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Abstract:  
 

Drug-drug interactions (DDIs) are critical in polypharmacy, where the concurrent use of 

multiple drugs can lead to synergistic effects or adverse drug events (ADEs). The latter 

can significantly impact patient morbidity and mortality. The rapid introduction of new 

drugs further complicates the prediction of DDIs, making traditional wet-lab 

verification methods both time-consuming and resource-intensive.Problem Statement: 

While artificial intelligence (AI) models have been employed to predict DDIs, the 

development of highly complex "black-box" models poses challenges in terms of 

interpretability and trust in clinical settings. There is a pressing need for explainable AI 

(XAI) approaches to ensure these models are both accurate and transparent. This study 

utilizes a comprehensive dataset from DrugBank, encompass- ing various drug 

interactions. We implemented data preprocessing steps, including handling missing 

values, encoding categorical variables, and normalizing the data. To address data 

scarcity, we employed Generative Adversarial Networks (GANs) to generate synthetic 

data, which was combined with real data to enhance the training dataset. The 

augmented dataset was then used to train an XGBoost model, optimized for binary 

classification. To ensure interpretability, we integrated SHapley Additive exPlanations 

(SHAP) to analyze feature im- portance and model decision-making processes. The 

XGBoost model demonstrated high predictive accuracy with a validation accuracy of 

99.06%, precision of 98.73%, recall of 99.03%, and an F1 score of 98.88%. SHAP 

analysis provided clear insights into feature importance, highlighting the most 

influential fea- tures in the model’s predictions and enhancing the transparency of the 

decision-making pro- cess. The combination of advanced machine learning techniques 

and explainable AI methods effectively addresses the challenges of DDI prediction. The 

proposed approach not only achieves high predictive performance but also ensures 

model interpretability, fostering trust and adoption in clinical applications. This 

methodology offers significant potential for improving patient safety and treatment 

outcomes. 

 

1. Introduction 

 
Multiple drugs have been described whereby the 

presence of one drug may affect another in a patient 

using multiple medications. In the best-case 

scenarios these interactions elicit additive effects 

and therapeutic outcomes. However, in treatments 

for multiple diseases, cases of ADEs which lead to 

toxicity or reduced treatment effectiveness harm 

patients and contribute to morbidity/mortality [1, 2, 

3]. Further, an active introduction and approval of 

new drugs and Indications leave a high propensity 

of achieving DDIs [4, 5]. Experiments to confirm 

DDIs are often performed in wet labs, which are 

costly and require a lot of time; therefore, they 

cannot be used frequently or in large numbers. As 

such, there have been uses of Artificial Intelligence 

(AI) models to forecast DDIs [6, 7, 8, 9]. These 

models have grown along with the development 

and enhancement of drug-database resources for 

aiding in clinical decision-making. 

However, further improvement of AI based DDI 

prediction has resulted in the creation of com- 

plicated ‘AI black-box models. Such high-level 
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models even though have increased performances 

are less easy to explain or interpret and hence less 

transparent to the users [10]. However, the less 

complex models are easier to understand, but they 

perform poorly most among the time [11]. Another 

critic came from the group’s realization that in 

certain spheres such as medicine ‘a fine line 

between getting the function right and 

interpretability has to be drawn’. The technical 

aspects of some models include such problems as 

opacity, which can include both false and accurate 

results, therefore, opacity can narrow the trust of 

clinicians and patients in highly complex models 

utilized in the medical field. Hence, explainable AI 

(XAI) has emerged, which deals with techniques 

for understanding the working of machine learning 

algorithms. Therefore, XAI seeks to develop safe, 

reliable, and easily explainable DDI prediction 

models to support clinical practice and ensure that 

the generated messages also offer cogent reasons 

for the produced predictions. 

 

2. Literature Review 
 

One of the most frequently used methods to predict 

Drug-Drug Interactions (DDIs) is Support Vector 

Machine (SVM), which has shown a very strong 

predictive power with AUCs that range from 0.565 

to 0.985 across different applications [12, 13, 6, 14, 

15, 16, 17]. The number of features that the 

predictive model contains affects its capability to 

predict. For example, an increase of 0.02 in the F-

measure score (from 0.5786 to 0.5965) was 

reported by a study that employed feature reduction 

techniques [16]. SVMs are simply one of the most 

famous members of a class kernel machines, which 

in turn is used for pattern analysis. MethodsKernel 

classifiers, e.g., all- paths graph (APG) [18], kBSPS 

for short k-band shortest path spectrum kernels can 

extract local information from the paths that 

connect to a pair of vertices in each other using up 

to l edges magnifiers concatenated with at most one 

edge parameter which has minimum weight per 

vertex classification on real-world data and 

compound similarity [19] related contexts.Syntax-

tree kernel also exists as shallow linguistic (SL)-

kernel based methods have commonly been applied 

in drug pair classification context[20, 21]. Notably, 

Thomas et al. SL, APG kernels were not only the 

best F1-Score (0.606) out of all other statistical 

features like case-based reasoning and ensemble 

learning 

[18] Additionally, Zhang et al. [22], label 

propagation algorithms were used for the small-

labeld nodes problems in undirected weighted 

network. 

