upon the strategy. The offline strategies (HHO and

SMA) use batch mode, whereas the online

strategies (AHBO and RLQ) uses real-time task

dispatch [8]. The simulator is much simpler than

the other simulators used in this domain, but the

idea is to captures key system-level behaviors, such

as, load balancing, latency impacts, and decision

overhead, which are important in this case scenario.

The architecture of the simulator, as depicted in

Figure 2, is organized into different modular

components, such as, the EdgeSimulatorEngine,

which manages the simulation timeline and

facilitates interactions across multiple modules. The

module which handles the task generation and

scheduling is TaskArrivalModel module. This

module follows predefined patterns and processing

demands. The InfrastructureModel module includes

the edge datacenter layer (EdgeDCs), while the

TaskExecutionEngine module manages task queues

and execution based on available capacity. The

OffloadingPolicyInterface module controls the task

orchestration, offloading and redistribution, and is

the place where the core logic of different

offloading algorithms is introduced. Further, the

simulation events, system states, and task life

cycles are tracked by the MonitorAndLogger

module, and the summarized performance metrics

are exported via the ResultsExporter module.

Figure 2. The modular architecture of the custom simulation environment.

The simulation experiments model task offloading

scenarios across infrastructures comprising 3, 5, 10,

and 15 EdgeDCs. For each configuration,

simulations are conducted using task sets of 500,

1000, and 5000 tasks, with a dynamically varying

task generation rate. In this setup, the task arrival

times and processing demands are sourced from

pre-generated traces to ensure uniformity in the

execution conditions and input data across all

algorithms which are being assessed. The

simulation parameter and the algorithm specific

configurations are listed in the Table 2.

The experimental setup is carefully designed for

evaluating the AHBO algorithm for its comparison

with leading metaheuristic and reinforcement

learning approaches. We explored a wide range of

simulation scenarios by varying the number of

Edge Datacenters from 3 to 15, and running task

sets of 500, 1000, and 5000 tasks for each

configuration, as summarized in Table 2.

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4435

However, AHBO and RLQ are online, adaptive

strategies that make decisions on the fly as tasks

arrive and HHO and SMA are offline optimizers

that work by computing an entire batch of tasks in

advance. This fundamental difference between

these two categories of algorithm brings specific

challenges in measuring performance. We have

addressed these challenges by using the metric for

decision overhead and computational cost. As the

online methods spread decision-making throughout

the simulation, with small, frequent computations,

while offline methods require a larger optimization

effort before execution even begins, we have

provisioned the simulator to track the total decision

overhead for each algorithm during the

experiments.

We also put significant effort in configuring RLQ

and to obtain right set of hyperparameters. We

carried out an in-depth tuning phase, testing

multiple combinations of learning rate, discount

factor, and epsilon decay. The result of the tuning

effort is shown in the 3D surface plot, Figure 3,

which shows that how the learning rate and

discount factor affect average latency. This plot

highlights how sensitive performance can be to

these choices and confirms that RLQ was fine-

tuned to perform at its best.

Figure 3. 3D surface plot illustrating the hyper

parameter tuning for the RLQ agent; highlighting the

optimal parameter space identified

The performance of each algorithm is evaluated

using the following key indicators:

a) Average Latency (𝐿): The mean total time

from task arrival to its completion.

b) Maximum Completion Time (𝐿𝑚𝑎𝑥): The

total time elapsed until the last task in a

given simulation run is completed.

c) 99th Percentile Latency: To capture tail

latency, indicating the worst-case

performance for the majority of tasks.

d) Total Decision Overhead: The cumulative

computational time spent by an algorithm

in making offloading and redistribution

decisions. For batch optimizers, this

represents their total optimization time.

Finally, all simulations in this study were executed

on the Google Colab platform using its default CPU

runtime 2-core Xeon processor, with approximately

12 GB RAM and no GPU or TPU acceleration was

employed during the execution for any of the

algorithm evaluated here.

