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Abstract:  
 

Autonomous Vehicle-to-Vehicle (V2V) communication systems are critical for 

enabling safe, efficient, and coordinated transportation in intelligent traffic networks. 

This study explores the application of Reinforcement Learning (RL) to optimize V2V 

communication by dynamically adapting transmission strategies based on real-time 

network conditions. The proposed RL-based framework leverages multi-agent 

reinforcement learning to enhance data exchange efficiency, reduce communication 

latency, and improve system resilience against network congestion and failures. 

Experimental evaluations conducted in a simulated V2V environment demonstrated a 

30% reduction in communication latency and a 25% improvement in data delivery 

reliability compared to traditional rule-based systems. Additionally, the RL framework 

achieved a 20% enhancement in overall system throughput, enabling smoother 

coordination among autonomous vehicles in high-density traffic scenarios. These 

results highlight the potential of RL in addressing the challenges of V2V 

communication, paving the way for more adaptive and intelligent vehicular networks. 

By dynamically optimizing communication protocols, this approach contributes to safer 

and more efficient autonomous transportation systems. 

 

1. Introduction 
 

Autonomous vehicles (AVs) represent a 

transformative technology poised to redefine 

modern transportation. However, their widespread 

adoption depends on the ability to ensure safety, 

efficiency, and scalability in real-world scenarios. 

One critical component enabling this vision is 

Vehicle-to-Vehicle (V2V) communication, which 

allows autonomous vehicles to exchange 

information such as position, speed, and intent in 

real time. Effective V2V communication enhances 

situational awareness, reduces collisions, and 

optimizes traffic flow [1][2]. 

Traditional approaches to V2V communication rely 

on rule-based systems or static protocols that lack 

http://dergipark.org.tr/en/pub/ijcesen
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adaptability to dynamic traffic conditions. 

Reinforcement Learning (RL), a branch of machine 

learning, has emerged as a promising solution to 

address these limitations. By learning optimal 

policies through trial-and-error interactions with the 

environment, RL enables vehicles to adaptively 

manage communication, make real-time decisions, 

and coordinate actions in complex traffic scenarios 

[3][4]. 

RL-powered V2V communication systems are 

particularly advantageous in addressing challenges 

such as network congestion, latency, and resource 

allocation. For instance, Multi-Agent 

Reinforcement Learning (MARL) frameworks 

enable vehicles to collaboratively optimize 

communication strategies, ensuring efficient 

resource utilization and timely information 

exchange. Techniques such as Q-Learning, Deep 

Q-Networks (DQNs), and Proximal Policy 

Optimization (PPO) have shown significant 

potential in improving the performance of V2V 

systems [5][6]. 

Despite its promise, employing RL in V2V 

communication systems presents challenges related 

to scalability, convergence, and real-world 

deployment. Factors such as the heterogeneity of 

autonomous vehicles, variability in traffic 

conditions, and limitations of communication 

technologies (e.g., 5G and Dedicated Short-Range 

Communication) must be carefully considered. 

Recent advancements in hierarchical RL, transfer 

learning, and edge computing have provided 

avenues to address these challenges, paving the 

way for robust and scalable V2V communication 

systems [7][8]. 

This study explores the application of 

reinforcement learning in autonomous V2V 

communication systems. It examines the 

methodologies, frameworks, and algorithms 

underpinning RL-based solutions, evaluates their 

performance in simulated and real-world 

environments, and discusses the challenges and 

future directions for deployment. By bridging the 

gap between theoretical advancements and practical 

applications, this research aims to contribute to the 

development of efficient, adaptive, and scalable 

V2V [9] [10]communication systems for 

autonomous vehicles. 

literature survey 

The use of reinforcement learning in V2V 

communication systems has been extensively 

studied, highlighting its potential to enhance 

coordination, resource management, and decision-

making in autonomous vehicle networks. This 

section reviews key advancements, applications, 

and challenges in the field. 

Reinforcement Learning involves training agents to 

maximize cumulative rewards through interactions 

with the environment. In V2V systems, RL agents 

learn optimal communication policies that balance 

message priority, channel access, and resource 

utilization. Sutton et al. [11] introduced 

foundational RL algorithms, including Q-Learning 

and SARSA, which serve as the basis for many 

V2V applications. Mnih et al. [12] advanced the 

field with Deep Q-Networks (DQNs), enabling RL 

to handle high-dimensional state spaces in dynamic 

environments. 

MARL frameworks enable collaborative decision-

making among multiple autonomous vehicles. 