LR Logistic regression ( LR ) has commonly been 

used for DDI prediction models. However, Xie et 

al. [23] combined active learning, random negative 

sampling and uncertainty sampling in clinical 

safety DDI information retrieval (DDI-IR) analysis 

for SVM LR. An alternative strategy, the Drug-

Entity-Topic (DET) model used Bayes-rules to 

capitalize on augmented text-mining features for 

improved performance in discrimination and 

calibration of predictions [24]. In response to the 

growing need for adverse DDIs (ADDI) signal 

detection, a Bayesian network framework 

supplemented with specific domain knowledge was 

applied in order to find relationships between drug 

combinations and target ADEs directly [25]. 

In addition, the gradient boosting algorithm 

XGBoost has been applied with success in making 

robust DDI predictions even for drugs whose 

interaction profiles that been seen at all during 

training [26]. We have demonstrated XGBoost 

yielded competitive or even better predictive power 

compared to support vector machine, random forest 

and classical gradient boosting in terms of both 

prediction accuracy as well speed [27, 26]. 

Consistency of the results across different methods 

has been reported to increase the accuracy of the 

prediction of DDIs compared to individual models 

[28, 29, 30, 18, 31, 32, 33] . For example, 

integrating ML algorithms LibLINEAR that SVM 

linear, Naïve Bayes and voting Perceptron 

classifiers as an example returned a higher F-score 

than the unbalanced training model of 70.4% 

against 69.0% [34]. Likewise, in a study to predict 

the unknown DDIs, an HNAI frame which 

comprises of five diversified algorithms; NB, DT, 

k-NN, LR, and SVM were developed. This 

framework obtained the AUC of 0. 67, surpassing 

the performance of individual algorithms (NB: In 

the results it has been found that DT has shown an 

accuracy of 0.565, k-NN has got an accuracy of 0. 

6, LR has got 0. 655 and SVM 0. 666 while the 

average accuracy is 0.66 [6]. 

Some other ensemble methods that have been 

applied to the field include those that involve using 

a combination of GA and LR in classifier ensemble 

rules for DDI predictions; such methods have 

recorded an AUC of 1 and accuracy higher than 90 

percent regardless of the approved or unapproved 

drug pairs [30]. Due to the fact that different drugs 

consist of multiple descriptors or features, the 

integration of these features into the model is key to 

predicting reliable results in DDI prediction 

systems. Due to this, Zhang et al. [35] developed a 

multi-modal deep auto- encoders based drug 

representation learning method (DDI-MDAE) that 

works for predicting DDIs in large-scale, noisy, and 

sparse data. DDI-MDAE is a positive-unlabeled 
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learning model where Deep Learning framework is 

expressed as a random forest (RF) classifer. 

Also, computational experiments proposed a sparse 

feature learning ensemble method with lin- ear 

neighborhood regularization (SFLLN) to predict the 

DDIs, including novel DDIs. Even though the 

authors show that SFLLN is highly accurate and 

even surpasses benchmark methods in certain 

aspects, it must be pointed out that it took a very 

long time to run [36]. 

That is why over the past decades, the growing 

number of drugs has created interactions that are 

beyond the capacity of conventional ML techniques 

[37]. DL, in particular, the neural networks possess 

multiple processing levels and due to that the 

proposed model applies them for DDIs pre- diction 

[38]. Following the architecture of the human brain 

DL has outperformed the conventional methods for 

classification [39] and hence the increased 

utilization in the prediction of DDIs. While using 

ML techniques, feature extraction was often a 

separate process from feature learning; how- ever, 

in DL, these both procedures are united. This 

makes DL particularly suitable for solving the 

centrality, vagueness, and highly nonlinearity of the 

problems of predicting DDIs. Most types of DL can 

be considered as representation learning since the 

DL system, within a multi-layered consecutive 

architecture, learns how to build its own features. 

Since the introduction of DL in the current field, 

this section attempts to discuss the leading DL 

frameworks used in the extraction and prediction of 

DDIs. 

Artificial Neural Network (ANN) is a 

computational model based on the biological neural 

network that helps to learn functional relationships 

in the data. Thus, in ANN a large number of 

neurons are linked to utilize linear and non-linear 

models to give an answer. Previous work has also 

used ANN models in the prediction of DDIs[40, 

41]. For example, Rohani et al [42] used a two-

layered neural network model to classify a feature 

set obtained from a number of similarity matrices 

of five different data sources. Masumshah et al. 