4. Results and Analysis

This section presents the experimental evaluation of

the AHBO algorithm against the metaheuristic

algorithms HHO, SMA, and reinforcement learning

based RLQ. The algorithms used as baseline here

are well performing algorithms used in various

edge computing scenarios in recent studies [21, 35

and 36]. We analyze the performance using key

indicators, such as, average latency, makespan,

99th percentile latency, and total decision overhead,

to provide an extensive understanding of the

efficiency of each algorithm.

4.1.Results

The simulation results presented in this sub-section

are obtained from the experimental setup which is

Table 2: Simulation Configuration Parameters

Parameter : Value(s)

Number of Edge

Datacenters (N)
: 3, 5, 10, 15

Total Tasks (Jobs) : 500, 1000, 5000

Task Arrival Model : 𝑇𝑟𝑎𝑐𝑒𝑑

Task Processing

Time
: 𝑈𝑛𝑖𝑓𝑜𝑟𝑚

Metrics Used (𝜇𝑖,𝑗) : 𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑄𝑢𝑒𝑢𝑒 𝐿𝑒𝑛𝑔𝑡ℎ, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦

AHBO Specific Configuration

Adjustment factor

(𝑘)
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 1.5, 𝑅𝑎𝑛𝑔𝑒: [1.0, 2.0]

Redistribution factor

(𝛿)
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 1.5, 𝑅𝑎𝑛𝑔𝑒: [1.0, 2.0]

Adjustment

Threshold (𝜃)
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 0.3, 𝑅𝑎𝑛𝑔𝑒: [0.1, 0.5]

Hormetic zone

adjustment period

(𝑇𝑎𝑑𝑗)
: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙: 10, 𝑅𝑎𝑛𝑔𝑒: [5, 20]

HHO/SMA Specific Configuration

Population Size : 30, 50, 100
Max Iterations : 20, 50
Objective Function : 𝐿𝑚𝑎𝑥 +0.1 ⋅ �̄�
RLQ Specific Configuration

Learning Rate : 𝑇𝑢𝑛𝑒𝑑(0.1, 0.2, 0.5)
Discount Factor : 𝑇𝑢𝑛𝑒𝑑 (0.7, 0.9)
Epsilon Decay Rate : 𝑇𝑢𝑛𝑒𝑑 (0.995, 0.999)
Min Epsilon : 0.01 / 0.05
Training Episodes : 200 (𝑡𝑢𝑛𝑖𝑛𝑔), 1000 (𝑓𝑖𝑛𝑎𝑙 𝑟𝑢𝑛)

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4436

detailed in Section 4 and are presented across

different scenarios varying in the number of Edge

Datacenters (3, 5, 10, 15) and total tasks (500,

1000, 5000).

Table 3 provides the relative percentage difference

in average latency between AHBO and the baseline

algorithms used in this study. The metric used to

generate these values is relative percentage

difference computed by using the

formula ((
𝐿𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝐿𝐴𝐻𝐵𝑂

𝐿𝐴𝐻𝐵𝑂
) × 100). In these

readings, which are measured across the scenarios,

AHBO demonstrates significant improvements in

average latency, often reducing it by over 200–

300% compared to HHO and RLQ. The

performance advantage is particularly noticeable in

resource-constrained, high-load scenarios. For

instance, with 3 EdgeDCs managing 5000 tasks,

AHBO achieves latency reductions of 306% and

194% relative to HHO and RLQ, respectively.