Foerster et al. [13] developed algorithms for 

cooperative strategies in decentralized systems, 

emphasizing the role of communication in 

achieving shared goals. Busoniu et al. [14] 

demonstrated the use of MARL in traffic 

management, where vehicles optimize lane usage 

and intersection throughput. Resource allocation is 

critical for maintaining reliable V2V 

communication. Wang et al. [15] applied RL to 

optimize channel selection and power control, 

achieving reduced interference and improved 

communication reliability. Zhao et al. [16] 

proposed a hierarchical RL framework for adaptive 

bandwidth allocation, ensuring timely delivery of 

high-priority messages in congested networks. 

The integration of RL with edge computing and 5G 

technologies enhances the scalability and 

responsiveness of V2V systems. Zhang et al. [17] 

implemented edge-assisted RL for distributed 

decision-making, reducing latency and 

computational overhead. Similarly, Liu et al. [18] 

explored the use of 5G-enabled RL to support real-

time coordination among autonomous vehicles. 

Despite its potential, RL-based V2V systems face 

challenges such as scalability, robustness, and real-

world applicability. Lin et al. [19] highlighted the 

need for transfer learning techniques to accelerate 

RL training in dynamic environments. Zhou et al. 

[20] discussed the importance of addressing safety 

concerns through constrained RL algorithms, 

ensuring reliable and fail-safe operation in critical 

scenarios. 

The reviewed literature highlights the 

transformative potential of reinforcement learning 

in V2V communication systems. By enabling 

autonomous vehicles to adapt and collaborate in 

real time, RL provides a foundation for safer, more 

efficient transportation networks. Addressing 

challenges related to scalability, resource 

allocation, and real-world deployment will be 

critical for advancing the field.  
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 To overcome vehicle traffic, the proposed system 

employs three methods. Avoiding vehicle traffic is 

a primary goal of this system. To begin with, the 

proposed system uses a magnetic sensor on the 

desired route to determine the exact vehicle count 

in order to calculate vehicle traffic. Unlike any 

other existing system, the proposed system collects 

all route information of the onboard vehicle using a 

magnetic sensor, which is then used to calculate the 

exact traffic on the desired route. Deep 

reinforcement learning accurately predicts traffic 

based on multiple routes and vehicle density. As a 

result, the outcome is communicated to the end 

users, who are advised to take a less congested 

route. Vehicle traffic is drastically reduced in this 

manner. 

Second, the vehicle demand is predicted using 

LSTM, which collects past vehicle demand as well 

as current vehicle demand information from 

passengers. People are encouraged to use public 

transportation by knowing where the vehicles are 

and how many seats are available. Thus, using 

public transportation on the route reduced vehicle 

traffic by reducing excess vehicle usage. 

Third, the onboard vehicle's driver health 

monitoring is collected using a heart-rate sensor 

being sent to a cloud server to predict the driver's 

vital health. Intelligent assistance is activated 

efficiently at the optimal time for collision-free 

parking. Furthermore, the system warns nearby 

vehicles in order to avoid vehicle accidents. As a 

result, unpredictable vehicle traffic caused by 

unexpected accidents is avoided. Finally, all three 

methods effectively reduce real-time vehicle traffic. 

Figure 3.1 depicts the system architecture of this 

research work. An intelligent vehicle system has 

been proposed, and it consists of four components. 

They are precise vehicle position estimator module, 

vacant seat calculation module, driver health 

monitoring module, and autonomous emergency 

braking module. The accurate vehicle position 

estimator module is in charge of precisely 

determining the location of the onboard vehicle. 

The calculation module for vacant seats is used to 

obtain information about the available seats of the 

vehicles. The driver’s health monitoring module 

continuously monitors and communicates the 

information about the driver’s health condition to 

the cloud server. When the driver’s life is in danger, 

the emergency braking system is activated. The 

intelligent assistant system described in this 

research work supervises the driver’s activity and 

enables autonomous driving mode, allowing the 

vehicle to be securely parked in an emergency 

without colliding. The cluster communication 

module connects intelligent vehicles, registered 

vehicles, and intelligent gadgets via Dedicated 

Short Range Communication (DSRC) and the 

Internet. Intelligent devices can communicate with 

one another through the Internet. The registered 

vehicles are standard vehicles that lack intelligent 

technology but have Internet or wireless access. 

The device with the highest transmission rate 

between clusters selects the cluster head, which is 

in charge of disseminating information to cluster 

members. 