[43] used feed forward neural network with all the 

layers connected where ReLU was used as an 

activation between the layers while Sigmoid was 

used in the output layer. Furthermore Shtar et al to 

the graph nodes of DDI and propagation of ANN 

methods, an XGBoost classifier was employed with 

the matrix of adjacency calculating whether drug 

pairs have an interaction. 

As mentioned before Recurrent Neural Networks 

(RNN) are widely meant for natural language 

processing (NLP)[44, 45] as well as for processing 

sequential data. RNNs are different from CNNs 

because of the former’s memory mechanism 

through which it retains information from previous 

inputs to help in processing of current inputs and 

generation of current outputs. When it comes to the 

process of relation extraction for identifying DDIs, 

which is a type of relation extraction task in NLP, 

Long Short Term Memory (LSTM) networks have 

successfully been used to extract DDIs from 

literature [46, 47, 48]. Char-RNNs although are 

generally employed for the morphologically rich 

languages [49] and text classification [50] have also 

been adopted for the DDIs extraction. For instance, 

Kavuluru et al. [51] have proposed character level 

embeddings in the DDIs extraction and utilised 

LSTM on character embeddings to evacuate word 

vectors. 

Luo et al. [52] proposed a model based on LSTM 

for the prediction of DDIs in diabetes regarding the 

embedded drug-induced transcriptome data. LSTM, 

described by Hochreiter and Schmidhuber in [53], 

is aimed to resolve the problem of long-term 

dependencies and have specific cells in the hidden 

layers, namely input, output and forget gates. Gated 

Recurrent Units or GRU which is a way of 

addressing the short term memory problems that are 

inherent in the conventional RNN model[54] works 

with a combination of states and gates, specifically 

reset and update gates which help in controlling the 

information that is stored for the use at the time of 

making predictions. 

Regarding the DDIs extraction task, Zhang et al. 

[29] proposed the hierarchical RNN model with 

feature representation of the shortest dependency 

path (SDP) between the two entities. This model 

uses Recurrent Neural Networks to learn the 

features of the given consecutive sentences and 

SDP to extract the DDIs. It was separately proposed 

by Zhou et al. [55] to encode biomedical text 

sentences using an attention-based BiLSTM model. 

Also, Jiang et al. [56] employed a skeleton structure 

to define DDIs instances and utilized LSTM in 

processing this structure (skeleton-LSTM). In the 

context of their framework, the specific workload is 

divided into sentences, then into units, skeleton 

units, distances until the first and the second drug, 

respectively are introduced to the embedding layer 

of a skeleton-LSTM. 

RNN or LSTM based architectures of Encoder-

Decoder can run into the loss of information, 

especially in the situations when the sequence 

contains extended sentences. This problem is un- 

tangled by the attention mechanism as applied in 

this work [57]. Yi et al. [58] used a bidirectional 

RNN layer to generate the sentence matrix related 

to word semantics and an attention layer for fusing 

similar sentences of the same drug pairs into the 

final representation. A softmax classifier was then 

used to classify specific DDIs. Zheng et al. [59] 
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also came up with a model that incor- porates an 

attention mechanism with an RNN and LSTM units 

for the classification of the DDIs from texts. 

This means that the improvement in the predictive 

superiority of AI tools is realized by enhancing the 

model’s complexity that makes them opaque black 

box systems with unclear modes of func- tioning. 

Such a state of affairs can slow down the usage of 

AI models in such important spheres as health care. 

Therefore, the method called eXplainable Artificial 

Intelligence or XAI for short, has appeared to try to 

provide for the demand for explained predictions. 

Interpretability approaches are often classified in 

terms of the algorithm, the scale, and the type of 

data [60]. Moreover, the existing interpretability 

approaches can be divided into groups based on the 

objectives, which include making creation of white-

box models, explaining black-box models, 

improving model’s fairness, and carrying out the 

predictive sensitivity analysis [61]. 

As for the techniques designed to account for DL-

based predictions, the gradient-based attri- bution 

method [62] tries to shed light on the network’s 

input elements. This method is normally used on 

predictions generated by deep neural networks 

(DNN) and can be a prospective technique for some 

of the undisclosed DNN models used in DDIs 

prediction [63, 64]. Also, the DeepLIFT algorithm, 

which implies significant benefits as compared to 

other gradient-based methods, can be used in DNN 

models [65]. Lastly, the Guided BackPropagation 

method can also be used for network structures and 

what replaces the max–pooling layer in CNNs is a 

convolution layer with an improved step size to 

solve the problem of accuracy loss during the 

training process Thus, it has certain enlightenment 

in developing more effective CNN-based DDIs 

prediction models [66, 67]. 

In case of NLP based neural networks, one 

approach [68] suggested is the use of rationales 

(small portion of the document) that results in the 

same decision as the entire document input. This 

method consists of two stages: generator and 

encoder, which will help to discover the text 

subsets in direct relation to the result of the 

prediction. Since DDIs extraction tasks are carried 

out under the models of NLP [69, 70], it is possible 

to improve the clarity of these models. 