Table 3. Relative percentage difference in average

latency between AHBO and baseline algorithms across

scenarios.
No. of

EdgeDCs
No. of

Tasks
Relative Difference in Average

Latency with AHBO (%)
HHO SMA RLQ

3 500 250.04 249.23 96.6
3 1000 286.23 269.41 43.12
3 5000 306.29 301.33 193.8
5 500 263.01 142.81 245.16
5 1000 305.95 198.92 300.33
5 5000 311.45 233.41 413.25

The extent of these improvements was initially

unexpected. However, thorough validation of both

the implementation and metric calculations

confirms that AHBO has performed consistently

well because the adaptive stress balancing and

dynamic hormetic zone re-adjustment mechanism

contributes to its strong performance across

different workload conditions. Nevertheless, further

analysis is required to fully understand the

magnitude of this improvement, particularly when

compared to optimization-driven strategies

operating under identical constraints.

In contrast to HHO and RLQ, SMA outperforms

AHBO in certain large-scale, low-load

configurations, e.g. when the number of EdgeDCs

(≥ 10) is more and number of tasks (=500) is lesser,

reducing the latency up to 53%. This outcome

highlights the advantage of batch-optimized

methods when workloads are predictable and

system resources are sufficiently available.

However, this improvement comes with an

increased decision overhead, as SMA introduces

significantly higher scheduling latency explained in

subsequent subsections.

Continually, Table 4 provides a detailed overview

of the key performance metrics, including, Average

Latency, Maximum Completion Time, 99th

Percentile Latency and Total Decision Overhead. It

reports the values achieved by AHBO and the

comparative algorithms HHO, SMA, RLQ across

all tested edge datacenter configurations and task

loads. Each value represents the aggregate

performance observed over the respective

simulation cycles or optimization runs, offering a

precise numerical foundation for the visual trends

and in-depth analysis discussed in the subsequent

subsections. Overall, AHBO presents a well-

balanced approach to offloading by combining

responsiveness with performance. Its capability to

dynamically adapt to varying workload demands

while maintaining low latency makes it a suitable

option for real-time edge computing environments.

4.1.1 Average Latency (�̅�)

Figure 4 illustrates the trend reported in Table 3

and Table 4 visually. It shows the comparative

performance of AHBO, HHO, SMA, and RLQ in

terms of average latency plotted against different

Figure 4. Comparison of average latency for AHBO, HHO, RLQ and SMA across different scenarios

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4437

Table 4. Results obtained for Average Latency, Maximum Completion Time and 99th percentile Latency for different

simulation scenarios

number of EdgeDCs using three graphs, one for

each set of 500, 1000 and 5000 tasks. As shown in

these graphs, the AHBO consistently outperforms

HHO, SMA, and RLQ in minimizing average

tasklatency for the heavy and moderate workload

configurations. However, the trend changes for

SMA rapidly for the configurations where enough

resources are available and the workload is low. In

such situations, as explained already, SMA

outperforms even the AHBO algorithm by up to

53% whereas in high workload configurations,

AHBO outperformed SMA by up to 300% (N=3,

Tasks = 5000). The curves indicate that increase in

latencies for HHO, SMA and RLQ can be

exponential, whereas, AHBO shows almost linear

curve as the complexity of the scenario increases.