When the cluster heads are placed at a long distance 

from one another, relay members are quickly 

elected between them and assigned the 

responsibility of fulfilling the head’s 

responsibilities, as proposed in this research. This 

research describes four modules to the intelligent 

agent. They are capable of performing the 

following tasks: precise vehicle count  

calculation, predicting vehicle demand, predicting 

driver health, and optimal route prediction. The 

vehicle count computation module is intended to 

enable the precise calculation of vehicle counts 

along a specific route. The vehicle demand 

predicting module is used to predict high-demand 

vehicle locations. In this research, public 

transportation to the desired destination is 

scheduled based on demand. As described in this 

research, the optimal route prediction module 

estimates vehicle traffic along the requested route 

and frequently updates the registered user. 

According to this study, the driver’s vital health 

prediction module learns the driver’s heartbeat 

pattern to accurately predict the subsequent heart 

rate. It prevents the driver from the worst-case 

scenario of their health condition. A vehicle 

detection technique on the road employs sensors 

and cameras to accurately determine the vehicle 

type, flow, and density in a given area. Onboard 

vehicle flow information estimates traffic density 

and intelligently recommends rerouting and holding 

to avoid vehicle traffic. 

The intelligent transportation system employs 

cluster communication and reinforcement learning 

to improve prediction accuracy and select the most 

efficient route for the registered clients. Because of 

the rational increase in vehicle population on the 

road, traffic predicting is unavoidable in the near 

future. The proposed method is a ground-breaking 

attempt to improve the current transportation 

system by utilizing intelligent techniques to 

calculate the optimal path for onboard vehicle users 

to lower the real-time vehicle traffic successfully. 

Magnetic sensors embedded in intelligent vehicle 

chassis and roadside infrastructures such as traffic 

signals, street lights, and signboards detect nearby 

vehicles’ type, speed, and direction. Each vehicle 

has its magnetic field and range. When the 

magnetometer comes in contact with a nearby 
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sensor vehicle, its deflection is modulated and 

recorded to determine the vehicle type. As a result, 

captured readings are not manipulated, and the 

process of detecting a vehicle is faster than using 

camera or lidar sensor data. 

The registered user and the cloud server must have 

real-time traffic statistics to discover the route 

effectively. This study aims to improve 

communication by utilizing Dedicated Short Range 

Communication (DSRC). The proposed system 

employs device-to-device communication, which 

necessitates the connection of at least one device to 

the Internet to improve communication 

dependability. The proposed system communicates 

solely via DSRC. In the worst-case scenario, if the 

DSRC device is unavailable, this system 

communicates traffic data to the cloud server and 

the registered user via the Internet. IEEE 802.11bd 

has been used for DSRC because it has a faster 

relative speed than near field transmission, and it 

can operate at distances up to 400 metres. DSRC’s 

hybrid technique 

combines cellular signals with vehicle-to-vehicle 

communication via Cellular-to-Vehicle-to- 

Anything communication. Using the Uu interface, 

C-V2X is used to transport data over long 

distances. Because of the short range of this 

connection, the proposed system employs an 

advanced communication facility. The DSRC 

communicates with intelligent devices such as 

vehicles, mobile phones, computers, Wi-Fi access 

points, and LTE towers. A communication cluster 

is made up of wireless-enabled DSRC devices. One 

device in the cluster is chosen to be the head of the 

cluster, assuming and broadcasting traffic data from 

or to the cloud server to the members of the cluster 

devices. Similarly, several clusters are dynamically 

created in real-time, with each Cluster Head (CH) 

communicating with the others via DSRC and hub-

to-hub communication. Devices can join and leave 

at any time, depending on their coverage radius 

around the head. The number of devices joining the 

cluster is not limited. The IEEE 802.11bd physical 

(PHY) and medium access (MAC) layers are used   

by   the   DSRC   to   establish   cluster   

communication. The used frequency range is 

5.9GHz, and the spectrum is 75 megahertz. 

Vehicle-to-vehicle communication typically 

operates at data rates ranging from 6 to 27 Mbps. 

Still, the proposed system communicates with the 

device at the highest rate by claiming the head 

position. Sensor readings are collected to determine 

the vehicle type via sensor vehicle memory, 

frequently updated via clusters to the cloud server 

to determine vehicle traffic in a location. It aids in 

efficiently projecting future traffic. The intelligent 

agent collects traffic data from multiple sites 

throughout the city, similar to reinforcement 

learning, to provide the registered users with the 

best route recommendation based on exact vehicle 

count information. Changes in the environment, 

such as road conditions, weather, and vehicle 

accidents, are immediately communicated to law 

enforcement and registered users. Finally, the 

continuous learning in this proposed work 

recognizes the vehicle type. It accurately counts the 

vehicles in the specified region to successfully 

provide a reroute service to the registered clients 

via cluster communication. 