Aside from the above methods, other methods 

recommended in XAI are trying to build the white-

box models like linear models, decision trees, or 

rule based models; or building complex but 

interpretable models at the same time. However, 

these approaches are not powerful in terms of 

predicting the potential results and mostly 

concentrate on the few results, therefore they have 

less interest in the NLP-based domains like DDIs 

extraction. It has also been suggested that there are 

different approaches to the question of AI’s 

fairness, and very limited literature has taken into 

account fairness under conditions of DDIs in non-

tabular data such as text-based data. It has been 

found out that text vectorization, which is 

commonly employed in the setup of many DDIs 

studies with the use of word embedding methods 

[35, 69], can contain strong bias [71]. Hence, it 

would be understandable for fairness to be of 

increased concern in DDIs examinations. 

It is equally important to develop the methods for 

sensitivity calculation to increase the relia- bility of 

AI models. The Adversarial Example-based 

Sensitivity Analysis utilised by Zugner et al. 

[72] to investigate graph-structured data pertains to 

alteration of nodes’ connection or attributes to 

target node classification models. Since graph-

based methods are popular in DDIs researches [73, 

74] it can be useful to apply the same to DDIs 

prediction models. Interference to word embed- 

dings [75] in RNNs should also be discussed; for 

input reduction method, the paper by Feng et al. 

[76] that uncovers oversensitivity in NLP models 

can be utilized in the DDIs extraction research. 

Despite the fact that there is a vast number of 

publications about the deficiencies of DL models in 

NLP tasks, the use of DDIs-NLP models is still 

rather limited. 

Schwarz et al [77] conducted study on the basis of 

DDIs and tried to improve the model 

interpretability with the help of Attention scores at 

all the layers of modeling. Thus, the impact of 

similarity matrices on drug representation vectors 

was revealed, as well as the features of drugs that 

contribute to their better encoding. This strategy 

uses all levels of the network since this structure 

offers an understanding on the workings of the 

model. 

 

3. Proposed Methodology 
 

In this section, the authors describe the proposed 

method for the prediction of drug-drug interac- 

tions (DDI) through a Data preprocessing, Data 

augmentation with GANs, machine learning & 

interpretability with SHAP. A flowchart of the 

proposed method can be depicted as follows. 

The starting step is to load the required libraries and 

data set into the working environment. This step is 

crucial to make sure that all the necessary tools as 

well as data that will be needed for the further 

analysis are provided. After that, data preparation is 

initiated to deal with missing values and to encode 

categories as well as normalize the data. These 

preprocessing steps are very necessary to ready the 

data for feeding to the machine learning algorithms 
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so that the models can make proper interpretations 

of the data. 

Since there is a scarcity of data, the current work 

applies a technique known as data augmen- tation 

using a Generative Adversarial Network or GAN. 

The GAN creates synthetic data that completes the 

training data along with the original data, in other 

words it creates a series of data that is diverse. 

Hence, this augmented dataset aids in the 

enhancement of both the reliability and efficiency 

of the machine learning model due to the increased 

variety of data provided. 

The merged data set which is containing both, the 

real and the synthetic data is used to build a 

machine learning model. This model then uses the 

newly enhanced database to train and determine the 

patterns which are characteristic of potential DDIs. 

The trained model should give precise prediction 

results of DDIs with the help of the more diverse 

and expanded data. 

Meanwhile, the issue of interpretability is solved 

through the usage of SHAP SHapley Additive 

exPlanations. SHAP values aid in understanding the 

outcome predicted by the machine learn- ing model 

by establishing which features had the most bearing 

on the model’s decision-making processes. This 

interpretability is significant in various essential 

applications such as predicting patients’ health 

state, understanding the model’s decision-making is 

critical to trust and trans- parency. 

In the following sub-sections, the logical flow of 

these research activities will be described in greater 

detail to give the reader a clearer picture of the 

overall proposed method. 

 

3.1 Dataset Overview 

 

We obtained a dataset from DrugBank to identify 

drug-drug interactions reported in the literature. 

The highly accurate and computationally efficient 

data supplied by DrugBank is presented in a broad 

range of scientific, clinical and unstructured 

sources. The database, containing the data on 

medicines, protein sequences and target sequences 

is being updated regularly with all these 

information under continuous verification by 

medical experts. These highly validated datasets are 

then used in many areas of research. 

DrugBank database includes various types of data, 

which are indispensable for many tasks in 

biomedical science It displays in-depth data about 

clinical trials to reveal more information on drugs, 

including what is currently being trialed and 

repurposed as well as those that got stuck at the 

trial steps. Each record of a clinical trial is complete 

with date, ID number and descriptive title along 

eligibility criteria-a sine qua non for comparing 

results in evaluations of different drugs under 

study. This information is invaluable for the 

monitoring of drug development and the 

identification of areas where drugs can be re-

purposed. 