4.1.2 Maximum Completion Time (𝑪𝒎𝒂𝒙)

Figure 5 depicts the maximum completion times

achieved by each algorithm under the same varying

conditions. As expected, the maximum completion

time metric results mirror the trends observed for

No. of

EdgeDCs

No. of Tasks Algorithm Average

Latency

Max Completion

Time

99th Percentile

Latency

3

500

AHBO 189.54 733.79 342.27

RLQ 372.63 1219.26 819.68

SMA 661.93 1683.89 1283.22

HHO 663.46 1731.67 1317.54

1000

AHBO 344.28 1440.95 650.87

RLQ 492.75 1662.79 1044.4

SMA 1271.8 3333.54 2533.16

HHO 1329.71 3805.23 2967.03

5000

AHBO 1602.33 6997.64 3142.33

RLQ 4707.69 13407.53 9490.36

SMA 6430.65 16710.16 12723.05

HHO 6510.12 17800.85 13772.35

5

500

AHBO 127.0 620.55 217.96

SMA 308.37 1044.03 632.08

RLQ 438.35 1323.45 916.87

HHO 461.02 1708.62 1276.32

1000

AHBO 219.77 1158.39 397.01

SMA 656.94 2037.35 1274.21

RLQ 879.81 2604.56 1828.69

HHO 892.16 3308.1 2516.42

5000

AHBO 931.92 5579.96 1821.83

SMA 3107.11 10088.3 6250.34

HHO 3834.37 14769.52 10752.09

RLQ 4783.04 13399.48 9559.64

10

500

SMA 70.98 576.68 168.71

AHBO 72.39 526.2 114.55

HHO 167.58 1135.89 688.17

RLQ 438.36 1337.0 920.66

1000

AHBO 114.43 966.89 196.45

SMA 137.25 1063.88 295.4

HHO 366.63 2342.08 1504.54

RLQ 907.31 2648.63 1859.21

5000

AHBO 441.09 4782.01 838.27

SMA 562.85 5172.15 1186.24

HHO 2751.22 14042.52 9749.48

RLQ 4870.9 13698.21 9664.95

15

500

SMA 25.12 453.86 62.88

AHBO 53.79 475.71 82.29

HHO 297.76 1506.65 1069.39

RLQ 441.74 1325.72 920.18

1000

SMA 32.98 851.17 101.82

AHBO 79.54 919.06 129.13

HHO 487.5 2728.08 1860.31

RLQ 951.48 2722.6 1910.67

5000

SMA 53.43 3784.7 193.15

AHBO 276.18 4255.65 512.92

HHO 1704.82 11275.55 7373.6

RLQ 4841.21 13459.08 9626.67

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4438

average latency. AHBO’s superior capability in

reducing the total time required to complete all

tasks is particularly evident in high-load scenarios.

While SMA can achieve competitive makespan in

smaller scenarios, the superiority of the AHBO in

intensive environments is again verified by the fact

that it has lesser maximum completion time than

SMA in the scenario where SMA achieved lower

average latency i.e. when N=10 and tasks=500.

This reason for this trend is because the tail latency

of AHBO is lesser than SMA for this case scenario.

Figure 5. Maximum completion time for AHBO, HHO, RLQ and SMA across different scenarios

4.1.3 99th Percentile Latency

Figure 6 provides insights into the tail latency

performance, indicating the worst-case experience

for 99% of tasks. Crucially, the 99th percentile

latency reveals AHBO's robustness in handling

peak loads and avoiding significant delays for

critical tasks. AHBO consistently maintains lower

tail latencies compared to its counterparts across

almost all configurations, indicating more

predictable and stable system behavior even under

stress. Also, as it is already seen in previous

subsections, SMA performs well in scenarios where

workload is lighter. However, its performance as

per this metric is not as distinct as for average

latency metric. Summary, AHBO is much more

effective at preventing performance bottlenecks that

disproportionately affect a small fraction of tasks.

Figure 6. Comparison of 99th percentile (tail) latency for AHBO, HHO, RLQ and SMA across different scenarios.

4.1.4 Total Decision Overhead

Figure 7 illustrates the computational overhead

associated with the decision-making process of

each algorithm. It clearly differentiates between

online (AHBO, RLQ) and offline (HHO, SMA)

algorithms in terms of how this overhead is

accumulated. While HHO and SMA incur a single,

upfront optimization cost, AHBO and RLQ

demonstrate continuous decision-making overhead

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4439

per time step. Despite being an online adaptive

algorithm, AHBO maintains a remarkably low

decision overhead, often comparable to the

continuous decision costs of RLQ and significantly

less than the upfront costs of HHO and SMA.

Seemingly, the RLQ algorithm is quicker than all

other algorithms but the decision overhead in

Figure 7 does not include the RLQ model’s training

time, without which a machine learning or

reinforcement learning algorithm may provide very

unreliable solution. The training cost for RLQ, in

terms of time, is depicted in Figure 8. As it is

evident, the time required for training is on a much

larger scale than the time required for decision-

making. This makes AHBO highly suitable for real-

time edge environments where immediate and

computationally inexpensive decisions are critical

because it requires no training or re-training.