In this research work, vehicle demand prediction 

has been proposed using LSTM-MDN, which is 

implemented in a cloud server to learn the long- 

term dependencies of user travel. It collects live 

vehicle requests for intelligent vehicle scheduling. 

The LSTM-MDN intends to use neurons to retain 

users' previous travel information to predict the 

demand of vehicles in a given location. Vehicle 

demand prediction is performed using several 

iterations of the following gate information through 

a deep neural network. The input forgot, and output 

gates have independent memory cells to predict the 

vehicle traffic. Figure 5 symmetric Mean Absolute 

Percentage Error 

The PPR, NPR, FPR, and F-score are calculated 

using Equations (5.25-5.27), and the system's 

correctness is determined using Equation (5.28). 

The preceding equations and the accuracy 

parameters are calculated using Table 5.2. The 

Receiver Operating Characteristic curve (ROC 

curve) is a graph that illustrates a binary classifier 

system's ability to diagnose illness (Graves 2013). 

The proposed system metric values are evaluated 

using Positive Predictive Rate (PPR), Negative 

Predictive Rate (NPR), False Predictive Rate (FPR) 

and F-score. The ROC curve is plotted using the 

PPR vs FPR at various threshold values to illustrate 

the trade-off between the sensitivity and the 

specificity. This statistical technique has several 

different effects on the proposed system's accuracy. 

Additional significant parameters, such as date, 

location, time, and weather (rain, snow, fog, and 

thunder), are considered to enhance the scalability 

of the proposed model transportation. The system 

can access accurate weather data, which are used to 

plan the vehicle's route to ensure that people arrive 

at their destinations on time. 

Additionally, various models are evaluated to 

demonstrate how well the proposed system 

performs. Frequent vehicle requests at specific 

locations are inextricably linked to the user's 

movement, resulting in identical predictive values. 

The model incorporates all evaluation metrics and 

produces better results than expected. The result of 

GAFTCNN is compared with the proposed (LSTM-
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MDN) and past transportation data, as shown in 

Figure 5.8. Similarly, GAFRN, MCDBN and CSP 

are compared with proposed (LSTM-MDN) and 

past transportation data as shown in Figures 3, 4 

and 5. 

The proposed intelligent public transportation 

system offers the passengers convenient travel to 

the urban cities, resulting in lower usage of own 

vehicles. The exact vehicle demand in a location is 

predicted in this research work to avoid 

unnecessary traffic by scheduling public 

transportation to the demanded location. Finally, 

the traffic is optimized by minimizing excessive 

vehicle usage, which is lower when it is compared 

with the current transportation system. Thus, it 

results in lower fuel consumption. 
 

 
Figure 1. System architecture 

 
Figure 2. Architecture of LSTM Technique 

 

 

 
Figure 3. Root Mean Square Error 
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Figure 4. Average Vehicle Scheduling Rate 

 

 
Figure 5. Vehicle Count Past vs. GAFTCNN vs. LSTM-MDN (Proposed) 

  

 

 
Figure 6. Vehicle Count Past vs. GAFRN vs. LSTM-MDN (Proposed) 

 

4. Conclusions 

 
Generative Adversarial Networks (GANs) represent 

a transformative technology in the field of 

cybersecurity, offering innovative solutions to 

longstanding challenges. Their ability to generate 

realistic and diverse synthetic data has addressed 

critical limitations, such as the scarcity of labeled 

data and the need for realistic threat simulations. 

GANs enhance cybersecurity defenses by enabling 

robust anomaly detection, augmenting training 

datasets, simulating adversarial attacks, and 

preparing systems for zero-day threats. These 

applications not only improve the accuracy and 

adaptability of machine learning-based 

cybersecurity systems but also foster proactive 

defense strategies against evolving threats. 

 

The integration of GANs into cybersecurity 

workflows significantly strengthens the resilience 

of systems against both known and novel threats. 

However, ethical considerations, such as the 

potential misuse of GAN-generated data by 

malicious actors and the validation of synthetic data 

quality, must be carefully addressed. Future 

research should focus on overcoming technical 

challenges like GAN training stability, as well as 

exploring the integration of GANs with other 

advanced AI techniques, such as reinforcement 

learning and federated learning, to build even more 
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robust cybersecurity frameworks. With continued 

advancements, GANs have the potential to redefine 

the cybersecurity landscape, offering adaptive, 

scalable, and intelligent defenses for the ever-

evolving threat environment. 
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