DrugBank has also a lot of information about drug 

interactions, crucial for the early iden- tification of 

possible adverse effects due to the interaction 

between medications. This property of the dataset is 

especially valuable for healthcare professionals and 

researchers investigating pa- tient safety, as well as 

treatment effectiveness. In addition, this dataset 

contains pharmacological analysis-required higher-

level parameters like metabolism, pharmacokinetics 

and drug proteine interactions. These are vital in 

being able to place bets and carry out a deep risk 

analysis. 

Data Description : The particular dataset utilized in 

this work is tabular and characterized with ID, 

Drug1, Drug2. Cell line,ZIP - Northing 

Classification etc Exactly, an example being that 

the dataset would include interactions such as "5-

FU and ABT-888 in cell line A2058 with a ZIP 

score of 5.88 inferred synergy" or "5-FU and 

DASATINIB in cell line A2058 with aZIPscoreof -

5.79 classifiedasantagonism". This structured data 

generates a solid substrate for meta-analyzing the 

drug-interactions and its response, hopes in 

developing predictive models to predict synergy or 

antagonistic nature of drugs. 

 

3.2 Preprocessing 

 

As the data preprocessing is a very important but 

boring part of preparing the dataset for both 

analysis and model training. For example, in the 

case of missing values, initially any rows with nan 

were dropped to maintain consistency. This was 

followed with the selection of a subset of data for 

further analysis. We further subset the total data by 

randomly sampling 40% of all cross- sectional 

image-context pairs to guarantee (1) sufficient 

diversity in measurement, while keeping 

computational load at a reasonable level for model 

training and evaluation; and also intended as well 

defined surrogate that can be used interchangeably. 

The next step was encoding the ’classification’ 

target variable to binary: 1 for synergy and 0 for 

antagonism. So this transformation was required so 

that the machine learning models can understand 

our label in a proper way. The features (X) was 

then separated out from the target variable (y), 

dropping ’classification’ as part of features. 

Categorical variables (Drug1, Drug2 and Cell line) 

were encoded with one-hot-encoding. This 

encoding converted that categorical data into the 

form which may be provided to algorithm to predict 
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better. Afterwards, the feature matrix was 

normalized with StandardScaler which does a z- 

score scaling therefore all features will contribute 

equally to training. This process of normalization 

centered the features to have a zero mean with unit 

variance. 

Finally the type of feature matrix was converted to 

float for compatibility with subsequent machine 

learning algorithms. This all produced a clean, 

formatted and regularized data suited for the next 

steps in analysis as well as modeling. 

 

3.3 GAN for Data Augmentation 

 

The Generative Adversarial Network (GAN) is 

utilized in this study to augment the training dataset 

by generating synthetic data. The GAN framework 

consists of two primary components: the generator 

and the discriminator. The generator aims to 

produce realistic synthetic data, while the 

discriminator evaluates the authenticity of the data, 

distinguishing between real and synthetic samples. 

 

3.4 Generator Model 

 

The generator model in our GAN is designed to 

map a random noise vector z to the data space. This 

mapping is achieved through a series of linear 

transformations and nonlinear activation functions. 

The generator can be described by the following set 

of equations: 

 
h1 = ReLU(W1z + b1)  

 
h2 = ReLU(W2h1 + b2)  

 
h3 = ReLU(W3h2 + b3) 

 
xfake = Tanh(W4h3 + b4) 

 

The synthetic data generation process uses z as 

input noise vector along with hidden layers h1 h2 

h3 and produces xfake. Each weight matrix Wi and 

bias term bi belongs to a layer within the neural 

network while ReLU and Tanh represent the 

activation functions. 

The input noise vector z is drawn from a standard 

normal distribution, defined as: 

z ∼ N (0, 1) 

 

3.5 Data Flow Description 

 

The image beneath displays the data movement 

inside GAN. The beginning of GAN execution 

starts with input tensors t1,t2,...tn+1 that contain 

training samples. The generator uses noise vector z 

together with input tensors to create synthetic data. 

The process of generator network data 

transformation works by processing each input 

tensor ti according to the following sequence: 

 
ti = Generator(z) 

 

The variable i runs from number 1 until n + 1. The 

generator produces its output which joins real data 

to build an augmented training dataset. 

The generator model generates realistic synthetic 

data by using input tensors together with random 

noise vectors. Using this method leads to larger 

training dataset diversity as well as higher quantity 

which results in better predictive model 

performance and resilience. 

 

3.6 Discriminator Model 

 

The discriminator in the GAN framework is 

designed to distinguish between real and synthetic 

data. It acts as a binary classifier, predicting the 

probability that a given input is real. The dis- 

criminator model processes the input data through a 

series of linear transformations and nonlinear 

activation functions to make its predictions. 