Figure 7. Total decision overhead (log scale) for AHBO, HHO, RLQ and SMA across different scenarios.

4.2. Analysis and Discussion

In this subsection we dive deeper to explore the

underlying reasons and present more insights for

the performances observed in section 5.1. This will

help us to understand the position of AHBO

algorithm in the broader context of edge computing

optimization.

4.2.1 Behavioral Comparison

AHBO has consistently recorded superior

performance, up to 200-300% decrease in latency

during high workloads, which can be directly

linked to its core hormesis principle and adaptive

mechanisms. It maintains EdgeDCs within their

optimal stress zones dynamically and balances the

workload according to the situation taking very low

decision time. This helps AHBO to prevent both

underutilization and overburdening of edge

datacenters. AHBO continuously fine tunes its

control parameters (𝑘, 𝜃, 𝛿, 𝑇𝑎𝑑𝑗), by using the

adaptive parameter tuning subroutine which allows

AHBO to dynamically adjust its offloading and

redistribution strategies in response to real-time

changes in workload characteristics and state of

edge datacenters.

In contrast, the metaheuristics algorithms like HHO

and SMA are capable of finding high-quality

solutions for a given static problem instance but

their inability to adapt to sudden changes in

conditions limits their effectiveness in edge

computing scenarios. These methods find the

solution depending upon initial static snapshot,

which quickly degrades as the simulation

progresses.

On the other hand, RLQ also falls behind due to

complexity of state-action space and lack of

continuous learning and policy updates.

Reinforcement learning methods heavily depends

on learning capabilities and can adapt to changing

environments through its reward mechanism, but

the state-action space it develops during the

learning state might not be sufficient in highly

varying edge computing scenarios. RLQ shows a

competitive performance with batch processing

methods, HHO and SMA, but is not able to match

the adaptive capabilities of AHBO algorithm.

4.2.2 Trade-offs in Computational Cost and

Scalability

This subsection introspect the trade-off between

offloading accuracy and time taken in making

offloading decisions, introduced as decision

overhead in this study, and is the component of

computational cost which we intend to minimize.

The batch mode algorithms, SMA and HHO,

optimize offloading through population-based

exploration, but also incur significant overhead in

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4440

decision-making time. As shown in Figure 7, the

decision time incurred by these algorithms per

scheduling cycle remains around 100 to 1000

seconds, regardless of the scenario. These high

values reflect the offline nature of their

optimization logic, which involves full population

evaluation and fitness evaluation for each batch of

the tasks.

In contrast, Figure 7 also shows that AHBO and

RLQ exhibit decision overheads that are three to

four orders lower in magnitude, usually ranging

from 0.005 to 0.15 seconds per time step. This

places them well within real-time operational

thresholds for edge environments. However, while

RLQ’s decision latency appears comparable to

AHBO, it requires a substantial up-front training

phase. Figure 8 show that cumulative training time

of RLQ algorithm spans over ten thousand seconds

in complex scenarios. This cost scales nonlinearly

with the size of the system and the number of

episodes used during policy convergence.

Together, these results establish that while all

methods may appear viable from latency

standpoint, their feasibility in real-time deployment

depends on decision readiness and computational

demand. AHBO achieves the most favorable trade-

off, combining online responsiveness with robust

average and tail latency performance, while SMA

and HHO trade accuracy for significant

computational cost, and the utility of RLQ

algorithm is limited by its offline training

requirements.