The architecture of the discriminator model can be 

described by the following equations: 

 
h1 = LeakyReLU(W1x + b1, α = 0.2)  

 
h2 = LeakyReLU(W2h1 + b2, α = 0.2)  

 
h3 = LeakyReLU(W3h2 + b3, α = 0.2) 

 
Preal = Sigmoid(W4h3 + b4) 

 

In these equations: 

 

• x is the input data (either real or synthetic). 

• h1, h2, h3 are the hidden layers. 

• Preal is the output probability that the input 

data is real. 

• Wi and bi represent the weight matrices and 

bias vectors of the respective layers. 

• LeakyReLU is used as the activation 

function with a negative slope coefficient α 

= 0.2. 

• Sigmoid is used as the activation function for 

the output layer to ensure the output is a 

probability between 0 and 1. 

•  

4. Generate Synthetic Data 
 

For augmentation of the training dataset a synthetic 

data was obtained by generation using the 

generated model. This was done by sampling the 

scalar from a standard normal distribution and then 
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generate new noise vectors by passing them 

through the generator. These synthetic samples 

were created to resemble the characteristics of the 

real data and as such, served to increase the size of 

the initial set of training data as well as its variety 

and solidity. 

In figure 1, three histograms show the distributions 

of three different features from the real and 

generated data. The histograms of the Feature 0, 

Feature 1 and Feature 2 illustrate the distribution of 

the values within these features in both the train and 

test sets. In the case of Feature 0, the histogram 

distribution of real data and generated data is fairly 

close to each other, though slight deviations can be 

observed in the fact that the generated data peak 

near one. In Feature 1 and 2, the distributions of the 

generated appear less diverse compared to the real 

data, pointing to directions that may require the 

generator’s improvement to mimic the real data 

distribution comprehensively. 

By and large, these visualizations are useful for 

evaluating the fidelity of synthetic data and-end of 

–the synthetic data’s capability to augment the real 

data in future machine learning tasks. 

 

4.1 Combine Real and Synthetic Data 

 

Thus, the real and synthetic data were merged to 

improve the training dataset. Firstly, the real 

training data in numpy array form was converted 

into DataFrame for convinience and to optimized 

the data handling. After that, the synthetic data 

generated in the previous step was vertically 

combined with the real data. This process gave 

cumulative augmented dataset which contains both 

real samples and synthetic samples. 

The labels associated with the augmented data set 

were generated through a combined method; the 

real data set labels, and the synthetic data set labels 

were randomly generated. This way, it is possible 

to add the synthetic data into the training process 

without violating or altering the aspect of labeling. 

Finally, since the augmented data now was made of 

both the real and their respective synthetic samples 

and their labels, it was transformed back into a 

DataFrame. This DataFrame was kept in such 

format to hold the feature names and keep the 

structure of the combined dataset intact. 

Using synthetic data combined with real data 

results in the augmentation of the original dataset 

reaching a larger and more complex pool of data for 

developing the machine learning algorithms. This 

dampened dataset is important to successfully 

increase the generality of the model and com- 

putation error on new data. 

 

4.2 Machine Learning: XGBoost 

 

In the machine learning phase, the above enlarged 

dataset was utilised to train an XGBoost model. 

The first transformations of data were conducted in 

the DMatrix format, which is suitable for working 

with XGBoost and saves resources. This format 

directs various functionalities including the feature 

names which were retained to enhance equal 

pattern in displaying data. 

The values used in the model’s parameterization are 

specifically chosen to better suit the binary 

classification problem. The ’objective’ parameter 

was set to ’binary:’logistic’ to ensure that the model 

chosen is binary logistic regression. For decision 

trees, the ‘max_depth’ parameter was set to 6, 

which restricts the number of levels or the depth of 

the trees, so as not to over-train the models. Eta, as 

is set at 0. 1, it decided the learning rate, the rate 

through which the boost process is carried and 

effectively preventing the over-reaction of the 

entire model update process. Also, the initialization 

of the regressor was given as XGBRegressor, with 

the ‘eval_metric’ parameter defined as ‘logloss’; 

this involves the logistic loss function, thus offers a 

measure of the model’s performance. 

 

 
Figure 1. Synthetic Data 

With regard to those parameters, the XGBoost 

model was trained with the number of boosting 

rounds set as ‘num_boost_round’ = 100. In order to 

avoid overfitting, the technique of early stopping 

was applied and ‘early_stopping_rounds’ was set to 

10. This feature is to stop the training process when 
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the evaluation metric does not increase in the next 

10 rounds. With respect to this, both the training as 

well as the validation datasets were used in this 

process in order to make it learn from the data that 

has been augmented while, at the same time 

checking on its efficacy on a different one. 

This trained XGBoost model is set up with these 

parameters to make use of the diverse and abundant 

augmented data set which will make the model 

generalized and fine-tuned for drug-drug interaction 

prediction. 

 

4.3 Explainable AI 

 

SHapley Additive exPlanations (SHAP) served to 

make the XGBoost model’s predictions more 

understandable. SHAP serves as a single approach 

for model prediction interpretation by identifying 

which input features affect model outputs. This 

approach reveals how individual features influence 

the final model prediction which stands as an 

advantage for explaining the model's determination 

processes in a simpler way. 

A SHAP explainer was established to run on the 

XGBoost model after its training completion. The 

explainer produces SHAP values for each feature of 

the validation dataset by establishing their impact 

on the model predictions. The produced SHAP 

values served as inputs to create a summary plot 

which showed every feature's importance weight. 

The summary plot reveals which variables most 

substantially affect the model output and therefore 

demonstrates important predictors for model 

predictions. 

XGBoost provided multiple feature importance 

evaluation tools that included the implementation 

of built-in plotting features alongside the SHAP 

summary plot. The assessment of feature 

importance happened through three metrics: 

weight, gain and cover. The weight metric reveals 

how often features appear in model trees while gain 

represents the model improvement from features 

and cover demonstrates the number of affected 

samples. The plots present feature importance data 

which complements the information obtained 

through SHAP analysis by showing different 

perspectives of the data. 

The study generated SHAP dependence charts for 

the key supporting variables. The dependence plots 

reveal how each feature affects the output 

predictions by showing the impact of altering 

feature values on prediction results. The 

dependence plots enable researchers to visualize 

essential non-linear effects which develop between 

features inside predictive models. 

The process of evaluating single data records 

involved generating SHAP waterfall summaries. 

These plots entirely explain how one prediction 

occurs by showing how each feature component 

influences the model output decision. Each case 

receives thorough interpretation through waterfall 

plots that demonstrate how the model makes 

progressive steps toward a decision. 

The research utilizes SHAP analysis because it 

supplies XGBoost model predictions with both 

explanatory power and precision capability. The 

development of trust depends on Reality-Based 

Interpretability of model predictions since this 

functionality plays a crucial role in essential tasks 

like drug-drug interaction prediction operations. 

SHAP provides a model structure interpretation 

system that enhances human understanding of 

complex machine learning methods leading to 

wider practical implementation in industrial 

applications. 

 

5. Experiment Results 
 

Testing the XGBoost model against the validation 

data set enabled a high level of performance 

measurement. The model achieved an outstanding 

validation accuracy of 0.9906 which indicates it 

properly classified close to 99% of validation 

examples. The F1 score as well as precision and 

recall values achieved high scores which 

demonstrate the model's capability to detect 

original and incorrect data correctly. 

The model achieved precise accuracy which 

amounted to 98.73% successful positive prediction 

outcomes. The recall parameter measured at 0.9903 

represented the successful identification rate of 

99.03% for actual positive interactions through 

model prediction. The F1 score attained 0.9888 

through the harmonic mean calculation between 

precision and recall levels. 

Through detailed reporting the classification 

process shows how the model performed between 

antagonism and synergy classes. The XGBoost 

model processed 7211 samples in the antagonism 

(class 0) with a precision of 0.99 and recall at 0.99 

and F1 score at 0.99. виконання modelu na klasę 1 

(synergy) otrzymoło dokładność 0.99 oraz ochronę 

0.99 oraz skorzykodol 0.99 dla 5168 próbek w tej 

klasie. 

Results show that the model performed 

exceptionally well according to macro and 

weighted average calculations of precision, recall, 

and F1 score at 0.99. The combination of real and 

synthetic data during XGBoost training results in 

significant improvement of drug-drug interaction 

prediction accuracy as demonstrated by these 

results. 
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Figure 2. This figure consists of three subfigures 

(a), (b), and (c), which display different aspects of 

feature importance in the XGBoost model: 

 

 
(a) Feature Importance (Weight) 

 

 
(b) Feature Importance (Gain) 

 

 
(c) Feature Importance (Cover) 

 

Figure 2. Feature Importance in XGBoost Model 

 

Figure 2 (a). The feature importance plot based on 

weight shows the number of times each feature is 

used to split the data across all trees in the model. 

Features with higher scores are used more 

frequently. 

Figure 2 (b). The feature importance plot based on 

gain indicates the average gain of splits that include 

the feature, reflecting the feature’s contribution to 

the model’s performance improvement. Features 

with higher gain values have a greater impact on 

the model’s predictive power. 

Figure 2 (c). The feature importance plot based on 

cover shows the relative number of obser- vations 

related to each feature. Features with higher cover 

values affect more samples. 

Figure 3. The SHAP bar plot shows the average 

impact of the top features on the model’s output. 