4.2.3 Time Complexity Analysis

The AHBO algorithm is designed to make

decisions quickly and adaptively and this

achievement is evident from decision time results

in Figure 7. Unlike the other algorithms, AHBO

runs online and makes task offloading decisions at

each time step without the requirement to see the

entire workload in advance. AHBO combines the

important performance parameters like, CPU

utilization, queue length, and latency into a single

stress value which helps the algorithm understand

the state of each datacenter and also keeps the

decision making process efficient. Due to this

strategy, the time complexity of AHBO stays close

to 𝑂(𝑁𝑙𝑜𝑔𝑁), where 𝑁 is the number of edge

datacenters. Even though AHBO includes an

adaptive parameter tuning routine, but the routine

does not run every for time step and only adjusts a

few parameters, so it does not slow down the

algorithm in real-time.

Figure 8. Training time required for the RLQ agent; a

cost that scales with system complexity and is entirely

avoided by the training-free AHBO algorithm

On the other hand, SMA and HHO use global

optimization techniques that evaluate large

populations of possible solutions. Their time

complexity grows much faster and depends on the

number of tasks (𝑇), the size of the population (𝐸),

and the number of iterations (𝑅). Normally, these

algorithms are said to have time complexity 𝑂(𝐸 ×
𝑇) with the assumption that population and number

of iterations scale with number of tasks. This leads

to high decision-making time as also evident in

Figure 7. Similarly, the time complexity for tuning

RLQ depends on multiple parameters such as,

hyper parameter grid combination(𝐺), number of

training episodes (𝑉), number of edge data

centers (𝑁), number of tasks(𝑇), but assuming that

the grid size and number of data centers remain

small finite values, the time complexity of training

RLQ can be reduced to 𝑂(𝐸 × 𝑇). Once the policy

is learned, RLQ runs with linear task complexity.

Hence, RLQ makes fast decisions once trained, but

the training process itself is expensive. Figure 8

shows that RLQ training takes from hundreds to

over ten thousand seconds depending on the

number of datacenters and tasks which is a serious

limitation in dynamic environments where system

conditions change quickly, and re-training may be

required frequently.

Overall, AHBO avoids both the heavy upfront cost

of RLQ and the runtime delays of SMA and HHO.

Its ability to make fast decisions using a single

combined stress value, without needing full

retraining or batch optimization, makes it well

suited for real-time, latency-sensitive edge

computing.

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4441

5. Conclusion

In this paper, we have addressed the problem of

computing task offloading in dynamic edge

computing environments tailored for Industrial IoT

(IIoT) systems. Taking into account the latency

sensitivity and the resource constraints of edge

infrastructure, we formulated a biologically

inspired decision-making mechanism based on

hormetic adaptation. Building on this formulation,

we proposed an Adaptive Hormesis-Based

Optimization (AHBO) strategy that unifies system

stress indicators and dynamically adjusts offloading

policies using percentile-based hormetic zones. The

aim is to optimize latency while maintaining low

decision overheads suitable for real-time scenarios.

The simulation results confirm that AHBO

significantly reduces average latency compared to

existing techniques such as HHO, SMA, and Q-

learning, particularly under high-load or bottleneck

conditions. In future, we plan to extend this

methodology to incorporate energy consumption

and to reduce the computational cost further. We

also intend to explore its application in

decentralized and federated edge architectures,

where distributed learning and decision making

across multiple clusters of edge datacenters may be

required.

Author Statements:

 Ethical approval: The conducted research is not

related to either human or animal use.

 Conflict of interest: The authors declare that they

have no known competing financial interests or

personal relationships that could have appeared to

influence the work reported in this paper

 Acknowledgement: The authors declare that they

have nobody or no-company to acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available on

request from the corresponding author. The data

are not publicly available due to privacy or ethical

restrictions.

References

[1] Al-Ali, S., & Assalem, A. (2023). Metaheuristics

method for computation offloading in mobile edge

computing: Survey. Journal of Advanced Research

in Applied Sciences and Engineering Technology,

36(1), 43–73.

[2] Alzate, I. C., et al. (2024). Flexibility and

adaptability: Dynamic capabilities for building

supply chain resilience. Journal of Infrastructure,

Policy and Development.

[3] Arora, J. S. (2025). Nature-inspired metaheuristic

search methods.

[4] Casale, G. (2024). Optimizing Edge AI:

Performance engineering in resource-constrained

environments (s. 223).

https://doi.org/10.1145/3629526.3649131

[5] Chen, P.-Y., & Jasiuk, I. (2024). Biological and

bio-inspired materials: Multi-scale modeling,

artificial intelligence approaches, and experiments.

Journal of Materials Research and Technology.

https://doi.org/10.1016/j.jmrt.2024.05.117

[6] Duan, Z. H., Qian, X., & Song, W. (2025). Multi-

strategy enhancde slime mould algorithm for

optimization problems. IEEE Access, 1.

https://doi.org/10.1109/access.2025.3527509

[7] Durairaj, S., Umar, M. M., & Natarajan, B. (2025).

Evaluation of bio-inspired algorithm-based

machine learning and deep learning models. In

Evaluation of Bio-Inspired Algorithm-Based

Machine Learning and Deep Learning Models (s.

48–69).

[8] Esmaeili, M., Khonsari, A., Sohrabi, V., & Dadlani,

A. (2024). Reinforcement learning-based dynamic

load balancing in edge computing networks.

Computer Communications.

https://doi.org/10.1016/j.comcom.2024.04.009

[9] Fan, Q., Chen, Z., & Xia, Z. (2020). A novel quasi-

reflected Harris hawks optimization algorithm for

global optimization problems. Soft Computing,

24(19), 14825–14843.

[10] Giudice, M. D., et al. (2018). What is stress? A

systems perspective. Integrative and Comparative

Biology, 58(6), 1015–1030.

[11] Gómez Larrakoetxea, N., Sanz, B., Pastor-López,

I., García-Barruetabeña, J., & Bringas, P. G.

(2024). Enhancing real-time processing in Industry

4.0 through the paradigm of edge computing.

Mathematics, 13(1), 29.

[12] Gulić, M., Žuškin, M., & Kvaternik, V. (2023). An

overview and comparison of selected state-of-the-

art algorithms inspired by nature. TEM Journal,

12(3).

[13] Gupta, A., Sharma, A., Wei, C. L., & Ravi, M.

(2024). Integrating evolutionary algorithms and

mathematical modeling for efficient neural network

optimization. Advances in Machine Learning &

Artificial Intelligence, 5(4), 01–06.

[14] Huang, L., & Yu, Q. (2024). Mobility-aware and

energy-efficient offloading for mobile edge

computing in cellular networks. Ad Hoc Networks,

151, 103472.

[15] Latip, R., et al. (2024). Metaheuristic task

offloading approaches for minimization of energy

consumption on edge computing: A systematic

review. Discover Internet of Things.

[16] Li, S., Chen, H., Wang, M., Heidari, A. A., &

Mirjalili, S. (2020). Slime mould algorithm: A new

method for stochastic optimization. Future

Generation Computer Systems, 111, 300–323.

https://doi.org/10.1145/3629526.3649131
https://doi.org/10.1016/j.jmrt.2024.05.117
https://doi.org/10.1109/access.2025.3527509
https://doi.org/10.1016/j.comcom.2024.04.009

Amit Malik, Amita Rani / IJCESEN 11-3(2025)4429-4442

4442

[17] Li, X., Yang, T., & Sun, Z. (2019). Hormesis in

health and chronic diseases. Trends in

Endocrinology and Metabolism, 30(12), 944–958.

[18] Lindsay, D. G. (2005). Nutrition, hormetic stress

and health. Nutrition Research Reviews, 18(2),

249–258.

[19] Liu, M., & Wang, J. (2022). Parameter adaptive

SEIRD model for epidemic prediction. In Chinese

Control and Decision Conference (s. 1277–1282).