Each bar represents the mean absolute SHAP value 

of a feature, indicating its overall contribution to 

the model’s predictions. Feature 1 has the highest 

average impact, suggesting it is the most influential 

feature in the model. 

 

 
Figure 3. Average impact of the top features 

 

Table 1. Experiment Results for XGBoost Model 

Precision Recall F1-Score Support 

Class 0 (Antagonism) 0.99 0.99 0.99 7211 

Class 1 (Synergy) 0.99 0.99 0.99 5168 

Accuracy   0.9906  

Macro Avg 0.99 0.99 0.99 12379 

Weighted Avg 0.99 0.99 0.99 12379 

Figure 4. The SHAP waterfall plot illustrates the 

contributions of individual features to a specific 

prediction. The plot breaks down the model’s 

output (shown on the x-axis) into the contributions 
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of each feature. Negative values indicate that the 

feature pushes the prediction towards a lower 

output, while positive values push it towards a 

higher output. Feature 1 has the most significant 

negative impact on this particular prediction. 

Figure 5. The SHAP decision plot shows the 

cumulative impact of features on the model’s 

output across all samples. Each line represents a 

feature, and the x-axis shows the model’s output 

value. Features that contribute positively to the 

prediction are in red, while those that contribute 

negatively are in blue. Feature 1 again stands out as 

having a major influence, significantly shifting the 

model’s output value. 

 

6. Conclusion 
 

The research presents a full method for drug-drug 

interaction (DDI) prediction through advances in 

machine learning and AI explainable systems. The 

DrugBank dataset received substantial 

enhancement through our data preprocessing and 

augmentation pipeline which included GAN-based 

synthetic data generation. The performance of 

machine learning models reached high levels 

because the dataset became more diverse and robust 

through the augmentation process. 

 
Figure 4. SHAP waterfall plot 

 

 
Figure 5. The SHAP decision plot 

 
Table 2. Comparison of Different Methods for Drug-Drug Interaction Prediction 

Method Feature Type Performance Metric Reference 

Support Vector Machine (SVM) Kernel Methods F1-Score: 0.5965 
[12, 13, 6, 14, 15, 

16, 17] 

All-paths Graph (APG) Kernel Graph-based Features F1-Score: 0.606 [18, 19] 

Logistic Regression(LR) Clinical Safety Not specified [23] 

Drug-Entity-Topic (DET) Model Text-mining Features 
Improved discrimination and 

calibration 
[24] 

XGBoost Ensemble Method 

Accuracy: 99%, 

Precision: 98.73%, 

Recall: 99.03%, 

F1-Score: 0.9888 

[27, 26] 

Hybrid Meta-Heuristic Algorithms Ensemble Method F-score: 70.4% [34] 

Multi-modal Deep Auto-Encoders 

(DDI- MDAE) 
Deep Learning 

Suitable for large-scale, noisy, and 

sparse data 
[35] 

Sparse Feature Learning Ensemble 

Method (SFLLN) 

Linear Neighborhood 

Regularization 

High accuracy, surpasses 

benchmarks 
[36] 

Deep Learning (DL) Neural Networks Not specified [37, 38, 39] 

Artificial Neural Networks (ANN) Neural Networks Not specified [40, 41, 42] 

Recurrent Neural Networks (RNN) 

with LSTM 
Sequential Data Processing Used for relation extraction [46, 47, 48] 

Attention Mechanism in RNN Text Classification 
Enhances information retention in 

long sequences 
[57, 58, 59] 
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Testing on the validation dataset demonstrated 

superior prediction aptitude of the XGBoost model 

which operated using the augmented dataset 

through its exceptional metric results including 

accuracy together with precision and recall and F1 

score values. Detailed classification reports 

demonstrated the predictive capability of the model 

to accurately identify synergistic as well as 

antagonistic drug-drug interactions in critical 

application areas. 

The research integrated SHapley Additive exPlana-

tions (SHAP) for clear and complete interpretation 

of how the model makes its decisions. SHAP 

analysis provided essential information about which 

features are most important in model predictions as 

well as the way each feature impacts model 

predictions. Medical professionals should 

understand the reasoning mechanism behind 

predictions since this direct approach enhances trust 

and subsequent adoption of the system. 

XAI stands out as a critical factor which helps 

explain complex machine learning models to 

human operators in clinical settings according to 

the study findings. This research made the model 

architecture accessible to users thereby clearing the 

path toward practical applications in clinical 

operations so healthcare providers could depend on 

these predictive systems. 

Advanced machine learning combinations with 

explainable AI approaches create new possibilities 

for tackling intricate problems like drug interaction 

foretelling systems. The generated results support 

both effectiveness and practical implementation of 

the method for better medical care quality and 

treatment success in healthcare environments. 

Future research should concentrate on developing 

better prediction models together with examining 

new interpretability methods to advance the 

transparency and trustworthiness of healthcare AI 

predictions. 
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