[20] Liu, X., Qin, Z., & Gao, Y. (2019). Resource

allocation for edge computing in IoT networks via

reinforcement learning.

[21] Malik, A., & Rani, A. (2025). Hormesis-based

optimization (HBO) algorithm: A biologically

inspired computational approach. Journal of

Information Systems Engineering and

Management, 10(49s), 1229–1254.

[22] Masadome, S., & Harada, T. (2025). Reward

design using large language models for natural

language explanation of reinforcement learning

agent actions. IEEJ Transactions on Electrical and

Electronic Engineering.

https://doi.org/10.1002/tee.70005

[23] Nahar, S., Raj, U., Meckel, S., & Obermaisser, R.

(2024). Enhancing reliability in organic computing

using hormone guard. IEEE MECO, 10577946.

[24] Ogunsakin, R., Mehandjiev, N., & Marín, C. A.

(2023). Towards adaptive digital twins architecture.

Computers in Industry, August 1, 2023.

[25] Ouassam, E., Hmina, N., Bouikhalene, B., &

Hachimi, H. (2021). Heuristic methods:

Application to complex systems.

[26] Pérez, C. M. (2017). Study and benchmarking of

modern computing architectures.

[27] Rayaprolu, R., Randhi, K., & Bandarapu, S. (2024).

Intelligent resource management in cloud

computing: AI techniques for optimizing DevOps

operations. Journal of Artificial Intelligence and

General Studies, 6(1).

[28] Shah, M. A., Rajwar, D., Dehury, J. P., & Kumar,

D. (2024). VM placement in cloud computing using

nature-inspired optimization algorithms. In

Advances in Computer and Electrical Engineering

Book Series (s. 251–282).

[29] Tang, S., Li, S., Tang, B., Wang, X., Xiao, Y., &

Cheke, R. (2023). Hormetic and synergistic effects

of cancer treatments revealed by modelling

combinations of radio- or chemotherapy with

immunotherapy. BMC Cancer, 23.

https://doi.org/10.1186/s12885-023-11542-6

[30] Wang, H., Peng, T., Brintrup, A., Wuest, T., &

Tang, R. (2022). Dynamic job shop scheduling

based on order remaining completion time

prediction.

[31] Wojciuk, M., Swiderska-Chadaj, Z., Siwek, K., &

Gertych, A. (2024). Improving classification

accuracy of fine-tuned CNN models: Impact of

hyperparameter optimization. Heliyon, 10.

https://doi.org/10.1016/j.heliyon.2024.e26586

[32] Wu, M., Tao, F., & Cao, Y. (2023). Value of

potential field in reward specification for robotic

control via deep reinforcement learning. AIAA

SCITECH 2023 Forum.

https://doi.org/10.2514/6.2023-0505

[33] Yan, P., Zhang, J., & Zhang, T. (2024). Nature-

inspired approach: A novel rat optimization

algorithm for global optimization. Biomimetics,

9(1), 732.

[34] Yang, B., Liu, Y., Li, H., Chen, Y., & Deng, X.

(2024). Optimization of edge computing task

offloading based on multi-agent game. Proc. SPIE.

[35] Zhan, W., et al. (2020). Mobility-aware multi-user

offloading optimization for mobile edge

computing. IEEE Transactions on Vehicular

Technology, 69(6), 6612–6626.

[36] Zhou, S., Sun, J., Xu, K., & Wang, G. (2024). AI-

driven data processing and decision optimization in

IoT through edge computing and cloud

architecture. Journal of AI-Powered Medical

Innovations, 2(1), 64–92.

https://doi.org/10.60087/vol2iisue1.p006

https://doi.org/10.1002/tee.70005
https://doi.org/10.1186/s12885-023-11542-6
https://doi.org/10.1016/j.heliyon.2024.e26586
https://doi.org/10.2514/6.2023-0505
https://doi.org/10.60087/vol2iisue1.p006

